CPSC 440: Machine Learning

Product of Bernoullis Winter 2022

Last Time: Bernoulli Likelihood and Beta Prior

• We introduced the **beta distribution**:

$$p(\Theta \mid \alpha, \beta) = \Theta^{\alpha - i} (1 - \Theta)^{\beta - i} \propto \Theta^{\alpha - i} (1 - \Theta)^{\beta - i} \\ B(\alpha, \beta)$$

- Which is a probability over a parameter θ in the range [0,1].
- We reviewed the "∝" notation for probabilities:
 - If $p(\theta) \propto g(\theta)$ for discrete θ , then $p(\theta) = g(\theta) / \sum_{\theta'} g(\theta')$.
 - If $p(\theta) \propto g(\theta)$ for continuous θ , then $p(\theta) = g(\theta) / \int g(\theta') d\theta$.
- For Bernoulli likelihood and beta prior, we showed posterior is:

$$\rho(\Theta|X,\alpha,\beta) = \underbrace{\Theta^{\hat{\alpha}^{-1}}(1-\Theta)^{\hat{\beta}-1}}_{B(\hat{\alpha},\hat{\beta})} \propto \underbrace{\Theta^{\hat{\alpha}^{-1}}(1-\Theta)^{\hat{\beta}-1}}_{\beta(\hat{\alpha},\hat{\beta})}$$

- Where $\tilde{\alpha} = \alpha + n_1$ and $\tilde{\beta} = \beta + n_0$.

– It looks like the prior, with α and β "updated" by the counts of 1s and 0s from data.

MAP Estimation for Bernoulli-Beta Model

The posterior with a Bernoulli likelihood and beta prior is a beta: ۲

$$\rho(\Theta|X_{,\alpha},\beta) = \Theta^{\alpha-1}(1-\theta)^{\beta-1}$$
Where $\tilde{\alpha} = n_1 + \alpha$ and $\tilde{\beta} = n_0 + \beta$.
 ≥ 1 and $\tilde{\beta} \geq 1$, taking log and setting derivative to 0 gives MAP of:

 $\Theta = (sum(\chi) + \alpha - 1) / (n + \alpha + \beta - 2)$

If $\tilde{\alpha} >$

$$\hat{\bigotimes} = \frac{\prod_{i=1}^{n} + \alpha - 1}{(n_i + \alpha - 1) + (n_0 + B - 1)}$$

- If α = 1 and β = 1, we get the MLE.

- If α = 2 and β = 2, we get Laplace smoothing (which often overfits less).
- If $\alpha = \beta > 2$, we get a stronger bias towards $\hat{\theta} = 0.5$ than Laplace smoothing.
- If $\alpha = \beta < 1$, we get a bias towards away from $\hat{\theta} = 0.5$ (towards 0 or 1).
- You can also bias towards either 0 or 1; if α is large compared to β it biases towards $\hat{\theta}=1$.
- Notice that MAP converges to MLE $n \rightarrow \infty$, so the data eventually "takes over" estimate.
 - But we use a prior so our model does sensible things when we do not have enough data.

Review: Hyper-Parameter and [Cross]-Validation

- We call the "parameters of the prior", α and β , the hyper-parameters.
 - We usually say that hyper-parameters are "parameters affecting the complexity of the model".
 - We usually also include "parameters of the learning algorithm" as hyper-parameters.
- How can we choose hyper-parameters values?
 - Using the training likelihood does not work: it would make α and β arbitrarily small (ignoring prior).
- Usual CPSC 340 approach: use a validation set (or cross-validation).
 - Split your data 'X' into a "training" set and a "validation" set.
 - For different hyper-parameters of α and β :
 - Use the "training" examples to compute the MAP estimate.
 - Use MAP estimate to compute the likelihood of the "validation" examples.
 - Choose the hyper-parameters with the highest validation likelihood.
 - But our final goal is to **not** optimize performance on the validation set.
 - This is a surrogate for the test error (error on completely-new data),

which you cannot measure.

- Take CPSC 340 to learn about many of the things that can go wrong.
 - For example, if you are not careful you can overfit to the validation set.
 - I see this all the time, even in UBC student's PhD theses!

* Blue: "Review:..." slides: - These are topics that covered Netail in VUL TO this course.

Next Topic: Product of Bernoullis

Motivation: Modeling Traffic Congestion

- We want to model car "traffic congestion" in a big city.
- So we measure which intersections are busy on different days:

Inter 1	Inter 2	Inter 3	Inter 4	Inter 5	Inter 6	Inter 7	Inter 8	Inter 9
0	1	0	1	1	1	0	0	1
0	1	0	1	1	1	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	1	1	1	0	0	0
1	1	1	1	1	1	1	1	1
0	0	0	1	1	0	0	0	1
0	1	0	1	1	1	1	1	0

- We want to build a model of this data, to identify patterns/problems.
 - "Inter 4 is always busy", "Inter 1 is rarely busy".
 - "Inters 7+8 are always the same", "Inter 2 is busy when Inter 7 is busy".
 - "There is a 25% chance you will hit a busy intersection if you take Inter 1 and 8".

