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Last Time: Bernoulli Likelihood and Beta Prior

* We introduced the beta distribution:
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— Which is a probability over a parameter 6 in the range [0,1].

 We reviewed the “” notation for probabilities:
— If p(0) < g(0) for discrete 8, then p(6) =g(0)/X.q,9(8").
— If p(8) x g(6) for continuous 6, then p(8) = g(8)/[ g(6")d6.
* For Bernoulli likelihood and beta prior, we showed posterior is:
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— Where@ = a +n; and 8 = 8 + n,.
— It looks like the prior, with a and  “updated” by the counts of 1s and Os from data.




MAP Estimation for Bernoulli-Beta Model

The posterior with a Bernoulli likelihood and beta prior is a beta:
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If @ > 1and § > 1, taking log and setting derivative to 0 gives MAP of: ‘7@"4 on @
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— Ifa=1and f =1, we get the MLE.
— Ifa=2and f =2, we get Laplace smoothing (vyhich often overfits less). K'?(DS# O(n)
— Ifa = > 2, we get astronger bias towards 8 = 0.5 than Laplace smoothing.

— Ifa = f < 1, we get a bias towards away from 6 = 0.5 (towards 0 or 1).

— You can also bias towards either 0 or 1; if «a is large compared to f it biases towards 6=1.

— Notice that MAP converges to MLE n — oo, so the data eventually “takes over” estimate.
* But we use a prior so our model does sensible things when we do not have enough data.



Review: Hyper-Parameter and [Cross]-Validation

* We call the “parameters of the prior”, @ and (3, the hyper-parameters.
— We usually say that hyper-parameters are “parameters affecting the complexity of the mode
— We usually also include “parameters of the learning algorithm” as hyper-parameters.
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« How can we choose hyper-parameters values?
— Using the training likelihood does not work: it would make a and 8 arbitrarily small (ignoring prior).

e Usual CPSC 340 approach: use a validation set (or cross-validation).

— Split your data ‘X’ into a “training” set and a “validation” set.
— For different hyper-parameters of a and £: | .o o ,
* Use the “training” examples to compute the MAP estimate. X B Ve ”’V"""" - S /"IPS'
* Use MAP estimate to compute the likelihood of the “validation” examples.
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* But our final goal is to not optimize performance on the validation set. " "JO ‘I'\ il in CPS( 3‘/1/7 7‘4.,7"
* This is a surrogate for the test error (error on completely-new data), N
which you cannot measure. L pr'“.l Jov ho wndar sk, 'k/
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* Take CPSC 340 to learn about many of the things that can go wrong. o detal o s rewr e

— For example, if you are not careful you can overfit to the validation set.
* | seethis all the time, even in UBC student’s PhD theses!



Next Topic: Product of Bernoullis



Motivation: Modeling Traffic Congestion

 We want to model car “traffic congestion” in a big city.
* So we measure which intersections are busy on different days:
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* We want to build a model of this data, to identify patterns/problems.
— “Inter 4 is always busy”, “Inter 1 is rarely busy”.
— “Inters 7+8 are always the same”, “Inter 2 is busy when Inter 7 is busy”.
— “There is a 25% chance you will hit a busy intersection if you take Inter 1 and 8”.



Problem: Multivariate Binary Density Estimation

* We can view this as multivariate binary density estimation:
— Input: ‘n’ 1ID samples of binary vectors x1, x2, x3,..., x" from population.
— Output: model that gives probability for any assignment of values x,x,,...,Xy.
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* Covid example: each feature could be “are covid cases >10% in area ‘j’?”

* Notation (please memorize):
— We use ‘n’ for the number of examples, ‘d’ for the number of features.
— Notice that x3 is a vector with ‘d’ values, and x; is one binary value.



Product of Bernoullis Model

 There are many different models for binary density estimation.
— Each one makes different assumptions, we will see lots of options!

 We will first consider the simple “product of Bernoullis” model.

— In this model we assume that the variables are “mutually independent”.

* So if we have four variables we assume p(x,, X,, X3, X,) = p(X;)p(X,)p(X3)p(X,)-

— As a picture, we treat multivariate problem as ‘d’ univariate problems:
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Product of Bernoullis Inference and Learning

Key advantage of “product of Bernoullis” model: easy inference and learning.
— For most inference tasks: do inference on each variable, then combine the results.
— Compute joint probability.

* P(Xg, X Xg) = P(X1)P(X5) p(Xy) = 01605 -+ Oy4.
— Compute marginal probabilities.

* p(xy) = 6;.

¢ p(er X3) = p(Xz)p(Xg) = 0293
— Compute conditional probabilities. )— (ya % (,,) /s \

* p(x; | X3) = p(x,). w (') [ 2L )

* p(x2, x3 | x4) = p(x2, x3) = 6,05. f’(’}) 3
— Decoding of p(x;, X,,...,Xy):

* Set x, to argmax value of p(x,), set x, to argmax of p(x,),..., set x4 to argmax value of p(x,).
— Sampling:

* Sample x, from p(x,), sample x, from p(x,),..., sample x4 from p(x,).
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Product of Bernoullis Inference and Learning

* MLE in a product of Bernoullis:
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* Costis O(nd): do an O(1) operations n*d times, then O(n) division.
— If X’ is stored as a “sparse” matrix, can be implemented to only cost O(z).

