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Last Time: Bernoulli Likelihood and Beta Prior

• We introduced the beta distribution:

– Which is a probability over a parameter 𝜃 in the range [0,1].

• We reviewed the “∝” notation for probabilities:
– If p(𝜃) ∝ g(𝜃) for discrete 𝜃, then p(𝜃) = g(𝜃)/σ𝜃′𝑔(𝜃

′).

– If p(𝜃) ∝ g(𝜃) for continuous 𝜃, then p(𝜃) = g(𝜃)/∫ 𝑔 𝜃′ d𝜃.

• For Bernoulli likelihood and beta prior, we showed posterior is:

– Where ෤𝛼 = 𝛼 + 𝑛1 and ෨𝛽 = 𝛽 + 𝑛0.

– It looks like the prior, with 𝛼 and 𝛽 “updated” by the counts of 1s and 0s from data.



MAP Estimation for Bernoulli-Beta Model
• The posterior with a Bernoulli likelihood and beta prior is a beta:

– Where ෤𝛼 = 𝑛1 + 𝛼 and ෨𝛽 = 𝑛0 + 𝛽.

• If ෤𝛼 > 1 and ෨𝛽 > 1, taking log and setting derivative to 0 gives MAP of:

– If 𝛼 = 1 and 𝛽 = 1, we get the MLE.
– If 𝛼 = 2 and 𝛽 = 2, we get Laplace smoothing (which often overfits less).
– If 𝛼 = 𝛽 > 2 , we get a stronger bias towards መ𝜃 = 0.5 than Laplace smoothing.
– If 𝛼 = 𝛽 < 1, we get a bias towards away from መ𝜃 = 0.5 (towards 0 or 1).

– You can also bias towards either 0 or 1; if 𝛼 is large compared to 𝛽 it biases towards መ𝜃=1.
– Notice that MAP converges to MLE n → ∞, so the data eventually “takes over” estimate.

• But we use a prior so our model does sensible things when we do not have enough data.



Review: Hyper-Parameter and [Cross]-Validation

• We call the “parameters of the prior”, 𝛼 and 𝛽, the hyper-parameters.
– We usually say that hyper-parameters are “parameters affecting the complexity of the model”.
– We usually also include “parameters of the learning algorithm” as hyper-parameters.

• How can we choose hyper-parameters values?
– Using the training likelihood does not work: it would make 𝛼 and 𝛽 arbitrarily small (ignoring prior).

• Usual CPSC 340 approach: use a validation set (or cross-validation).
– Split your data ‘X’ into a “training” set and a “validation” set.
– For different hyper-parameters of 𝛼 and 𝛽:

• Use the “training” examples to compute the MAP estimate.
• Use MAP estimate to compute the likelihood of the “validation” examples.

– Choose the hyper-parameters with the highest validation likelihood.
• But our final goal is to not optimize performance on the validation set.
• This is a surrogate for the test error (error on completely-new data),

which you cannot measure.

• Take CPSC 340 to learn about many of the things that can go wrong.
– For example, if you are not careful you can overfit to the validation set.

• I see this all the time, even in UBC student’s PhD theses!



Next Topic: Product of Bernoullis



Motivation: Modeling Traffic Congestion

• We want to model car “traffic congestion” in a big city.
• So we measure which intersections are busy on different days:

• We want to build a model of this data, to identify patterns/problems.
– “Inter 4 is always busy”, “Inter 1 is rarely busy”. 
– “Inters 7+8 are always the same”, “Inter 2 is busy when Inter 7 is busy”.
– “There is a 25% chance you will hit a busy intersection if you take Inter 1 and 8”.

Inter 1 Inter 2 Inter 3 Inter 4 Inter 5 Inter 6 Inter 7 Inter 8 Inter 9

0 1 0 1 1 1 0 0 1

0 1 0 1 1 1 0 0 1

0 0 1 1 0 0 0 0 0

0 1 0 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1

0 0 0 1 1 0 0 0 1

0 1 0 1 1 1 1 1 0



Problem: Multivariate Binary Density Estimation

• We can view this as multivariate binary density estimation:
– Input: ‘n’ IID samples of binary vectors x1, x2, x3,…, xn from population.
– Output: model that gives probability for any assignment of values x1,x2,…,xd.