Problem: Multivariate Binary Density Estimation

- We can view this as multivariate binary density estimation:
 - Input: 'n' IID samples of binary vectors x^1 , x^2 , x^3 ,..., x^n from population.
 - Output: model that gives probability for any assignment of values $x_1, x_2, ..., x_d$.

- Covid example: each feature could be "are covid cases >10% in area 'j'?"
- Notation (please memorize):

X =

- We use 'n' for the number of examples, 'd' for the number of features.
- Notice that x^3 is a vector with 'd' values, and x_3 is one binary value.

Product of Bernoullis Model

- There are many different models for binary density estimation.
 Each one makes different assumptions, we will see lots of options!
- We will first consider the simple "product of Bernoullis" model.
 - In this model we assume that the variables are "mutually independent".
 - So if we have four variables we assume $p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2)p(x_3)p(x_4)$.
 - As a picture, we treat multivariate problem as 'd' univariate problems:

Product of Bernoullis Inference and Learning

- Key advantage of "product of Bernoullis" model: easy inference and learning.
 - For most inference tasks: do inference on each variable, then combine the results.
 - Compute joint probability.
 - $p(x_1, x_2, ..., x_d) = p(x_1)p(x_2)\cdots p(x_d) = \theta_1 \theta_2 \cdots \theta_d$.
 - Compute marginal probabilities.
 - $p(x_2) = \theta_2$.
 - $p(x_2, x_3) = p(x_2)p(x_3) = \theta_2 \theta_3$.
 - Compute conditional probabilities.
 - $p(x_2 | x_3) = p(x_2)$.
 - $p(x2, x3 | x4) = p(x2, x3) = \theta_2 \theta_3$.
 - Decoding of $p(x_1, x_2, ..., x_d)$:
 - Set x_1 to argmax value of $p(x_1)$, set x_2 to argmax of $p(x_2)$,..., set x_d to argmax value of $p(x_d)$.

 $\int p(x_1 - \frac{p(x_2) - p(x_2)}{p(x_2)} = p(\frac{p(x_2) - p(x_2)}{$

- Sampling:
 - Sample x_1 from $p(x_1)$, sample x_2 from $p(x_2)$,..., sample x_d from $p(x_d)$.

• MLE (MAP is similar):
$$\hat{\Theta}_{1} = \frac{n_{11}}{n} \in n_{umber} \text{ of } t_{imrs}$$
 $\hat{\Theta}_{2} = \frac{n_{21}}{n} \dots \hat{\Theta}_{d} = \frac{n_{d1}}{n}$

Product of Bernoullis Inference and Learning

• MLE in a product of Bernoullis:

$$\begin{array}{l} \Theta = 2 \operatorname{eros}(d) \\ \text{for } i \text{ in } lin \\ \text{for } j \text{ in } lid \\ \text{if } X(i,j) = = 1 \\ \Theta[j] + = 1 \\ \Theta \cdot / = n \end{array}$$

$$\begin{array}{l} Or \\ \Theta = \operatorname{Sum}(X, \dim s = 1)./n \\ \text{Sum } up \text{ columns } of 'X' \\ \text{Sum } up \text{ columns } of 'X' \\ \text{found the number} \\ \text{of times } \operatorname{Paih} x_j' = 1 \\ \text{solvide by 'n'} \end{array}$$

- Cost is O(nd): do an O(1) operations n*d times, then O(n) division.
 - If 'X' is stored as a "sparse" matrix, can be implemented to only cost O(z).
 - Where 'z' is the number of non-zero values ($z \le nd$).
- Sampling code:

Running Example: MNIST Digits

- To illustrate density estimation, we will often use the MNIST digits:
 - 60,000 images, each a 28x28 pixel image of a number.
 - Representing as binary density estimation:
 - Each image is one training example xⁱ.
 - With each feature being one of the 784 pixels.
 - Threshold each pixel to make it binary.
- CPSC 340 wanted to "recognize that this is a 4".

- In density estimation we want probability distribution over images.
 - Given one of the 2⁷⁸⁴ possible images, what is the probability it is a digit?
 - This is unsupervised, we are ignoring the class labels.
 - Sampling from the density should generate new images of digits.

Product of Bernoullis on MNIST Digits

- Consider fitting the product of Bernoullis model to MNIST digits:
 - For each of the 784 pixels 'j', we will have a parameter θ_i .
 - A "position-specific Bernoulli" distribution.
 - To compute MLE for θ_i , compute fraction of times pixel 'j' was set to 1.
 - Visualizing those MLE values as an image:

• Shows pixels near the center are more likely to be 1 than pixels near the boundary.

