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Last Time: Expectation Maximization

EM considers learning with observed data X and hidden data Z.
@ In this case the "marginal” log-likelihood has a nasty form,

logp(X | ©) = log (Z (X, Z | @)) .

Z

EM applies when “complete” likelihood, p(X, Z | ©), has a nice form.
EM iterations take the form of a weighted “complete” NLL,

O ¢ argmax {Z oy logp(X, Z | @)} ,
© Z

where the weights are af, = p(Z | X,©") based on previous ©.
We looked at the simple form of the EM update for mixture models,

ol ¢ argmaxz Z 2|z, 0h) logp(ﬂc 2 0),
i=1 zi=1

responsnbllltv complete- data loe-lik
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Back to the Rain Data

@ We previously considered the “Vancouver Rain" data:

@ We used homogeneous Markov chains to model between-day dependence.
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Back to the Rain Data

@ Previously we used a conditional random field to model the month information.

@ We could alternately try to learn the clusters using a mixture model.
e But mixture of independents would not capture dependencies within cluster.

@ Mixture of Markov chains could capture direct dependence and clusters,

2
p(w1, 72, .. xa) = Y pz =) p(x1 | z = )p(z | w1,2 = ¢) -~ p(wg| a1,2 = ¢).

c=1

Markov chain for cluster ¢

@ Cluster z chooses which homogeneous Markov chain parameters to use.

o We could learn that some months are more likely to have rain (like winter months).
e Can do inference by running forward-bacwkard on each mixture, fit model with EM.
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Comparison of Models on Rain Data

Independent (homogeneous) Bernoulli:

o Average NLL: 18.97 (1 parameter).
Independent Bernoullis:

o Average NLL: 18.95, (28 parmaeters).
Mixture of Bernoullis (k = 10, five random restarts of EM):

o Average NLL: 17.06 (10 + 10 x 28 = 290 parameters)
@ Homogeneous Markov chain:

o Average NLL: 16.81 (3 parameters)

e Mixture of Markov chains (k = 10, five random restarts of EM):
o Average NLL: 16.53 (10 + 10 x 3 = 40 parameters).
o Parameters of one of the clusters (possibly modeling summer months):

p(z=5)=0.14

p(z1 = “rain” | z =15) = 0.22 (instead of usual 37%)
p(z; = “rain” | z;_1 = “rain”,z =5) = 0.49 (instead of usual 65%)
p(z; = “rain” | x;_1 = “not rain",z =5) =0.11  (instead of usual 35%)
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Back to the Rain Data

@ The rain data is artificially divideded into months.

e We previously discussed viewing rain data as one very long sequence (n = 1).

We could apply homogeneous Markov chains due to parameter tieing.
e But a mixture doesn't make sense when n = 1.

What we want: different “parts” of the sequence come from different clusters.
o We transition from “summer” cluster to “fall" cluster at some time j.

@ One way to address this is with a"hidden” Markov model (HMM):

o Instead of examples being assigned to clusters, days are assigned to clusters.
e Have a Markov dependency between cluster values of adjacent days.
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Hidden Markov Models

@ Hidden Markov models have each x; depend on a hidden Markov chain.
@— @O )
& @ Xs & ®

d
p(z1,22,...,%4, 21,22, . . - 2a) :p(Z1)H p(zj | zj—1 H p(z; | ).
J=2 J=1
@ We're going to learn clusters z; and the hidden dynamics between days.
o Hidden cluster z; could be “summer” or “winter” (we're learning the clusters).
e Transition probability p(z; | zj—1) is probability of staying in “summer"”.
o Initial probability p(z1) is probability of starting chain in “summer”.
o Emission probability p(x; | z;) is probability of “rain” during “summer”.
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Hidden Markov Models

@ Hidden Markov models have each x; depend on a hidden Markov chain.
&6 666

b ® 66 o

d
p(z1,22,...,%4, 21,22, . .- 2a) ZP(Zl)HP(Zj | zj-1) H p(z; | ).

@ You observe the z; values but do not see the z; values.
o There is a “hidden” Markov chain, whose state determines the cluster at each time.