 Where ‘Z’ is the number of non-zero values (z < nd).
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* To illustrate density estimation, we will often use the MNIST digits
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— Given one of the 2784 possible images, what is the probab

' ised, we are ignoring the class labels.
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* Th
— Sampling from the density should generate new images of digits.



Product of Bernoullis on MNIST Digits

* Consider fitting the product of Bernoullis model to MNIST digits:
— For each of the 784 pixels ‘j’, we will have a parameter 6;.
* A “position-specific Bernoulli” distribution.

— To compute MLE for 6;, compute fraction of times pixel j" was set to 1.
* Visualizing those MLE values as an image:

* Shows pixels near the center are more likely to be 1 than pixels near the boundary.



Product of Bernoullis on MNIST Digits

Is product of Bernoullis a good model for the MNIST digits?
— Samples generated from the model (independent sample from position-specific Bernoulli for each pixel):

— This is a terrible model: these samples do not look like the data.

— Why is this a terrible model?
* Inthe dataset, the pixels are not independent.
* For example, pixels that are “next” to each other in the image are highly correlated.
— Even itis a bad model, product of Bernoullis is often “good enough to be useful”.
* Usually when combined with other ideas, that we will see shortly.
* In practice, | think it is actually the most-used method for binary density estimation even though it is one of the worst.

— Later in the course will cover several ways to relax the independence assumption.



Next Topic: Generative Classifiers



Motivation: E-mail Spam Filtering

 Want a build a system that detects spam e-mails.
— Context: spam used to be a big problem.

Gary <jaiwasie@mail.com>
» Jannie Keenan valberta  You are owed $24,718.11
»  Abby valberta USB Drives with your Logo
Do you ha m day’
RDEEma[iE Page RE: HEW rEquES‘t CrEEItEd with ID: ﬁsz Are you intereste d to use our email marketing and lead generation
solutions?
We have worked on mber of proj d campaig many ind
since 2007
Shawna Bulger RE: New request created with 1D: ##63 Flanse reply today 20 g0 pticn &
| am W n help to grow your b by g mailing
sernvices.
»  Gary ualberta Cooperation Best regards.
Gary
Conta belfong@ m

* We can write this as a supervised learning problem:
— Want to learn to map from “input” (e-mail) to “output” (spam or not).



Review: Data Collection and Feature Extraction

* Collect a large number of e-mails, gets users to label them.

| $ | Hi| CPsC | 340 | Vicodin | Offer | .. |
1 1 0 0 1 0 — 1
0 0 0 0 1 1 )
0 1 1 1 0 0 — 0
——)

* We can use (y' = 1) if e-mail ‘i’ is spam, (y' = 0) if e-mail is not spam.
e Extract features of each e-mail (like “bag of words”).

— (x;=1) if word/phrase ‘j" is in e-mail V', (x!, = 0) if it is not.
e See CPSC 330 (or 340) for different ways to extract features from text data.



Review: Supervised Learning Notation

e QOur notation for supervised learning:
| § | Hi| CPsC| 340 | Vicodin | Offer | ..
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e X is matrix of all features, y is vector of all labels.
— We use y' for the label of example ‘i’ (element ‘i’ of ‘y’).
— We use x|, for feature ‘j’ of example ‘i".

— We use x' as the list of features of example ‘i’ (row ‘i’ of ‘X’).
* Sointheabovex3=[011100..].
* |n practice, store x' in some “sparse” format (like a list of non-zeroes, smaller memory).




Generative Classifiers

* In early 2000s, best spam filtering methods used generative classifiers.
— Generative classifiers treat supervised learning as density estimation.

* How can we do supervised learning with density estimation?
— Learning: use a density estimator to estimate p(x,, X,,...,Xg,Y)-
* Generative classifiers model “how the features and label were generated”.

— Inference: compute conditionals p(y | x,X,,...,X4) to make predictions.
* Forexample, is p(y =1 | X;,Xy,...,Xg) > P(y = O X1,X5,...,%4)?

 Can we use a product of Bernoullis as the density estimator?
— You could, but it would do terrible! 7 )
— If 'y’ is independent of the features, predictions would ignore features.
— A simple model that does assume ‘y’ is independent of features is naive Bayes.




Summary

Beta distribution:

— Prior for Bernoulli parameter that yields a closed-form MAP estimate.
* Laplace smoothing as a special case.

Hyper-parameters:

— Parameters of the prior, or other parameters affecting complexity.

— Later we will also include “parameters of the optimization algorithm”.
Product of Bernoullis:

— Method for multivariate binary density estimation.

— Assumes all variables are independent.

— Inference and learning are easy, but cannot accurate model many densities.
Generative classifiers:

— Classifiers that model p(x,y) and predict by doing inference.

Next time: a bit of 340 review.



Existence of MAP Estimate under Beta Prior

* The MAP estimate for Bernoulli likelihood and beta prior:
A< N o=l
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— This assumes thatny; +a > landny + 5 > 1.

* Other cases:
—ny+a> landny+5<1:0 =1.
—ny+a< landny+B8>1:0=0.
—ny+a< landnyg+ B <1:0canbeOorl.

—ny+a= 1landny = 1: 6 can be anything between 0 and 1.



