CPSC 440: Advanced Machine Learning Mixture Models

Mark Schmidt

University of British Columbia

Winter 2022

Last Time: Adding Features to UGMs

• We discussed adding features to UGMs:

$$p(y_1, y_2, \dots, y_k \mid x_1, x_2, \dots, x_k) \propto \exp\left(\sum_{c=1}^k y_c w^T x_c + \sum_{(c,c') \in E} y_c y_{c'} v\right),$$

- Common to use log-linear models.
 - Potentials exponentiate a linear function.
 - Gives exponential family model with convex NLL.
 - But gradient requires inference.
- We discussed approximatons for learning:
 - Pseudo-likelihood trains UGMs as if they were a DAG.
 - Variatiational inference methods can be used.
 - Younes algorithm alternates between MCMC and SGD steps.
- You can also have the potentials be the output of a neural network.

• We discussed Markov chains:

- Distribution assuming independence of past given last time (Markov assumption).
- Common parameterization uses initial probabilities and transition probabilities.
- Homogeneous Markov chains assume same transition probabilities across time.
- We discussed inference in Markov chains.
 - Ancestral sampling: sample each variable given previous variables in ordering.
 - CK equations: give marginals recursively.
 - Stationary distribution: marginals as time goes to infinity.
 - Viterbi decoding: special case of dynamic programming.
 - Forward backward: computation of all conditionals with two "passes".

- We discussed Markov chain Monte Carlo (MCMC):
 - Define a Markov chain that has target distribution as stationary distribution.
 - Use samples from the Markov chain within Monte Carlo method.
 - Possibly with burn in and/or thinning.
 - Most common methods are Metropolis-Hastings.
 - Based on accepting proposals or keeping the same sample.
 - Special case of Metropolis-Hastings is Gibbs sampling.
 - Based on sampling one variable at a time given all others.

- We discussed directed acyclic graphical (DAG).
 - Assume independence of previous variables given a set of parent variables.
 - Can be used to visualize models/assumptions.
 - Conditional independences can be tested using d-separation.
 - Are paths blocked by observed chain/fork, or unobserved child?
 - Our standard independence assumptions appear if we add parameters to DAG.
 - Training DAGs decomposes into d supervised learning problems.
- We discussed undirected graphical models (UGMs).
 - Write distribution as product of non-negative potentials over subsets of variables.
 - Log-linear models use $\exp(\text{linear})$ potentials.
 - Convex NLL trained with gradient descent, but gradient requires inference.
 - Approximate training methods include pseudo-likelihood and variational methods.
 - Or Younes algorithm which integrates SGD steps within MCMC.
 - Conditional random fields add features to UGMs.
 - Deep structured models learn features in UGMs.

- We briefly discussed inference in graphical models.
 - Markov chain inference methods extend to trees for DAGs and UGMs.
 - But for general graphs inference can be hard in DAGs/UGMs.
 - Except unconditional sampling, likelihood, and learning (easy in DAGs).
- We skipped over structured SVMs
 - A generalization of SVMs that can model correlations in labels.
 - Applying SGD requires decoding instead of inference.
 - My slides on this topic are here: https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf

Outline

1 Mixture of Gaussians

2 Mixture of Bernoullis

1 Gaussian for Multi-Modal Data

- Major drawback of Gaussian is that it is uni-modal.
 - It gives a terrible fit to data like this:

• If Gaussians are all we know, how can we fit this data?

Mixture of Gaussians

Mixture of Bernoullis

2 Gaussians for Multi-Modal Data

• We can fit this data by using two Gaussians

• Half the samples are from Gaussian 1, half are from Gaussian 2.

• Our probability density in this example is given by

$$p(x^i \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2) = \frac{1}{2} \underbrace{p(x^i \mid \mu_1, \Sigma_1)}_{\text{PDF of Gaussian 1}} + \frac{1}{2} \underbrace{p(x^i \mid \mu_2, \Sigma_2)}_{\text{PDF of Gaussian 2}},$$

• We need the (1/2) factors so it still integrates to 1.

• If data comes from one Gaussian more often than the other, we could use

$$p(x^i \mid \mu_1, \mu_2, \Sigma_1, \Sigma_2, \pi_1, \pi_2) = \pi_1 \underbrace{p(x^i \mid \mu_1, \Sigma_1)}_{\text{PDF of Gaussian 1}} + \pi_2 \underbrace{p(x^i \mid \mu_2, \Sigma_2)}_{\text{PDF of Gaussian 2}},$$

where π_1 and π_2 are non-negative and sum to 1.

