CPSC 440: Advanced Machine Learning
HMMs and RBMs

Mark Schmidt
University of British Columbia
Winter 2022
Last Time: Expectation Maximization

- EM considers learning with observed data X and hidden data Z.
- In this case the “marginal” log-likelihood has a nasty form,

$$\log p(X \mid \Theta) = \log \left(\sum_Z p(X, Z \mid \Theta) \right).$$

- EM applies when “complete” likelihood, $p(X, Z \mid \Theta)$, has a nice form.
- EM iterations take the form of a weighted “complete” NLL,

$$\Theta^{t+1} \in \arg\max_{\Theta} \left\{ \sum_Z \alpha^t_Z \log p(X, Z \mid \Theta) \right\},$$

where the weights are $\alpha^t_Z = p(Z \mid X, \Theta^t)$ based on previous Θ^t.

- We looked at the simple form of the EM update for mixture models,

$$\Theta^{t+1} \in \arg\max_{\Theta} \sum_{i=1}^n \sum_{z^i=1}^k p(z^i \mid x^i, \Theta^t) \log p(x^i, z^i \mid \Theta),$$

- The “complete-data log-lik” is weighted by the responsibility.
Back to the Rain Data

- We previously considered the “Vancouver Rain” data:

- We used **homogeneous Markov chains** to model between-day dependence.
Back to the Rain Data

- Previously we used a conditional random field to model the month information.

- We could alternately try to learn the clusters using a mixture model.
 - But mixture of independents would not capture dependencies within cluster.

- Mixture of Markov chains could capture direct dependence and clusters,

\[
p(x_1, x_2, \ldots, x_d) = \sum_{c=1}^{k} p(z = c) p(x_1 | z = c) p(x_2 | x_1, z = c) \cdots p(x_d | x_{d-1}, z = c).
\]

 - Cluster \(z \) chooses which homogeneous Markov chain parameters to use.
 - We could learn that some months are more likely to have rain (like winter months).
 - Can do inference by running forward-backward on each mixture, fit model with EM.
Comparison of Models on Rain Data

- Independent (homogeneous) Bernoulli:
 - Average NLL: 18.97 (1 parameter).
- Independent Bernoullis:
 - Average NLL: 18.95, (28 parameters).
- Mixture of Bernoullis ($k = 10$, five random restarts of EM):
 - Average NLL: 17.06 ($10 + 10 \times 28 = 290$ parameters)
- Homogeneous Markov chain:
 - Average NLL: 16.81 (3 parameters)
- Mixture of Markov chains ($k = 10$, five random restarts of EM):
 - Average NLL: 16.53 ($10 + 10 \times 3 = 40$ parameters).
 - Parameters of one of the clusters (possibly modeling summer months):

\[
p(z = 5) = 0.14
\]
\[
p(x_1 = \text{"rain"} \mid z = 5) = 0.22 \quad \text{(instead of usual 37%)}
\]
\[
p(x_j = \text{"rain"} \mid x_{j-1} = \text{"rain"}, z = 5) = 0.49 \quad \text{(instead of usual 65%)}
\]
\[
p(x_j = \text{"rain"} \mid x_{j-1} = \text{"not rain"}, z = 5) = 0.11 \quad \text{(instead of usual 35%)}
\]
The rain data is artificially divided into months.

We previously discussed viewing rain data as one very long sequence \((n = 1)\).

We could apply homogeneous Markov chains due to parameter tieing.
- But a mixture doesn’t make sense when \(n = 1\).

What we want: different “parts” of the sequence come from different clusters.
- We transition from “summer” cluster to “fall” cluster at some time \(j\).

