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Last Time: Adding Features to UGMs

We discussed adding features to UGMs:

p(y1, y2, . . . , yk | x1, x2, . . . , xk) ∝ exp

 k∑
c=1

ycw
Txc +

∑
(c,c′)∈E

ycyc′v

 ,

Common to use log-linear models.
Potentials exponentiate a linear function.
Gives exponential family model with convex NLL.
But gradient requires inference.

We discussed approximatons for learning:
Pseudo-likelihood trains UGMs as if they were a DAG.
Variatiational inference methods can be used.
Younes algorithm alternates between MCMC and SGD steps.

You can also have the potentials be the output of a neural network.
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End of Part 4 (“Markov Models”): Key Concepts

We discussed Markov chains:

Distribution assuming independence of past given last time (Markov assumption).
Common parameterization uses initial probabilities and transition probabilities.
Homogeneous Markov chains assume same transition probabilities across time.

We discussed inference in Markov chains.

Ancestral sampling: sample each variable given previous variables in ordering.
CK equations: give marginals recursively.
Stationary distribution: marginals as time goes to infinity.
Viterbi decoding: special case of dynamic programming.
Forward backward: computation of all conditionals with two “passes”.
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End of Part 4 (“Markov Models”): Key Concepts

We discussed Markov chain Monte Carlo (MCMC):

Define a Markov chain that has target distribution as stationary distribution.
Use samples from the Markov chain within Monte Carlo method.

Possibly with burn in and/or thinning.

Most common methods are Metropolis-Hastings.

Based on accepting proposals or keeping the same sample.

Special case of Metropolis-Hastings is Gibbs sampling.

Based on sampling one variable at a time given all others.
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End of Part 4 (“Markov Models”): Key Concepts

We discussed directed acyclic graphical (DAG).
Assume independence of previous variables given a set of parent variables.
Can be used to visualize models/assumptions.
Conditional independences can be tested using d-separation.

Are paths blocked by observed chain/fork, or unobserved child?

Our standard independence assumptions appear if we add parameters to DAG.
Training DAGs decomposes into d supervised learning problems.

We discussed undirected graphical models (UGMs).
Write distribution as product of non-negative potentials over subsets of variables.
Log-linear models use exp(linear) potentials.

Convex NLL trained with gradient descent, but gradient requires inference.

Approximate training methods include pseudo-likelihood and variational methods.
Or Younes algorithm which integrates SGD steps within MCMC.

Conditional random fields add features to UGMs.
Deep structured models learn features in UGMs.
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End of Part 4 (“Markov Models”): Key Concepts

We briefly discussed inference in graphical models.

Markov chain inference methods extend to trees for DAGs and UGMs.
But for general graphs inference can be hard in DAGs/UGMs.

Except unconditional sampling, likelihood, and learning (easy in DAGs).

We skipped over structured SVMs

A generalization of SVMs that can model correlations in labels.
Applying SGD requires decoding instead of inference.
My slides on this topic are here:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf
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1 Gaussian for Multi-Modal Data

Major drawback of Gaussian is that it is uni-modal.
It gives a terrible fit to data like this:

If Gaussians are all we know, how can we fit this data?
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2 Gaussians for Multi-Modal Data

We can fit this data by using two Gaussians

Half the samples are from Gaussian 1, half are from Gaussian 2.
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Mixture of Gaussians
Our probability density in this example is given by

p(xi | µ1, µ2,Σ1,Σ2) =
1

2
p(xi | µ1,Σ1)︸ ︷︷ ︸

PDF of Gaussian 1

+
1

2
p(xi | µ2,Σ2)︸ ︷︷ ︸

PDF of Gaussian 2

,

We need the (1/2) factors so it still integrates to 1.
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Mixture of Gaussians
If data comes from one Gaussian more often than the other, we could use

p(xi | µ1, µ2,Σ1,Σ2, π1, π2) = π1 p(x
i | µ1,Σ1)︸ ︷︷ ︸

PDF of Gaussian 1

+π2 p(x
i | µ2,Σ2)︸ ︷︷ ︸

PDF of Gaussian 2

,

where π1 and π2 are non-negative and sum to 1.
π1 represents “probability that we take a sample from Gaussian 1”.
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Mixture of Gaussians

In general we might have a mixture of k Gaussians with different weights.

p(x | µ,Σ, π) =

k∑
c=1

πc p(x | µc,Σc)︸ ︷︷ ︸
PDF of Gaussian c

,

Where πc are categorical distribution parameters (non-negative and sum to 1).
We can use it to model complicated densities with Gaussians (like RBFs).

“Universal approximator”: can model any continuous density on compact set.
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Mixture of Gaussians

Gaussian vs. mixture of 2 Gaussian densities in 2D:

Marginals will also be mixtures of Gaussians.
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Mixture of Gaussians

Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:
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Mixture of Gaussians

Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:
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Latent-Variable Representation of Mixtures

For inference/learning in mixture models, we often introduce variables zi.
Each zi is a categorical variable in {1, 2, . . . , k} when we have k mixtures.
The value zi represents “what mixture this example came from”.
We do not observe the zi values (they are called latent variables).

