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Last Time: Adding Features to UGMs
@ We discussed adding features to UGMs:
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@ Common to use log-linear models.
e Potentials exponentiate a linear function.
o Gives exponential family model with convex NLL.
e But gradient requires inference.

@ We discussed approximatons for learning:
o Pseudo-likelihood trains UGMs as if they were a DAG.
e Variatiational inference methods can be used.
e Younes algorithm alternates between MCMC and SGD steps.

@ You can also have the potentials be the output of a neural network.
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End of Part 4 (“Markov Models"): Key Concepts

@ We discussed Markov chains:

e Distribution assuming independence of past given last time (Markov assumption).
o Common parameterization uses initial probabilities and transition probabilities.
e Homogeneous Markov chains assume same transition probabilities across time.

@ We discussed inference in Markov chains.

e Ancestral sampling: sample each variable given previous variables in ordering.
e CK equations: give marginals recursively.

e Stationary distribution: marginals as time goes to infinity.

o Viterbi decoding: special case of dynamic programming.

o Forward backward: computation of all conditionals with two “passes”.
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End of Part 4 (“Markov Models"): Key Concepts

e We discussed Markov chain Monte Carlo (MCMC):

e Define a Markov chain that has target distribution as stationary distribution.

o Use samples from the Markov chain within Monte Carlo method.
@ Possibly with burn in and/or thinning.

e Most common methods are Metropolis-Hastings.
@ Based on accepting proposals or keeping the same sample.

e Special case of Metropolis-Hastings is Gibbs sampling.
@ Based on sampling one variable at a time given all others.

Mixture of Bernoullis



Mixture of Gaussians Mixture of Bernoullis

End of Part 4 (“Markov Models"): Key Concepts

e We discussed directed acyclic graphical (DAG).
e Assume independence of previous variables given a set of parent variables.
o Can be used to visualize models/assumptions.
e Conditional independences can be tested using d-separation.
e Are paths blocked by observed chain/fork, or unobserved child?
o Our standard independence assumptions appear if we add parameters to DAG.
e Training DAGs decomposes into d supervised learning problems.

o We discussed undirected graphical models (UGMs).

o Write distribution as product of non-negative potentials over subsets of variables.

o Log-linear models use exp(linear) potentials.
o Convex NLL trained with gradient descent, but gradient requires inference.

e Approximate training methods include pseudo-likelihood and variational methods.
@ Or Younes algorithm which integrates SGD steps within MCMC.

o Conditional random fields add features to UGMs.

e Deep structured models learn features in UGMs.
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End of Part 4 (“Markov Models"): Key Concepts

@ We briefly discussed inference in graphical models.

e Markov chain inference methods extend to trees for DAGs and UGMs.
o But for general graphs inference can be hard in DAGs/UGMs.

e Except unconditional sampling, likelihood, and learning (easy in DAGs).

@ We skipped over structured SVMs
o A generalization of SVMs that can model correlations in labels.
e Applying SGD requires decoding instead of inference.
e My slides on this topic are here:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf

Mixture of Bernoullis
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1 Gaussian for Multi-Modal Data

@ Major drawback of Gaussian is that it is uni-modal.
o It gives a terrible fit to data like this:

0.03

@ If Gaussians are all we know, how can we fit this data?
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2 Gaussians for Multi-Modal Data

@ We can fit this data by using two Gaussians

0.03

0.025

0.015}

0.005

@ Half the samples are from Gaussian 1, half are from Gaussian 2.
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Mixture of Gaussians
@ Our probability density in this example is given by

) 1 . 1 :
p(z | pa, po, X1, 82) = 5 p(z’ | p1, X1) +5 p(z' | p2, X2) ,

PDF of Gaussian 1 PDF of Gaussian 2

o We need the (1/2) factors so it still integrates to 1.

0.03
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Mixture of Gaussians

o If data comes from one Gaussian more often than the other, we could use

P(«Tl | M1, 12, 217 227771772) =T p(‘rl | M1, Zl) +772 p(‘rl | H2, 22) )
PDF of Gaussian 1 PDF of Gaussian 2

where 1 and w5 are non-negative and sum to 1.
e 7 represents “probability that we take a sample from Gaussian 1".
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Mixture of Gaussians

@ In general we might have a mixture of &£ Gaussians with different weights.

k
p(x ’ ,U,,E,Tr) = Zﬂ'c p(:IZ ‘ Mc;zc) )
————

e=1 PDF of Gaussian ¢

o Where 7. are categorical distribution parameters (non-negative and sum to 1).
o We can use it to model complicated densities with Gaussians (like RBFs).