One way to address this is with a “hidden” Markov model (HMM):
- Instead of examples being assigned to clusters, days are assigned to clusters.
- Have a Markov dependency between cluster values of adjacent days.
Hidden Markov Models

- Hidden Markov models have each x_j depend on a hidden Markov chain.

$$p(x_1, x_2, \ldots, x_d, z_1, z_2, \ldots z_d) = p(z_1) \prod_{j=2}^{d} p(z_j | z_{j-1}) \prod_{j=1}^{d} p(x_j | z_j).$$

- We’re going to learn clusters z_j and the hidden dynamics between days.
 - Hidden cluster z_j could be “summer” or “winter” (we’re learning the clusters).
 - Transition probability $p(z_j | z_{j-1})$ is probability of staying in “summer”.
 - Initial probability $p(z_1)$ is probability of starting chain in “summer”.
 - Emission probability $p(x_j | z_j)$ is probability of “rain” during “summer”.
Hidden Markov Models

- **Hidden Markov models** have each x_j depend on a hidden Markov chain.

\[p(x_1, x_2, \ldots, x_d, z_1, z_2, \ldots, z_d) = p(z_1) \prod_{j=2}^{d} p(z_j | z_{j-1}) \prod_{j=1}^{d} p(x_j | z_j). \]

- You observe the x_j values but do not see the z_j values.
 - There is a “hidden” Markov chain, whose state determines the cluster at each time.

- HMMs generalize both Markov chains and mixture of categoricals.
 - Both models are obtained under appropriate parameters.
Hidden Markov Models

- **Hidden Markov models** have each x_j depend on a hidden Markov chain.

 \[
p(x_1, x_2, \ldots, x_d, z_1, z_2, \ldots, z_d) = p(z_1) \prod_{j=2}^{d} p(z_j | z_{j-1}) \prod_{j=1}^{d} p(x_j | z_j).
 \]

- Note that the x_j can be continuous even with discrete clusters z_j.
 - Data could come from a mixture of Gaussians, with cluster changing in time.
 - If the z_j are continuous it’s often called a **state-space model**.
 - If everything is Gaussian, it leads to **Kalman filtering**.
 - Keywords for non-Gaussian: unscented Kalman filter and particle filter.
Applications of HMMs and Kalman Filters

- HMMs variants are probably the most-used time-series model.

Applications

- Single Molecule Kinetic analysis
- Cytoskeleton analysis
- Speech recognition
- Speech synthesis
- Part-of-speech tagging
- Document Separation in scanning solutions
- Machine translation
- Partial discharge
- Gene prediction
- Alignment of bio-sequences
- Time Series Analysis
- Activity recognition
- Protein folding
- Metamorphic Virus Detection
- DNA Motif Discovery

Applications

- Attitude and Heading Reference Systems
- Autopilot
- Battery state of charge (SoC) estimation
- Brain-computer interface
- Chaotic signals
- Tracking and Vertex Fitting of charged particles in Particle Detectors
- Tracking of objects in computer vision
- Dynamic positioning
- Economics, in particular macroeconomics, time series analysis, and econometrics
- Inertial guidance system
- Orbit Determination
- Power system state estimation
- Radar tracker
- Satellite navigation systems
- Seismology
- Sensorless control of AC motor variable-frequency
- Simultaneous localization and mapping
- Speech enhancement
- Visual odometry
- Weather forecasting
- Navigation system
- 3D modeling
- Structural health monitoring
- Human sensorimotor processing
Example: Modeling DNA Sequences

Previously: Markov chain for DNA sequences:

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
Example: Modeling DNA Sequences

- **Hidden Markov model** (HMM) for DNA sequences (two hidden clusters):

 ![Hidden Markov Model Diagram](image)

 - This is a (hidden) state transition diagram.
 - Can reflect that **probabilities are different in different regions**.
 - The actual regions are not given, but instead are nuisance variables handled by EM.

 - A better model might use a hidden and visible Markov chain.
 - With 2 hidden clusters, you would have 8 “probability wheels” (4 per cluster).
 - Would have “treewidth 2”, so inference would be tractable.
Inference and Learning in HMMs

- Given observed features \(x_j \), likelihood of a joint \(z_j \) assignment is

\[
p(z_1, z_2, \ldots z_d \mid x_1, x_2, \ldots, x_d) \propto p(z_1) \prod_{j=2}^{d} p(z_j \mid z_{j-1}) \prod_{j=1}^{d} p(x_j \mid z_j).
\]

- We can do **inference with forward-backward** by converting to potentials:

\[
\begin{align*}
\phi_1(z_1) &= p(z_1)p(x_1 \mid z_1) \\
\phi_j(z_j) &= p(x_j \mid z_j) \quad (j > 1) \\
\phi_{j,j-1}(z_j, z_{j-1}) &= p(z_j \mid z_{j-1}).
\end{align*}
\]

- Marginals from forward-backward are used to **update parameters in EM**.
 - In this setting EM is called the “Baum-Welch” algorithm.
 - As with other mixture models, learning with EM is sensitive to initialization.
Who is Guarding Who?