• π_1 represents "probability that we take a sample from Gaussian 1".

• In general we might have a mixture of k Gaussians with different weights.

$$p(x \mid \mu, \Sigma, \pi) = \sum_{c=1}^{k} \pi_c \underbrace{p(x \mid \mu_c, \Sigma_c)}_{\text{PDF of Gaussian } c},$$

- Where π_c are categorical distribution parameters (non-negative and sum to 1).
- We can use it to model complicated densities with Gaussians (like RBFs).
 - "Universal approximator": can model any continuous density on compact set.

• Gaussian vs. mixture of 2 Gaussian densities in 2D:

• Marginals will also be mixtures of Gaussians.

Mixture of Bernoullis

Mixture of Gaussians

• Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:

Mixture of Bernoullis

Mixture of Gaussians

• Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:

Latent-Variable Representation of Mixtures

- For inference/learning in mixture models, we often introduce variables z^i .
 - Each z^i is a categorical variable in $\{1, 2, \ldots, k\}$ when we have k mixtures.
 - The value z^i represents "what mixture this example came from".
 - We do not observe the z^i values (they are called latent variables).
- Why do mixture have this interpretation of "each x^i comes from one Gaussian"?
 - Consider a model where $p(z^i = c) = \pi_c$, and $x^i \mid z^i = c \sim \mathcal{N}(\mu_c, \Sigma_c)$.
 - Now marginalize over the z^i in this model:

$$p(x \mid \mu, \Sigma, \pi) = \sum_{c=1}^{k} p(x, z = c) = \sum_{c=1}^{k} p(z = c)p(x \mid z = c)$$
$$= \sum_{c=1}^{k} \pi_c \underbrace{p(x \mid \mu_c, \Sigma_c)}_{\text{PDE of Gaussian } c},$$

which is the PDF of the mixture of Gaussians model.

Ancestral Sampling in Mixture of Gaussians

• Generating samples with ancestral sampling in the latent variable representation:

- **(**) Sample cluster z based on prior probabilities π_c (categorical distribution).
- 2 Sample example x based on mean μ_z and covariance Σ_z of Gaussian z.

- Marginalization and computing conditionals is also easy.
- Decoding z or computing marginal $p(z \mid x)$ is easy (next slide).
- Decoding x in Gaussian mixtures is NP-hard.
- We usually fit these models with expectation maximization (EM).
- Choosing k: domain knowledge, test set likelihood, or marginal likellihood.

Inference Task: Computing Responsibilities

- Consider computing probability that example *i* came from mixture *c*.
 - We call this the responsibility of mixture c for example i,

$$\begin{split} r_{c}^{i} &= p(z = c \mid x^{i}) \\ &= \frac{p(z = c, x^{i})}{p(x^{i})} \\ &= \frac{p(z = c, x^{i})}{\sum_{c'=1}^{k} p(z' = c, x^{i})} \\ &= \frac{p(z = c)p(x^{i} \mid z = c))}{\sum_{c'=1}^{k} p(z' = c)p(x^{i} \mid z' = c)} \\ &= \frac{\pi_{c} p(x^{i} \mid \mu_{c}, \Sigma_{c})}{\sum_{c'=1}^{k} \pi_{c'} p(x^{i} \mid \mu_{c'}, \Sigma_{c'})} \end{split}$$
 (we know

(we know all these values)

• If you think the different mixtures as clusters, this is probability of being in cluster.

Notation Alert: π vs. z vs. r (MEMORIZE)

• In mixture models, many people confuse the quantities π , z, and r.

- Vector π has k elements in [0,1] and summing up to 1.
 - Number π_c is the "prior" probability that an example is in cluster c.
 - This is a parameter (we learn it from data).
- Matrix R is $n \times k$ matrix, summing to 1 across rows.
 - Number r_c^i is the "posterior" probability that example *i* is in cluster *c*.
 - Computing these values is an inference task (assumes known parameters).
- Vector z has n elements in $\{1, 2, \ldots, k\}$.
 - Category z^i is the actual mixture/cluster that generated example *i*.
 - This is a nuissance parameter (an unknown variable that is not a parameter).