Why do mixture have this interpretation of “each xi comes from one Gaussian”?
Consider a model where p(zi = c) = πc, and xi | zi = c ∼ N (µc,Σc).
Now marginalize over the zi in this model:

p(x | µ,Σ, π) =

k∑
c=1

p(x, z = c) =

k∑
c=1

p(z = c)p(x | z = c)

=

k∑
c=1

πc p(x | µc,Σc)︸ ︷︷ ︸
PDF of Gaussian c

,

which is the PDF of the mixture of Gaussians model.
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Ancestral Sampling in Mixture of Gaussians
Generating samples with ancestral sampling in the latent variable representation:

1 Sample cluster z based on prior probabilities πc (categorical distribution).
2 Sample example x based on mean µz and covariance Σz of Gaussian z.

Marginalization and computing conditionals is also easy.

Decoding z or computing marginal p(z | x) is easy (next slide).

Decoding x in Gaussian mixtures is NP-hard.

We usually fit these models with expectation maximization (EM).

Choosing k: domain knowledge, test set likelihood, or marginal likellihood.
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Inference Task: Computing Responsibilities

Consider computing probability that example i came from mixture c.

We call this the responsibility of mixture c for example i,

ric = p(z = c | xi)

=
p(z = c, xi)

p(xi)

=
p(z = c, xi)∑k
c′=1 p(z

′ = c, xi

=
p(z = c)p(xi | z = c))∑k

c′=1 p(z
′ = c)p(xi | z′ = c)

=
πcp(x

i | µc,Σc)∑k
c′=1 πc′p(x

i | µc′ ,Σc′)
(we know all these values)

If you think the different mixtures as clusters, this is probability of being in cluster.
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Notation Alert: π vs. z vs. r (MEMORIZE)

In mixture models, many people confuse the quantities π, z, and r.

Vector π has k elements in [0, 1] and summing up to 1.

Number πc is the “prior” probability that an example is in cluster c.
This is a parameter (we learn it from data).

Matrix R is n× k matrix, summing to 1 across rows.

Number ric is the “posterior” probability that example i is in cluster c.
Computing these values is an inference task (assumes known parameters).

Vector z has n elements in {1, 2, . . . , k}.
Category zi is the actual mixture/cluster that generated example i.
This is a nuissance parameter (an unknown variable that is not a parameter).



Mixture of Gaussians Mixture of Bernoullis

Training Mixture Models with Imputation

Mixture of Gaussian parameters are {πc, µc,Σc}kc=1.
Unfortunately, NLL is non-convex and finding MLE is hard.
Various optimization methods are used in practice.

If we treat the zi as parameters, we get a simple algorithm for decreasing NLL:
1 Given the clusters zi, find the most likely parameters.

Optimize p(X | π, µ,Σ, z) in terms of the {πc, µc,Σc}kc=1.
Sets πc based on frequency of seeing zi = c.
Sets µc to the mean of examples in cluster c.
Sets Σc to the covariance of examples in cluster c.

2 Given the parameters, find the most likely clusters.
For each example i, compute responsibility ric = p(zi = c | xi, πc, µc,Σc).
Set zi to the the argmax of ric over c.

Connection to Gaussian discriminant analsysis (GDA), using clusters zi as labels:
Step 1 above is the learning step in GDA, Step 2 above is the prediction step in GDA.
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Special Case of K-Means

Algorithm from the previous slide is a generalization of k-means clustering.

Apply the algorithm assuming πc = 1/k and Σc = I for all c:
1 Given the clusters zi, find the most likely parameters.

Sets µc to the mean of examples in cluster c.

2 Given the parameters, find the most likely clusters.

Sets zi to the closest mean of example i.

As with k-means, initialization matters for mixture of Gaussians.

May need to do multiple random restarts, or clever initializations like k-means++.
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K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (same πc and Σc).

But variable Σc in general mixture of Gaussians allows non-convex clusters.
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K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (same πc and Σc).

But variable Σc in general mixture of Gaussians allows non-convex clusters.
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K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (same πc and Σc).
But variable Σc in general mixture of Gaussians allows non-convex clusters.
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K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (same πc and Σc).
But variable Σc in general mixture of Gaussians allows non-convex clusters.
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K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (same πc and Σc).

But variable Σc in general mixture of Gaussians allows non-convex clusters.
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K-Means vs. Mixture of Gaussians

K-means can be viewed as fitting mixture of Gaussians (same πc and Σc).

But variable Σc in general mixture of Gaussians allows non-convex clusters.

https://en.wikipedia.org/wiki/K-means_clustering

https://en.wikipedia.org/wiki/K-means_clustering
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Previously: Product of Bernoullis

We previously considered density estimation with discrete variables,

X =


1 0 0 0
0 1 0 0
1 1 0 1
1 0 0 0

 .
We considered a product of Bernoullis:

p(xi | θ) =

d∏
j=1

p(xij | θj).