@ “Universal approximator”: can model any continuous density on compact set.
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@ Gaussian vs. mixture of 2 Gaussian densities in 2D:

20

@ Marginals will also be mixtures of Gaussians.
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Mixture of Gaussians

@ Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:

Gaussian (nll = 7.100) Mixture of Gaussian (nll = 5.108)
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Mixture of Gaussians

@ Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:

Gaussian (nll = 7.100) Mixture of Gaussian (nll = 5.050)
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Mixture of Bernoullis

Latent-Variable Representation of Mixtures

@ For inference/learning in mixture models, we often introduce variables 2.

e Each z* is a categorical variable in {1,2,...,k} when we have k& mixtures.
e The value z* represents “what mixture this example came from”

o We do not observe the =’ values (they are called latent variables).

e Why do mixture have this interpretation of “each x’ comes from one Gaussian”?

o Consider a model where p(z% = ¢) = 7., and 2% | 2* = ¢ ~ N (e, X0).
o Now marginalize over the z* in this model:

k

k
pla | pm) = plaz=c)=> plz=c)p(z|z=c)

c=1

k
= g Te p(ﬂC | ,Uwzc) ,
—_——
e=1 PDF of Gaussian ¢

which is the PDF of the mixture of Gaussians model.
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Ancestral Sampling in Mixture of Gaussians

@ Generating samples with ancestral sampling in the latent variable representation:
@ Sample cluster z based on prior probabilities 7. (categorical distribution).
@ Sample example = based on mean p, and covariance 3, of Gaussian z.

Marginalization and computing conditionals is also easy.

Decoding z or computing marginal p(z | ) is easy (next slide).

Decoding x in Gaussian mixtures is NP-hard.

We usually fit these models with expectation maximization (EM).
Choosing k: domain knowledge, test set likelihood, or marginal likellihood.
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Inference Task: Computing Responsibilities

e Consider computing probability that example ¢ came from mixture c.
o We call this the responsibility of mixture ¢ for example ¢,

ri=p(z=c|a")
p(z =c,a")
p(a’)
p(z =c¢,z")
Yoo p(z = c i
p(z = o)p(a’ | z = ¢))
S p(z = c)plai | 2 = c)
mep(z’ | pic, Be)

= — : (we know all these values)
Zc’:l (x| per, Ber)

@ If you think the different mixtures as clusters, this is probability of being in cluster.
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Notation Alert: 7 vs. z vs. r (MEMORIZE)

@ In mixture models, many people confuse the quantities 7, z, and r.

o Vector 7 has k elements in [0,1] and summing up to 1.

@ Number 7. is the “prior” probability that an example is in cluster c.
e This is a parameter (we learn it from data).

e Matrix R is n X k matrix, summing to 1 across rows.

o Number r¢ is the “posterior’ probability that example i is in cluster c.
o Computing these values is an inference task (assumes known parameters).

o Vector z has n elements in {1,2,...,k}.

o Category 2" is the actual mixture/cluster that generated example 1.
@ This is a nuissance parameter (an unknown variable that is not a parameter).
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Training Mixture Models with Imputation

@ Mixture of Gaussian parameters are {7, /i, Ec}’(f:l.
e Unfortunately, NLL is non-convex and finding MLE is hard.
e Various optimization methods are used in practice.

o If we treat the 2’ as parameters, we get a simple algorithm for decreasing NLL:
@ Given the clusters 2%, find the most likely parameters.
o Optimize p(X | m, 1, T, ) in terms of the {7, pte, e }r_y.
o Sets . based on frequency of seeing 2 = c.
@ Sets y. to the mean of examples in cluster c.
@ Sets Y. to the covariance of examples in cluster c.
@ Given the parameters, find the most likely clusters.
o For each example i, compute responsibility r2 = p(z* = ¢ | 2, e, pre, Ze).
o Set 2* to the the argmax of r; over c.

e Connection to Gaussian discriminant analsysis (GDA), using clusters z* as labels:
o Step 1 above is the learning step in GDA, Step 2 above is the prediction step in GDA.
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Special Case of K-Means

@ Algorithm from the previous slide is a generalization of k-means clustering.

e Apply the algorithm assuming 7. = 1/k and ¥, = I for all ¢
@ Given the clusters 2%, find the most likely parameters.
@ Sets y. to the mean of examples in cluster c.
@ Given the parameters, find the most likely clusters.
o Sets z° to the closest mean of example 3.

@ As with k-means, initialization matters for mixture of Gaussians.
e May need to do multiple random restarts, or clever initializations like k-means++-.
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K-Means vs. Mixture of Gaussians

e K-means can be viewed as fitting mixture of Gaussians (same 7. and X.).
e But variable X, in general mixture of Gaussians allows non-convex clusters.

With Same  (ovaliance, clusters are  convey
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K-Means vs. Mixture of Gaussians

e K-means can be viewed as fitting mixture of Gaussians (same 7. and X.).
e But variable X, in general mixture of Gaussians allows non-convex clusters.

With Same  (ovaliance, clusters are  convey
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K-Means vs. Mixture of Gaussians

@ K-means can be viewed as fitting mixture of Gaussians (same 7, and %.).
e But variable X, in general mixture of Gaussians allows non-convex clusters.
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K-Means vs. Mixture of Gaussians

@ K-means can be viewed as fitting mixture of Gaussians (same 7. and X.).
e But variable X, in general mixture of Gaussians allows non-convex clusters.
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K-Means vs. Mixture of Gaussians

@ K-means can be viewed as fitting mixture of Gaussians (same 7. and X.).
o But variable X, in general mixture of Gaussians allows non-convex clusters.