@ HMMs generalize both Markov chains and mixture of categoricals.
e Both models are obtained under appropriate parameters.
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Hidden Markov Models

@ Hidden Markov models have each z; depend on a hidden Markov chain.

LR

%)@O@@

d
p(l’l,l’Q,---,xd,ZhZQ,---Zd):p(21)H Z] ’ZJ 1 H x] |ZJ
=2 j=1
@ Note that the x; can be continuous even with discrete clusters z;.
o Data could come from a mixture of Gaussians, with cluster changing in time.
o If the z; are continuous it's often called a state-space model.
o If everything is Gaussian, it leads to Kalman filtering.
o Keywords for non-Gaussian: unscented Kalman filter and particle filter.
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Applications of HMMs and Kalman Filters

@ HMMs variants are probably the most-used time-series model.

Applications (edi

HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depend on the sequence are).

Applications include:
. Single Molecule Kinetic analysis!'®!
. Cryptanalysis
. Speech recognition
. Speech synthesis
. Part-of-speech tagging
. Document Separation in scanning solutions
. Machine translation
. Partial discharge
. Gene prediction
. Alignment of bio-sequences
. Time Series Analysis
. Activity recognition
. Protein folding!!7)
. Metamorphic Virus Detection!']
. DNA Motif Discovery!!®)

Applications [edi

. Attitude and Heading Reference Systems

. Autopilot

. Battery state of charge (SoC) estimation[341/4¢]

. Brain-computer interface

. Chaotic signals

. Tracking and Vertex Fitting of charged particles in
Particle Detectors!*']

. Tracking of objects in computer vision

. Dynamic positioning

. Economics, in particular , time

series analysis, and econometrics*?!

. Inertial guidance system

+ Orbit Determination

. Power system state estimation

. Radar tracker

. Satellite navigation systems

. Seismology!*¥!

. Sensoriess control of AC motor variable-frequency

. Simultaneous localization and mapping
. Speech enhancement

. Visual odometry

. Weather forecasting

. Navigation system

. 3D modeling

. Structural health monitoring

. Human sensorimotor processing“4!

Restricted Boltzmann Machines
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Example: Modeling DNA Sequences

@ Previously: Markov chain for DNA sequences:

"AfterA" wheel "AfterC" wheel

Pa=0.2, p:=0.3, p,=0.3, p,=0.2 P=0.1, p:=0.41, p=0.39, p,=0.1

"AfterG" wheel "AfterT" wheel

P=0.25, p;=0.25, p=0.25, p,=0.25  p,=0.5, p,=0.17, p

X

0.17, p=0.17

https://wuw.tes.com/lessons/WESE9RncBhieAQ/dna


https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
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Example: Modeling DNA Sequences

Restricted Boltzmann Machines

e Hidden Markov model (HMM) for DNA sequences (two hidden clusters):

"AT-rich" wheel

p=0.39, pc=0.1, pG=0.1, pT=0.41

p=0.3 of
changing wheel

<———-
p=0.1of
changing wheel

"GC-rich" wheel

p:=0.1, p=0.41, p=0.39, p,=0.1

@ This is a (hidden) state transition diagram.
o Can reflect that probabilities are different in different regions.
o The actual regions are not given, but instead are nuissance variables handled by EM.

@ A better model might use a hidden and visible Markov chain.

o With 2 hidden clusters, you would have 8 “probability wheels” (4 per cluster).
o Would have “treewidth 2" . so inference would be tractable.
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Inference and Learning in HMMs

@ Given observed features x;, likelihood of a joint z; assignment is

d d
p(21,22, ... 24 | T1, 22, ..., xq) X p(21) H (25 | zj—1) H (x| 25).

@ We can do inference with forward-backward by converting to potentials:

¢1(z1) = p(z1)p(z1 | 21)
0;(zj) = p(; | 75) (>1)
$ij-1(25,zi-1) = P(% | Zj-1)-
@ Marginals from forward-backward are used to update parameters in EM.

o In this setting EM is called the “Baum-Welch" algorithm.
e As with other mixture models, learning with EM is sensitive to initialization.
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Who is Guarding Who?