Training Mixture Models with Imputation

- Mixture of Gaussian parameters are $\{\pi_c, \mu_c, \Sigma_c\}_{c=1}^k$.
 - Unfortunately, NLL is non-convex and finding MLE is hard.
 - Various optimization methods are used in practice.
- If we treat the z^i as parameters, we get a simple algorithm for decreasing NLL:
 - **(**) Given the clusters z^i , find the most likely parameters.
 - Optimize $p(X \mid \pi, \mu, \Sigma, z)$ in terms of the $\{\pi_c, \mu_c, \Sigma_c\}_{c=1}^k$.
 - Sets π_c based on frequency of seeing $z^i = c$.
 - Sets μ_c to the mean of examples in cluster c.
 - Sets Σ_c to the covariance of examples in cluster c.
 - 2 Given the parameters, find the most likely clusters.
 - For each example *i*, compute responsibility $r_c^i = p(z^i = c \mid x^i, \pi_c, \mu_c, \Sigma_c)$.
 - Set z^i to the the argmax of r^i_c over c.
- Connection to Gaussian discriminant analysis (GDA), using clusters z^i as labels:
 - Step 1 above is the learning step in GDA, Step 2 above is the prediction step in GDA.

Special Case of K-Means

- Algorithm from the previous slide is a generalization of k-means clustering.
- Apply the algorithm assuming $\pi_c = 1/k$ and $\Sigma_c = I$ for all c:
 - **O** Given the clusters z^i , find the most likely parameters.
 - Sets μ_c to the mean of examples in cluster c.
 - 2 Given the parameters, find the most likely clusters.
 - Sets z^i to the closest mean of example *i*.
- As with k-means, initialization matters for mixture of Gaussians.
 - May need to do multiple random restarts, or clever initializations like k-means++.

• K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).

• But variable Σ_c in general mixture of Gaussians allows non-convex clusters.

• K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).

• But variable Σ_c in general mixture of Gaussians allows non-convex clusters.

- K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).
 - But variable Σ_c in general mixture of Gaussians allows non-convex clusters.

- K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).
 - But variable Σ_c in general mixture of Gaussians allows non-convex clusters.

• K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).

• But variable Σ_c in general mixture of Gaussians allows non-convex clusters.

• K-means can be viewed as fitting mixture of Gaussians (same π_c and Σ_c).

• But variable Σ_c in general mixture of Gaussians allows non-convex clusters.

https://en.wikipedia.org/wiki/K-means_clustering

Outline

2 Mixture of Bernoullis

Previously: Product of Bernoullis

• We previously considered density estimation with discrete variables,

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

•

• We considered a product of Bernoullis:

$$p(x^i \mid \theta) = \prod_{j=1}^d p(x^i_j \mid \theta_j).$$

Easy to fit but strong independence assumption:

- Knowing x_j^i tells you nothing about x_k^i .
- A more-powerful model is a mixture of Bernoullis.

Mixture of Bernoullis

• Consider a coin flipping scenario where we have two coins:

- Coin 1 has $\theta_1 = 0.5$ (fair) and coin 2 has $\theta_2 = 1$ (biased).
- Half the time we flip coin 1, and otherwise we flip coin 2:

$$p(x^{i} = 1 \mid \theta_{1}, \theta_{2}) = \pi_{1} p(x^{i} = 1 \mid \theta_{1}) + \pi_{2} p(x^{i} = 1 \mid \theta_{2})$$
$$= \frac{1}{2} \theta_{1} + \frac{1}{2} \theta_{2} = \frac{\theta_{1} + \theta_{2}}{2}$$

- With one variable this mixture model is not very interesting:
 - It's equivalent to flipping one coin with $\theta = 0.75$.
- But with multiple variables mixture of Bernoullis can model dependencies...

Mixture of Independent Bernoullis

• Consider a mixture of a product of Bernoullis:

$$p(x \mid \theta_1, \theta_2) = \frac{1}{2} \underbrace{\prod_{j=1}^d p(x_j \mid \theta_{1j})}_{\text{first set of Bernoullis}} + \frac{1}{2} \underbrace{\prod_{j=1}^d p(x_j \mid \theta_{2j})}_{\text{second set of Bernoulli}} .$$

• Conceptually, we now have two sets of coins:

- Half the time we throw the first set, half the time we throw the second set.
- With d = 4 we could have $\theta_1 = \begin{bmatrix} 0 & 0.7 & 1 & 1 \end{bmatrix}$ and $\theta_2 = \begin{bmatrix} 1 & 0.7 & 0.8 & 0 \end{bmatrix}$.
 - Half the time we have $p(x_3^i = 1) = 1$ and half the time it's 0.8.
- Have we gained anything?