Partitioning of the space
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K-Means vs. Mixture of Gaussians

e K-means can be viewed as fitting mixture of Gaussians (same 7. and 3.).
e But variable X, in general mixture of Gaussians allows non-convex clusters.
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Previously: Product of Bernoullis

@ We previously considered density estimation with discrete variables,

10
0 1
X = 11
10
@ We considered a product of Bernoullis:
d

0 0
0 0
0 1
0 0

p(z' | 6) =[] p(a} | 6).

J=1

Easy to fit but strong independence assumption:

o Knowing z’ tells you nothing about xj,.

@ A more-powerful model is a mixture of Bernoullis.

Mixture of Bernoullis
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Mixture of Bernoullis

@ Consider a coin flipping scenario where we have two coins:
e Coin 1 has #; = 0.5 (fair) and coin 2 has 63 = 1 (biased).

@ Half the time we flip coin 1, and otherwise we flip coin 2:

p(a' =1]061,05) = mp(a’ =1]61) +mop(z’ =11 6,)
1,1, 46,
= 291+292— 9

@ With one variable this mixture model is not very interesting:
e It's equivalent to flipping one coin with 8 = 0.75.

@ But with multiple variables mixture of Bernoullis can model dependencies...
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Mixture of Independent Bernoullis

@ Consider a mixture of a product of Bernoullis:

d d

1 1
p(z [ 61,62) = 5 [1pG; 1 615) +5 11 pG; | 625)
j=1 j=1
first set of Bernoullis second set of Bernoulli

@ Conceptually, we now have two sets of coins:
o Half the time we throw the first set, half the time we throw the second set.

o With d =4 we could have §; = [0 0.7 1 1]andf=[1 0.7 0.8 0].
o Half the time we have p(z} = 1) = 1 and half the time it's 0.8.

@ Have we gained anything?
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Mixture of Independent Bernoullis

Mixture of Bernoullis

Example from the previous slide: 6, = [O 0.7 1 1] and 0y = [1 0.7 0.8 ()].

Here are some samples from this model:

0

1
1
0
1
0

_ == O ==

1
1
0

1
1
0

_ O = O O =

Unlike product of Bernoullis, notice that features in samples are not independent.

o In this example knowing z; = 1 tells you that x4 = 0.

This model can capture dependencies: p(zq4 =1 |z1 =1) # p(zq = 1).

0

0.5
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Mixture of Independent Bernoullis

@ Drawing the mixture of Bernoullis as a DAG:

@ Since we do not know z, there are dependencies between ;.
o But features are independent if we know z.

@ This is the same graph as naive Bayes, with cluster z instead of class y.
o If you see spammy word, it makes other spammy words more likely.
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Summary

Mixture of Gaussians writes probability as convex comb. of Gaussian densities.
e Can model arbitrary continuous densities.
Latent-variable representation of mixutres with cluster variables 2.

o Allows ancestral sampling by sampling cluster than example.
e Resonsibility is probability that an example belongs to a cluster.
e Training by alternating between updating 2" and updating parameters.

Mixture of Bernoullis can model dependencies between discrete variables.
e Unsupervised version of naive Bayes.

Next time: one the top-100 most-cited papers of all time across all fields.



Avoiding Underflow when Computing Responsibilities

e Computing responsibility may underflow for high-dimensional z?, due to
p(zt | 2* = ¢, ).
@ Usual ML solution: do all but last step in log-domain.

log e = logp(z! | 2 = ¢,0") +logp(z' = ¢ | ©)
k
— log (Z p(x' |2t =d,0p(z" = | @t)>.
@=il

@ To compute last term, use “log-sum-exp" trick.

Mixture of Bernoullis



Log-Sum-Exp Trick

@ To compute log(D, exp(v;)), set B = max;{v;} and use:
log(z exp(v;)) = log Zexp - B8+5))
= log Zexp v; — B) exp(B))
= log(exp(p Z exp(v
= log(exp(/)) + log( Z exp(v

= 8+ log( Zexp 1—5))

i pA

@ Avoids overflows due to computing exp operator.
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Mixture of Gaussians on Digits

@ Mean parameters of a mixture of Gaussians with k£ = 10:

@ Samples:
. E
@ 10 components with & = 50 (I might need a better initialization):

@ Samples:
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Generative Mixture Models and Mixture of Experts

Classic generative model for supervised learning uses
p(y’ | ') o< p(a’ | y")p(y'),

and typically p(z® | 4°) is assumed Gaussian (LDA) or independent (naive Bayes).
But we could allow more ﬂexibility by using a mixture model,

Z

| ) sz—Ciy p(a’ | 2* = ¢, y).
Another variation is a mixture of disciminative models (like logistic regression),
p(y' | ) ZPZ—CIx (Y’ | 2" = ¢ at).

Called a “mixture of experts’ model:
o Each regression model becomes an “expert” for certain values of x*.
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