• Covid example: each feature could be “are covid cases >10% in area ‘j’?”
• Notation (please memorize): 

– We use ‘n’ for the number of examples, ‘d’ for the number of features.
– Notice that x3 is a vector with ‘d’ values, and x3 is one binary value.

p(x1 = 0, x2 = 1, x3 = 0, x4 = 1, x5 = 1, x6 = 1, x7 = 0, x8 = 0, x9 = 1) = 0.11 X = 

Inter 1 Inter 2 Inter 3 Inter 4 Inter 5 Inter 6 Inter 7 Inter 8 Inter 9

0 1 0 1 1 1 0 0 1

0 1 0 1 1 1 0 0 1

0 0 1 1 0 0 0 0 0

0 1 0 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1

0 0 0 1 1 0 0 0 1

0 1 0 1 1 1 1 1 0



Product of Bernoullis Model

• There are many different models for binary density estimation.

– Each one makes different assumptions, we will see lots of options!

• We will first consider the simple “product of Bernoullis” model.

– In this model we assume that the variables are “mutually independent”.

• So if we have four variables we assume p(x1, x2, x3, x4) = p(x1)p(x2)p(x3)p(x4).

– As a picture, we treat multivariate problem as ‘d’ univariate problems:

Inter 1 Inter 2 Inter 3 Inter 4

0 1 0 1

0 1 0 1

0 0 1 1

0 1 0 1

1 1 1 1

0 0 0 1

0 1 0 1

Inter 1

0

0

0

0

1

0

0

Inter 2

1

1

0

1

1

0

1

Inter 3

0

0

1

0

1

0

0

Inter 4

1

1

1

1

1

1

1

X = X1 = X2 = X3 = X4 = 



Product of Bernoullis Inference and Learning

• Key advantage of “product of Bernoullis” model: easy inference and learning.
– For most inference tasks: do inference on each variable, then combine the results.
– Compute joint probability.

• p(x1, x2,…,xd) = p(x1)p(x2)⋯p(xd) = 𝜃1𝜃2⋯𝜃𝑑.

– Compute marginal probabilities.
• p(x2) = 𝜃2.
• p(x2, x3) = p(x2)p(x3) = 𝜃2𝜃3.

– Compute conditional probabilities.
• p(x2 | x3) = p(x2).
• p(x2, x3 | x4) = p(x2, x3) = 𝜃2𝜃3.

– Decoding of p(x1, x2,…,xd):
• Set x1 to argmax value of p(x1), set x2 to argmax of p(x2),…, set xd to argmax value of p(xd).

– Sampling:
• Sample x1 from p(x1), sample x2 from p(x2),…, sample xd from p(xd).

• MLE (MAP is similar):



Product of Bernoullis Inference and Learning

• MLE in a product of Bernoullis:

• Cost is O(nd): do an O(1) operations n*d times, then O(n) division.

– If ‘X’ is stored as a “sparse” matrix, can be implemented to only cost O(z).

• Where ‘z’ is the number of non-zero values (z ≤ nd).

• Sampling code:



Running Example: MNIST Digits

• To illustrate density estimation, we will often use the MNIST digits:

– 60,000 images, each a 28x28 pixel image of a number.

– Representing as binary density estimation:

• Each image is one training example xi.

• With each feature being one of the 784 pixels.

• Threshold each pixel to make it binary.

• CPSC 340 wanted to “recognize that this is a 4”.

• In density estimation we want probability distribution over images.

– Given one of the 2784 possible images, what is the probability it is a digit?

• This is unsupervised, we are ignoring the class labels.

– Sampling from the density should generate new images of digits.
https://www.kaggle.com/tarunkr/digit-recognition-tutorial-cnn-99-67-accuracy



Product of Bernoullis on MNIST Digits

• Consider fitting the product of Bernoullis model to MNIST digits:
– For each of the 784 pixels ‘j’, we will have a parameter 𝜃𝑗.

• A “position-specific Bernoulli” distribution.

