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Last Time: Undirected Graphical Models

We discussed undirected graphical models

p(x1, x2, . . . , xd) ∝
∏
c∈C

φc(xc),

which write joint distribution as product of non-negative potentials over subsets c.

The most common variant is pairwise UGMs,

p(x1, x2, . . . , xd) ∝

 d∏
j=1

φj(xj)

 ∏
(i,j)∈E

ψij(xi, xj)

 ,

which includes Markov chains and multivariate Gaussians as special cases.

In tree-structured graphs (no loops), common inference operations are O(dk2).
By generalizing the methods used for Markov chains.
But runtime is exponential in “treewidth” for graphs with loops.



Log-Linear Models Conditional Random Fields

Vancouver Rain Data: DAG vs. UGM

We previously considered the “Vancouver Rain” dataset:

We previously fit this with a Markov chain under the DAG factorization:

p(x1, x2, . . . , xd) = p(x1)

d∏
j=2

p(xj | xj−1),

where we used tabular potentials (so learning was counting).
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Vancouver Rain Data: DAG vs. UGM

Consider fitting a Markov chain under the UGM factorization:

p(x1, x2, . . . , xd) ∝

 d∏
j=1

φj(xj)

 d∏
j=2

φj,j−1(xj , xj−1)

 .

Consider the following UGM parameterization (for xj ∈ {−1,+1}):

φj(xj) = exp(wjxj), φij(xi, xj) = exp(vijxixj),

where wj is a node weight, vij is an edge weight, and we have used Ising edges.
We use the exponential function to make the potentials non-negative.

We call this a log-linear model: logarithms of potentials are linear.

Ising potentials can reflect how strongly neighbours are attracted/repulsed.
For the rain data, we would expect vij > 0 (adjacent days likely to have same value).
For the rain data, it makes sense to tie wj across j and vij across (i, j) values.
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Vancouver Rain Data: DAG vs. UGM

Our log-linear model of the rain data under the Ising parameterization:

p(x1, x2, . . . , xd | w, v) ∝

 d∏
j=1

exp(wxj)

 d∏
j=2

exp(vxjxj−1)


= exp

 d∑
j=1

wxj +
d∑

j=2

vxjxj−1


= exp

w
d∑

j=1

xj + v
d∑

j=2

xjxj−1


= exp

([
w
v

]T [ ∑d
j=1 xj∑d

j=2 xjxj−1

])
,

which is an exponential family in canonical form.

NLL will be convex in terms of w and v, derivative of NLL has simple form.
If we did not tie parameters, we would have a statistic for each time.
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Log-Linear UGM NLL and Gradient (Rain Data)

Our convex NLL over n training examples is

f(w, v) = −w
n∑

i=1

d∑
j=1

xij − v
n∑

i=1

d∑
j=2

xijx
i
j−1 + n logZ(w, v),

and we typically train log-linear models using gradient descent.

The derivative with respect to w has simple form but requires inference,

∇wf(w, v) = −
n∑

i=1

d∑
j=1

xij + n
d∑

j=1

p(xj = 1 | w, v).

where in Markov chains all marginals can be obtained from forward-backward.
The gradient with respect to v is similar, using pairwise marginals.
If you did the forward pass to compute logZ(w, v), autodif could do backward pass.

At solution, we will that p(xj = 1) is frequency of this happening in data.
And p(xj = xj−1) matching frequency in data from the Ising edge parameter.
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Log-Linear NLL and Gradient (General Case)

We often write log-linear UGMs in an exponential family form

p(x | w) =
exp

(
wTF (x)

)
Z(w)

,

where the feature functions F (x) count the number of times we use each wj .
Examples of feature functions, and potentails for categoricals, in bonus.

This leads to a convex NLL (first term is linear, second is a big log-sum-exp),

− log p(x | w) = −wTF (x) + log(Z(w)),

The gradient has a simple form but requires inference,

∇w − log p(x | w) = −F (x) + Ex | w[F (x)],

which is #P-hard in general graphs.
So we need to consider approximations when learning.
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Approximate Learning: Pseudo-Likelihood
A popular approximation to the NLL is pseudo-likelihood.

“Fast, convex, and crude.”

Pseudo-likelihood turns learning into d single-variables problem (similar to DAGs),

p(x1, x2, . . . , xd) ≈
d∏

j=1

p(xj | x−j) =
d∏

j=1

p(xj | xnei(j)).
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Approximate Learning: Marginal Approximations

Another way to approximate the NLL is with approximate inference.
1 Deterministic variational approximations of E[F (x)] (we will cover these later).

Approximate p by a simpler q, and compute expectation for q.

2 Monte Carlo approximation of E[Fj(x)] given current parameters w:

∇f(w) = −F (x) + E[F (x)]

≈ −F (x) + 1

t

t∑
i=1

F (xi)︸ ︷︷ ︸
Monte Carlo approx

,

based on samples from p(x | w).
Unfortunately, usually we also cannot generate IID samples efficiently.
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Approximate Learning with MCMC Marginal Approximation

An innefficient approach to using MCMC approximation of gradient:
1 At iteration k, we want to sample from p(x | wk).