Easy to fit but strong independence assumption:
Knowing xij tells you nothing about xik.

A more-powerful model is a mixture of Bernoullis.
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Mixture of Bernoullis

Consider a coin flipping scenario where we have two coins:

Coin 1 has θ1 = 0.5 (fair) and coin 2 has θ2 = 1 (biased).

Half the time we flip coin 1, and otherwise we flip coin 2:

p(xi = 1 | θ1, θ2) = π1p(x
i = 1 | θ1) + π2p(x

i = 1 | θ2)

=
1

2
θ1 +

1

2
θ2 =

θ1 + θ2
2

With one variable this mixture model is not very interesting:

It’s equivalent to flipping one coin with θ = 0.75.

But with multiple variables mixture of Bernoullis can model dependencies...
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Mixture of Independent Bernoullis

Consider a mixture of a product of Bernoullis:

p(x | θ1, θ2) =
1

2

d∏
j=1

p(xj | θ1j)︸ ︷︷ ︸
first set of Bernoullis

+
1

2

d∏
j=1

p(xj | θ2j)︸ ︷︷ ︸
second set of Bernoulli

.

Conceptually, we now have two sets of coins:

Half the time we throw the first set, half the time we throw the second set.

With d = 4 we could have θ1 =
[
0 0.7 1 1

]
and θ2 =

[
1 0.7 0.8 0

]
.

Half the time we have p(xi3 = 1) = 1 and half the time it’s 0.8.

Have we gained anything?
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Mixture of Independent Bernoullis

Example from the previous slide: θ1 =
[
0 0.7 1 1

]
and θ2 =

[
1 0.7 0.8 0

]
.

Here are some samples from this model:

X =



0 1 1 1
1 1 1 0
1 0 0 0
0 1 1 1
1 1 1 0
0 1 0 1


Unlike product of Bernoullis, notice that features in samples are not independent.

In this example knowing x1 = 1 tells you that x4 = 0.

This model can capture dependencies: p(x4 = 1 | x1 = 1)︸ ︷︷ ︸
0

6= p(x4 = 1)︸ ︷︷ ︸
0.5

.
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Mixture of Independent Bernoullis

Drawing the mixture of Bernoullis as a DAG:

Since we do not know z, there are dependencies between xj .

But features are independent if we know z.

This is the same graph as naive Bayes, with cluster z instead of class y.

If you see spammy word, it makes other spammy words more likely.
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Summary

Mixture of Gaussians writes probability as convex comb. of Gaussian densities.

Can model arbitrary continuous densities.

Latent-variable representation of mixutres with cluster variables zi.

Allows ancestral sampling by sampling cluster than example.
Resonsibility is probability that an example belongs to a cluster.
Training by alternating between updating zi and updating parameters.

Mixture of Bernoullis can model dependencies between discrete variables.

Unsupervised version of naive Bayes.

Next time: one the top-100 most-cited papers of all time across all fields.
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Avoiding Underflow when Computing Responsibilities

Computing responsibility may underflow for high-dimensional xi, due to
p(xi | zi = c,Θt).

Usual ML solution: do all but last step in log-domain.

log ric = log p(xi | zi = c,Θt) + log p(zi = c | Θt)

− log

(
k∑

c′=1

p(xi | zi = c′,Θt)p(zi = c′ | Θt)

)
.

To compute last term, use “log-sum-exp” trick.
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Log-Sum-Exp Trick

To compute log(
∑

i exp(vi)), set β = maxi{vi} and use:

log(
∑
c

exp(vi)) = log(
∑
i

exp(vi − β + β))

= log(
∑
i

exp(vi − β) exp(β))

= log(exp(β))
∑
i

exp(vi − β))

= log(exp(β)) + log(
∑
i

exp(vi − β))

= β + log(
∑
i

exp(vi − β)︸ ︷︷ ︸
≤1

).

Avoids overflows due to computing exp operator.
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Mixture of Gaussians on Digits

Mean parameters of a mixture of Gaussians with k = 10:

Samples:

10 components with k = 50 (I might need a better initialization):

Samples:
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Generative Mixture Models and Mixture of Experts

Classic generative model for supervised learning uses

p(yi | xi) ∝ p(xi | yi)p(yi),

and typically p(xi | yi) is assumed Gaussian (LDA) or independent (naive Bayes).

But we could allow more flexibility by using a mixture model,

p(xi | yi) =

k∑
c=1

p(zi = c | yi)p(xi | zi = c, yi).

Another variation is a mixture of disciminative models (like logistic regression),

p(yi | xi) =
k∑

c=1

p(zi = c | xi)p(yi | zi = c, xi).

Called a “mixture of experts” model:
Each regression model becomes an “expert” for certain values of xi.
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