@ There is a lot of data on scoring/offense of NBA basketball players.
o Every point and assist is recorded, more scoring gives more wins and $$$.

@ But how do we measure defense (“stopping people from scoring”)?
o We need to know who each player is guarding (which is not recorded)

JAMES HARDEN KAWHI LEONARD
FENSIVE SHOT CHAR DEFENSIVE SHOT CHAR

Figure 2a. Graphical depiction of a def
suppress shots on the perimeter. More comp

disruption scores (color). Kawhi Leonard tends to

ons ate provided in the Appendis.
http://www.lukebornn.com/papers/franks_ssac_2015.pdf

@ HMMs can be used to model who is guarding who over time.
e https://www.youtube.com/watch?v=JvNkZdZJBt4


http://www.lukebornn.com/papers/franks_ssac_2015.pdf
https://www.youtube.com/watch?v=JvNkZdZJBt4
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Neural Networks with Latent-Dynamics

e Could have (undirected) HMM parameters come out of a neural network:
o Tries to model hidden dynamics across time.

@ Combines deep learning, mixture models, and graphical models.
o “Latent-dynamics model”.
o Previously achieved among state of the art in several applications.
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Outline

© Restricted Boltzmann Machines
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Mixture of Bernoullis Models

@ Recall the mixture of Bernoullis models:
d
px) =Y plz=o) [[plx;| 2z =c).
j=1

@ Given z, each variable x; comes from a product of Bernoullis

@ This is enough to model any multivariate binary distribution.
e But not an efficient representation: number of cluster might need to be huge.
o Need to learn each cluster independently (no “shared” information across clusters).
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Restricted Boltzmann Machines

Mixture of Independents as a UGM

@ The mixture of independents assumptions can be represented as a UGM:

e "“The x; are independent given the cluster 2".
o A log-linear parameterization for z; € {—1,4+1} and z € {—1,+1} could be
¢j(x;) = exp(w;z;), ¢=(2) = exp(vz), ¢j:(x),2) = exp(w;z;2).
@ We have three types of parameters:

o Weight w; in ¢; affects probability of z; =1 (independent of cluster).
o Weight v in ¢, affecst probability that z; = 1 (prior for cluster).
o Weight wj in ¢, , affects probability that ; and 2 are same.

o Can encourage each binary variable to be same or different than “cluster sign”
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“Double Clustering” Model

@ Now consider adding a second binary cluster variable:

e "“The x; are independent given both cluster variables z; and 23"

@ A log-linear parameterization for z; € {—1,+1} and z. € {—1,+1} could be

pj(xj) = exp(w;xj), ¢c(2:) = exp(veze),
@ We have three types of parameters:

o Weight w; in ¢; affects probability of 2; = 1 (independent of cluster).

o Weight v, in ¢, affecst probability that z. = 1 (prior for cluster variable).
o Weight wj. in ¢; . affects probability that =; and z. are same.

bje(xj, 2e) = exp(wjer;2)

@ Can encourage each binary variable to be same or different than “cluster variable”.
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“Double Clustering” Model

@ Now consider adding a second binary cluster variable:

@ Have we gained anything?

e We have 4 clusters based on two hidden variables.
e Each cluster shares parameters with 2 of the other clusters.

@ Hope is to achieve some degree of composition

e Don't need to re-learn basic things about the x; in each cluster.
o Maybe one hidden z. models clusters, and another models correlations.

@ So that when you use both, you can capture both aspects.
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Restricted Boltzmann Machines (RBMs)

@ Now consider adding two more binary latent variables:

o Now we have 16 clusters, in general we'll have 2F with k hidden binary nodes.
e This discrete latent-factors give combinatorial number of mixtures.
@ You can think of each z. as a “part” that can be included or not (“binary PCA").
e This is called a restricted Boltzmann machine (RBM).
e A Boltzmann machine is a UGM with binary hidden variables.
@ It is restricted because all edges are between “visible” x; and “hidden” z..
o If we know the z;, then the 2. are independent.
o If we know the z., then the x; are independent.
e Inference on both x and z is hard.
@ But we could alternate between Gibbs sampling of all z and all z variables.