- There is a lot of data on scoring/offense of NBA basketball players.
 - Every point and assist is recorded, more scoring gives more wins and $$$.

- But how do we measure defense ("stopping people from scoring")?
 - We need to know who each player is guarding (which is not recorded)

- HMMs can be used to model who is guarding who over time.
 - https://www.youtube.com/watch?v=JvNkZdZJBt4
Neural Networks with Latent-Dynamics

- Could have (undirected) HMM parameters come out of a neural network:
 - Tries to model hidden dynamics across time.

- Combines deep learning, mixture models, and graphical models.
 - “Latent-dynamics model”.
 - Previously achieved among state of the art in several applications.
Outline

1. Hidden Markov Models
2. Restricted Boltzmann Machines
Mixture of Bernoullis Models

- Recall the **mixture of Bernoullis** models:

\[
p(x) = \sum_{c=1}^{k} p(z = c) \prod_{j=1}^{d} p(x_j | z = c).
\]

- Given \(z \), each variable \(x_j \) comes from a product of Bernoullis

- This is enough to model *any* multivariate binary distribution.

 - But **not an efficient** representation: number of cluster might need to be huge.

 - Need to learn each cluster independently (no “shared” information across clusters).
The mixture of independents assumptions can be represented as a UGM:

- “The x_j are independent given the cluster z”.
- A log-linear parameterization for $x_j \in \{-1, +1\}$ and $z \in \{-1, +1\}$ could be
 \[
 \phi_j(x_j) = \exp(w_j x_j), \quad \phi_z(z) = \exp(v z), \quad \phi_{j,z}(x_j, z) = \exp(w_j x_j z).
 \]
- We have three types of parameters:
 - Weight w_j in ϕ_j affects probability of $x_j = 1$ (independent of cluster).
 - Weight v in ϕ_z affects probability that $z_j = 1$ (prior for cluster).
 - Weight w_j in $\phi_{j,z}$ affects probability that x_j and z are same.
 - Can encourage each binary variable to be same or different than “cluster sign”.
“Double Clustering” Model

Now consider adding a second binary cluster variable:

“The \(x_j \) are independent given both cluster variables \(z_1 \) and \(z_2 \).”

A log-linear parameterization for \(x_j \in \{-1, +1\} \) and \(z_c \in \{-1, +1\} \) could be

\[
\phi_j(x_j) = \exp(w_j x_j), \quad \phi_c(z_c) = \exp(v_c z_c), \quad \phi_{j,c}(x_j, z_c) = \exp(w_{jc} x_j z_c)
\]

We have three types of parameters:

- Weight \(w_j \) in \(\phi_j \) affects probability of \(x_j = 1 \) (independent of cluster).
- Weight \(v_c \) in \(\phi_z \) affects probability that \(z_c = 1 \) (prior for cluster variable).
- Weight \(w_{jc} \) in \(\phi_{j,z} \) affects probability that \(x_j \) and \(z_c \) are same.
 - Can encourage each binary variable to be same or different than “cluster variable”.
“Double Clustering” Model

Now consider adding a second binary cluster variable:

Have we gained anything?
- We have 4 clusters based on two hidden variables.
- Each cluster shares parameters with 2 of the other clusters.

Hope is to achieve some degree of composition
- Don’t need to re-learn basic things about the x_j in each cluster.
- Maybe one hidden z_c models clusters, and another models correlations.
 - So that when you use both, you can capture both aspects.
Restricted Boltzmann Machines (RBMs)

- Now consider adding two more binary latent variables:

- Now we have 16 clusters, in general we’ll have 2^k with k hidden binary nodes.
 - This discrete latent-factors give combinatorial number of mixtures.
 - You can think of each z_c as a “part” that can be included or not (“binary PCA”).