Product of Bernoullis on MNIST Digits

- Is product of Bernoullis a good model for the MNIST digits?
 - Samples generated from the model (independent sample from position-specific Bernoulli for each pixel):

- This is a terrible model: these samples do not look like the data.
- Why is this a terrible model?
 - In the dataset, the pixels are not independent.
 - For example, pixels that are "next" to each other in the image are highly correlated.
- Even it is a bad model, product of Bernoullis is often "good enough to be useful".
 - Usually when combined with other ideas, that we will see shortly.
 - In practice, I think it is actually the most-used method for binary density estimation even though it is one of the worst.
- Later in the course will cover several ways to relax the independence assumption.

Next Topic: Generative Classifiers

Motivation: E-mail Spam Filtering

- Want a build a system that detects spam e-mails.
 - Context: spam used to be a big problem.

□ ☆ ≫	Jannie Keenan	ualberta You are owed \$24,718.11
□ ☆ ≫	Abby	ualberta USB Drives with your Logo
	Rosemarie Page	Re: New request created with ID: ##62
	Shawna Bulger	RE: New request created with ID: ##63
_ X >>	Gary	ualberta Cooperation

• We can write this as a supervised learning problem:

- Want to learn to map from "input" (e-mail) to "output" (spam or not).

Review: Data Collection and Feature Extraction

• Collect a large number of e-mails, gets users to label them.

\$	Hi	CPSC	340	Vicodin	Offer		Spam?
1	1	0	0	1	0		1
0	0	0	0	1	1		1
0	1	1	1	0	0		0
			•••				

- We can use $(y^i = 1)$ if e-mail 'i' is spam, $(y^i = 0)$ if e-mail is not spam.
- Extract features of each e-mail (like "bag of words").
 - $(x_{i}^{i} = 1)$ if word/phrase 'j' is in e-mail 'i', $(x_{i}^{i} = 0)$ if it is not.
 - See CPSC 330 (or 340) for different ways to extract features from text data.

Review: Supervised Learning Notation

• Our notation for supervised learning:

- X is matrix of all features, y is vector of all labels.
 - We use yⁱ for the label of example 'i' (element 'i' of 'y').
 - We use xⁱ_i for feature 'j' of example 'i'.
 - We use xⁱ as the list of features of example 'i' (row 'i' of 'X').
 - So in the above $x^3 = [0 \ 1 \ 1 \ 1 \ 0 \ 0 \ ...].$
 - In practice, store xⁱ in some "sparse" format (like a list of non-zeroes, smaller memory).

Generative Classifiers

- In early 2000s, best spam filtering methods used generative classifiers.
 Generative classifiers treat supervised learning as density estimation.
- How can we do supervised learning with density estimation?
 - Learning: use a density estimator to estimate $p(x_1, x_2, ..., x_d, y)$.
 - Generative classifiers model "how the features and label were generated".
 - Inference: compute conditionals $p(y | x_1, x_2, ..., x_d)$ to make predictions.
 - For example, is $p(y = 1 | x_1, x_2, ..., x_d) > p(y = 0 | x_1, x_2, ..., x_d)$?
- Can we use a product of Bernoullis as the density estimator?
 - You could, but it would do terrible!
 - If 'y' is independent of the features, predictions would ignore features.
 - A simple model that does assume 'y' is independent of features is naïve Bayes.

Summary

- Beta distribution:
 - Prior for Bernoulli parameter that yields a closed-form MAP estimate.
 - Laplace smoothing as a special case.
- Hyper-parameters:
 - Parameters of the prior, or other parameters affecting complexity.
 - Later we will also include "parameters of the optimization algorithm".
- Product of Bernoullis:
 - Method for multivariate binary density estimation.
 - Assumes all variables are independent.
 - Inference and learning are easy, but cannot accurate model many densities.
- Generative classifiers:
 - Classifiers that model p(x,y) and predict by doing inference.
- Next time: a bit of 340 review.

Existence of MAP Estimate under Beta Prior

• The MAP estimate for Bernoulli likelihood and beta prior:

$$\hat{\otimes} = \frac{n_{1} + \alpha - 1}{(n_{1} + \alpha - 1) + (n_{0} + \beta - 1)}$$

– This assumes that $n_1 + \alpha > 1$ and $n_0 + \beta > 1$.

• Other cases:

$$-n_1 + \alpha > 1 \text{ and } n_0 + \beta \le 1: \hat{\theta} = 1.$$

$$-n_1 + \alpha \leq 1 \text{ and } n_0 + \beta > 1: \hat{\theta} = 0.$$

- $-n_1 + \alpha < 1$ and $n_0 + \beta < 1$: $\hat{\theta}$ can be 0 or 1.
- $-n_1 + \alpha = 1$ and $n_0 = 1$: $\hat{\theta}$ can be anything between 0 and 1.