Generating Digits with RBMs

Here are the samples generated by the RBM after training. Each row
represents a mini-batch of negative particles (samples from inde-
pendent Gibbs chains). 1000 steps of Gibbs sampling were taken
between each of those rows.
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Restricted Boltzmann Machines

http://deeplearning.net/tutorial/rbm.htm


http://deeplearning.net/tutorial/rbm.html
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Generating Digits with RBMs

Visualizing each z.'s interaction parameters (wj. for all j) as images:

http://deeplearning.net/tutorial/rbm.html


http://deeplearning.net/tutorial/rbm.html
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Restricted Boltzmann Machines
@ The RBM graph structure leads to a joint distribution of the form

@ RBMs usually use a log-linear parameterization like

d k d k
p(z, z) x exp E w;T; + E VeZe + Z Z wjeTize |
j=1 c=1

j=1c=1

for parameters w;, v., and w;. (variants exist for non-binary ).
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Learning UGMs with Hidden Variables

@ For RBMs we have hidden variables:

e With hidden (“nuissance”) variables z the observed likelihood has the form

pa) = ple,2) = 3 2L

Z
1 . _ Z(x)
———
Z(x)

where Z(z) is the partition function of the conditional UGM given z.
e Z(z) is cheap in RBMs because the z are independent given x.



Learning UGMs with Hidden Variables

This gives an observed NLL of the form

—logp(z) = —log(Z(x)) + log Z,

where Z(z) sums over hidden z values, and Z sums over z and z.

The second term is convex but the first term is non-convex.
e This is expected when we have hidden variables.

With a log-linear parameterization, the gradient has the form

~Vlogp(x) = ~E. | [F(X, 2)] + Bl F(X, 2)]

For RBMs, first term is cheap due to independence of z given .
We can approximate second term using block Gibbs sampling.

e For other problems, you would also need to approximate first term.

Restricted Boltzmann Machines
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Deep Boltzmann Machines

@ 15 years ago, a hot topic was “stacking RBMs", as in deep Boltzmann Machine:

@ Part of the motivation for people to re-consider “deep’ models.
@ Model above allows block Gibbs sampling “by layer”.
o Variables in layer are conditionally independent given layer above and below.
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Deep Boltzmann Machines

@ Performance of deep Boltzmann machine on NORB data:

Deep Boltzmann Machine Training Samples Generated Samples
SAPAEN VY EIRAGES
40001unlls w» V ~ Ldld Ll ~ f
/ R, 1 CleEE W N[
Stereo pair w J <L Q| '\‘ - T k"
Ga&;:l]a; i::ilgzl:t ﬂl;rnits b f&" & - i% # \; a‘ ?( \i x:

Figure 5: Left: The architecture of deep Boltzmann machine used for NORB. Right: Random samples from the training set, and
samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf


http://www.cs.toronto.edu/~fritz/absps/dbm.pdf
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Deep Belief Networks

@ There were also deep belief networks where RBM outputs DAG layers.

@ More difficult to train and do inference due to explaining away.

@ Though easier to sample using ancestral sampling.
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Cool Pictures Motivation for Deep Learning

o First layer of z; in a convolutional deep belief network:

all L] WL Nl APV

@ Visualization of second and third layers trained on specific objects:

faces elephants chairs faces, cars, airplanes, motorbikes.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
@ Many classes use these particular images to motivate deep neural networks.
e But they're not from a neural network: they're from a deep DAG model.


http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Summary

@ Hidden Markov models model time-series with hidden per-time cluster.
e Tons of applications, typically more realistic than Markov models.
@ Restricted Boltzmann machines (RBMs):

o UGMs with binary hidden variables.
e Pairwise edges only between visible and hidden.

o Allows efficient block Gibbs sampling for inference and learning.
o Deep Boltzmann machines “stack” RBMs into a deep density estimation model.

@ Next time: modeling cancer mutation signatures.
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