- This is called a restricted Boltzmann machine (RBM).
 - A Boltzmann machine is a UGM with binary hidden variables.
 - It is restricted because all edges are between “visible” x_j and “hidden” z_c.
 - If we know the x_j, then the z_c are independent.
 - If we know the z_c, then the x_j are independent.
 - Inference on both x and z is hard.
 - But we could alternate between Gibbs sampling of all x and all z variables.
Generating Digits with RBMs

Here are the samples generated by the RBM after training. Each row represents a mini-batch of negative particles (samples from independent Gibbs chains). 1000 steps of Gibbs sampling were taken between each of those rows.

http://deeplearning.net/tutorial/rbm.html
Generating Digits with RBMs

Visualizing each z_c’s interaction parameters (w_{jc} for all j) as images:

[Image of digit representations]
Restricted Boltzmann Machines

- The **RBM** graph structure leads to a joint distribution of the form

\[
p(x, z) = \frac{1}{Z} \left(\prod_{j=1}^{d} \phi_j(x_j) \right) \left(\prod_{c=1}^{k} \phi_c(z_c) \right) \left(\prod_{j=1}^{d} \prod_{c=1}^{k} \phi_{jc}(x_j, z_c) \right).
\]

- RBMs usually use a **log-linear** parameterization like

\[
p(x, z) \propto \exp \left(\sum_{j=1}^{d} w_j x_j + \sum_{c=1}^{k} v_c z_c + \sum_{j=1}^{d} \sum_{c=1}^{k} w_{jc} x_j z_c \right),
\]

for parameters \(w_j, v_c, \) and \(w_{jc} \) (variants exist for non-binary \(x_j \)).
Learning UGMs with Hidden Variables

- For **RBMs** we have hidden variables:

- With hidden ("nuissance") variables z the observed likelihood has the form

\[
p(x) = \sum_z p(x, z) = \sum_z \frac{\tilde{p}(x, z)}{Z} = \frac{1}{Z} \sum_z \tilde{p}(x, z) = \frac{Z(x)}{Z},
\]

where $Z(x)$ is the partition function of the conditional UGM given x.

- $Z(x)$ is cheap in RBMs because the z are independent given x.

Learning UGMs with Hidden Variables

- This gives an observed NLL of the form
 \[- \log p(x) = - \log(Z(x)) + \log Z,\]
 where $Z(x)$ sums over hidden z values, and Z sums over z and x.

- The second term is convex but the first term is non-convex.
 - This is expected when we have hidden variables.

- With a log-linear parameterization, the gradient has the form
 \[- \nabla \log p(x) = - \mathbb{E}_z | x [F(X, Z)] + \mathbb{E}_{z,x}[F(X, Z)].\]

- For RBMs, first term is cheap due to independence of z given x.
- We can approximate second term using block Gibbs sampling.
 - For other problems, you would also need to approximate first term.
15 years ago, a hot topic was “stacking RBMs”, as in deep Boltzmann Machine:

- Part of the motivation for people to re-consider “deep” models.
- Model above allows block Gibbs sampling “by layer”.
 - Variables in layer are conditionally independent given layer above and below.
Deep Boltzmann Machines

- Performance of deep Boltzmann machine on NORB data:

Figure 5: **Left:** The architecture of deep Boltzmann machine used for NORB. **Right:** Random samples from the training set, and samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

Deep Belief Networks

- There were also deep belief networks where RBM outputs DAG layers.

- More difficult to train and do inference due to explaining away.
- Though easier to sample using ancestral sampling.
Cool Pictures Motivation for Deep Learning

- First layer of z_i in a convolutional deep belief network:

- Visualization of second and third layers trained on specific objects:

- Many classes use these particular images to motivate deep neural networks.
 - But they’re not from a neural network: they’re from a deep DAG model.
Summary

- **Hidden Markov models** model time-series with hidden per-time cluster.
 - Tons of applications, typically more realistic than Markov models.
- **Restricted Boltzmann machines (RBMs):**
 - UGMs with binary hidden variables.
 - Pairwise edges only between visible and hidden.
 - Allows efficient block Gibbs sampling for inference and learning.
 - **Deep Boltzmann machines** “stack” RBMs into a deep density estimation model.

- Next time: modeling cancer mutation signatures.