– To compute MLE for 𝜃𝑗, compute fraction of times pixel ‘j’ was set to 1.
• Visualizing those MLE values as an image:

• Shows pixels near the center are more likely to be 1 than pixels near the boundary.



Product of Bernoullis on MNIST Digits
• Is product of Bernoullis a good model for the MNIST digits?

– Samples generated from the model (independent sample from position-specific Bernoulli for each pixel):

– This is a terrible model: these samples do not look like the data.
– Why is this a terrible model?

• In the dataset, the pixels are not independent.
• For example, pixels that are “next” to each other in the image are highly correlated.

– Even it is a bad model, product of Bernoullis is often “good enough to be useful”.
• Usually when combined with other ideas, that we will see shortly.
• In practice, I think it is actually the most-used method for binary density estimation even though it is one of the worst.

– Later in the course will cover several ways to relax the independence assumption.



Next Topic: Generative Classifiers



Motivation: E-mail Spam Filtering

• Want a build a system that detects spam e-mails.

– Context: spam used to be a big problem.

• We can write this as a supervised learning problem:

– Want to learn to map from “input” (e-mail) to “output” (spam or not).



Review: Data Collection and Feature Extraction

• Collect a large number of e-mails,  gets users to label them.

• We can use (yi = 1) if e-mail ‘i’ is spam, (yi = 0) if e-mail is not spam.

• Extract features of each e-mail (like “bag of words”).

– (xi
j = 1) if word/phrase ‘j’ is in e-mail ‘i’, (xi

j = 0) if it is not.

• See CPSC 330 (or 340) for different ways to extract features from text data.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…



Review: Supervised Learning Notation

• Our notation for supervised learning:

• X is matrix of all features, y is vector of all labels.
– We use yi for the label of example ‘i’ (element ‘i’ of ‘y’).

– We use xi
j for feature ‘j’ of example ‘i‘.

– We use xi as the list of features of example ‘i’ (row ‘i’ of ‘X’).
• So in the above x3 = [0 1 1 1 0 0 …].

• In practice, store xi in some “sparse” format (like a list of non-zeroes, smaller memory).

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…



Generative Classifiers

• In early 2000s, best spam filtering methods used generative classifiers.
– Generative classifiers treat supervised learning as density estimation.

• How can we do supervised learning with density estimation?
– Learning: use a density estimator to estimate p(x1, x2,…,xd,y).

• Generative classifiers model “how the features and label were generated”.

– Inference: compute conditionals p(y | x1,x2,…,xd) to make predictions.
• For example, is p(y = 1 | x1,x2,…,xd) > p(y = 0| x1,x2,…,xd)?

• Can we use a product of Bernoullis as the density estimator?
– You could, but it would do terrible!

– If ‘y’ is independent of the features, predictions would ignore features.

– A simple model that does assume ‘y’ is independent of features is naïve Bayes.



Summary

• Beta distribution:
– Prior for Bernoulli parameter that yields a closed-form MAP estimate.

• Laplace smoothing as a special case.

• Hyper-parameters:
– Parameters of the prior, or other parameters affecting complexity.
– Later we will also include “parameters of the optimization algorithm”.

• Product of Bernoullis:
– Method for multivariate binary density estimation.
– Assumes all variables are independent.
– Inference and learning are easy, but cannot accurate model many densities.

• Generative classifiers:
– Classifiers that model p(x,y) and predict by doing inference.

• Next time: a bit of 340 review.



Existence of MAP Estimate under Beta Prior

• The MAP estimate for Bernoulli likelihood and beta prior:

– This assumes that 𝑛1 + 𝛼 > 1 and 𝑛0 + 𝛽 > 1.

• Other cases:

– 𝑛1 + 𝛼 > 1 and 𝑛0 + 𝛽 ≤ 1: መ𝜃 = 1.

– 𝑛1 + 𝛼 ≤ 1 and 𝑛0 + 𝛽 > 1: መ𝜃 = 0.

– 𝑛1 + 𝛼 < 1 and 𝑛0 + 𝛽 < 1: መ𝜃 can be 0 or 1.

– 𝑛1 + 𝛼 = 1 and 𝑛0 = 1: መ𝜃 can be anything between 0 and 1.