Mixture of Independent Bernoullis

- Example from the previous slide: $\theta_1 = \begin{bmatrix} 0 & 0.7 & 1 & 1 \end{bmatrix}$ and $\theta_2 = \begin{bmatrix} 1 & 0.7 & 0.8 & 0 \end{bmatrix}$.
- Here are some samples from this model:

$$X = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

- Unlike product of Bernoullis, notice that features in samples are not independent.
 - In this example knowing $x_1 = 1$ tells you that $x_4 = 0$.

• This model can capture dependencies:
$$\underbrace{p(x_4 = 1 \mid x_1 = 1)}_{0} \neq \underbrace{p(x_4 = 1)}_{0.5}$$
.

Mixture of Independent Bernoullis

• Drawing the mixture of Bernoullis as a DAG:

• Since we do not know z, there are dependencies between x_j .

- But features are independent if we know z.
- This is the same graph as naive Bayes, with cluster z instead of class y.
 - If you see spammy word, it makes other spammy words more likely.

Summary

- Mixture of Gaussians writes probability as convex comb. of Gaussian densities.
 - Can model arbitrary continuous densities.
- Latent-variable representation of mixutres with cluster variables z^i .
 - Allows ancestral sampling by sampling cluster than example.
 - Resonsibility is probability that an example belongs to a cluster.
 - Training by alternating between updating z^i and updating parameters.
- Mixture of Bernoullis can model dependencies between discrete variables.
 - Unsupervised version of naive Bayes.
- Next time: one the top-100 most-cited papers of all time across all fields.

Avoiding Underflow when Computing Responsibilities

- Computing responsibility may underflow for high-dimensional x^i , due to $p(x^i \mid z^i = c, \Theta^t).$
- Usual ML solution: do all but last step in log-domain.

$$\log r_c^i = \log p(x^i \mid z^i = c, \Theta^t) + \log p(z^i = c \mid \Theta^t)$$
$$- \log \left(\sum_{c'=1}^k p(x^i \mid z^i = c', \Theta^t) p(z^i = c' \mid \Theta^t) \right).$$

• To compute last term, use "log-sum-exp" trick.

Log-Sum-Exp Trick

• To compute $\log(\sum_i \exp(v_i))$, set $\beta = \max_i \{v_i\}$ and use:

$$\log(\sum_{c} \exp(v_i)) = \log(\sum_{i} \exp(v_i - \beta + \beta))$$
$$= \log(\sum_{i} \exp(v_i - \beta) \exp(\beta))$$
$$= \log(\exp(\beta)) \sum_{i} \exp(v_i - \beta))$$
$$= \log(\exp(\beta)) + \log(\sum_{i} \exp(v_i - \beta))$$
$$= \beta + \log(\sum_{i} \underbrace{\exp(v_i - \beta)}_{<1}).$$

ullet Avoids overflows due to computing \exp operator.

Mixture of Bernoullis

Mixture of Gaussians on Digits

• Mean parameters of a mixture of Gaussians with k = 10:

• Samples:

• 10 components with k = 50 (I might need a better initialization):

• Samples:

Generative Mixture Models and Mixture of Experts

• Classic generative model for supervised learning uses

$$p(y^i \mid x^i) \propto p(x^i \mid y^i)p(y^i),$$

and typically $p(x^i | y^i)$ is assumed Gaussian (LDA) or independent (naive Bayes). • But we could allow more flexibility by using a mixture model,

$$p(x^{i} \mid y^{i}) = \sum_{c=1}^{k} p(z^{i} = c \mid y^{i}) p(x^{i} \mid z^{i} = c, y^{i}).$$

• Another variation is a mixture of disciminative models (like logistic regression),

$$p(y^{i} \mid x^{i}) = \sum_{c=1}^{k} p(z^{i} = c \mid x^{i}) p(y^{i} \mid z^{i} = c, x^{i}).$$

- Called a "mixture of experts" model:
 - Each regression model becomes an "expert" for certain values of x^i .