Start from some x0, sample x1, sample x2, and so on.
Treat the last sample xk from the Markov chain as an IID sample.

2 Update the parameters using xk to get an unbiased gradient approximation,

wk+1 = wk + αk(F (x)− F (xk)),

If the Markov chain is run long enough, can show convergence
using standard stochastic gradient descent arguments.

But have to run MCMC on each iteration of the SGD method.
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Younes Algorithm (“Persistent Contrastive Divergence”)

Younes algorithm (also known as “persistent contrastive divergence”):
1 At iteration k, we want to sample from p(x | wk).

Set x0 = xk−1, sample x1, sample x2, and so on.
Treat the last sample xk from the Markov chain as an IID sample.

2 Update the parameters using xk to get an unbiased gradient approximation,

wk+1 = wk + αk(F (x)− F (xk)),

In Younes algorithm, you do not need to run Markov chain to stationarity.

Usually you only run MCMC for 1 or a small number of iterations.
This gives a biased estimate, but is much faster than running MCMC to stationarity.
And with small-enough step-size, can show convergence.
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Pairwise UGM on MNIST Digits

Samples from a lattice-structured pairwise UGM trained on MNIST:

Training: 100k stochastic gradient w/ Gibbs sampling steps with αt = 0.01.

Samples are iteration 100k of Gibbs sampling with fixed w.
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Motivation: Rain Data with Month Information

Our Ising UGM model for the rain data with tied parameters,

p(y1, y2, . . . , yk | w, v) ∝ exp

(
k∑

c=1

wyc +

k∑
c=2

vycyc−1

)
,

where I have switched the variable names from xj to yc (but model is same).

First term will refelct that “not rain” is a more likely.
Second term reflects that consecutive days are more likely to be the same.

This model is equivalent to a Markov chain model.

But the model does not reflect that some months are less rainy.

We can add features that reflect the month (or other information).
Multi-label supervised learning, but modeling dependence in labels yc.
Adding fixed features to a UGM is also called a conditional random field (CRF).
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Conditional Random Field (CRF) for Rain Data

A CRF model of rain data, conditioned on 12 “one of k” month features xj ,

p(y1, y2, . . . , yk | x,w0, w, v) ∝ exp

(
k∑

c=1

w0yc +

k∑
c=2

vycyc−1 +

k∑
c=1

ycw
Tx

)
.

The potentials in this model over the random variables yc are:

φi(yi) = exp
(
w0yi + yiw

Tx
)
, φij(yi, yj) = exp(vyiyj).

If we draw the UGM over yc variables we get a chain structure.

So inference can be done using forward-backward.
And it’s still log-linear so the NLL will be convex.

Gradient descent finds global optimum jointly with respect to w0, w, and v.
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Rain Data with Month Information

Samples from CRF conditioned on x being December (left) and July (right):

Conditional NLL is 16.21, compared to Markov chain which gets NLL 16.81.
Code for this and a variety of other UGM models is here:
https://www.cs.ubc.ca/~schmidtm/Software/UGM.html

https://www.cs.ubc.ca/~schmidtm/Software/UGM.html
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Conditional Random Fields (General Case)

We often write the likelihood for general CRFs in the form

p(y | x,w) = 1

Z(x,w)
exp(wTF (x, y)),

for some parameters w and features F (x, y).

The NLL is convex and has the form

− log p(y | x,w) = −wTF (x, y) + logZ(x,w),

and the gradient can be written as

−∇ log p(y | x,w) = −F (x, y) + Ey | x,w[F (x, y)],

which requires inference for each value of x in training data.
For rain data need to do run forward-backward 12 times.
If each example has its own features, need to run it n times.
So it can make sense to use stochastic gradient if n is large.



Log-Linear Models Conditional Random Fields

Motivation: Automatic Brain Tumor Segmentation

Task: identification of tumours in multi-modal MRI.

Applications:

Radiation therapy target planning, quantifying treatment response.
Mining growth patterns, image-guided surgery.

Challenges:

Variety of tumor appearances, similarity to normal tissue.
“You are never going to solve this problem”.



Log-Linear Models Conditional Random Fields

Brain Tumour Segmentation with Label Dependencies

After a lot pre-processing and feature engineering (convolutions, priors, etc.),
final system used logistic regression to label each pixel as “tumour” or not.

p(yc | xc) =
1

1 + exp(−2ycwTxc)
=

exp(ycw
Txc)

exp(wTxc) + exp(−wTxc)

Gives a high “pixel-level” accuracy, but sometimes gives silly results:

Classifying each pixel independently misses dependence in labels yi:

We prefer neighbouring voxels to have the same value.
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Brain Tumour Segmentation with Label Dependencies

With independent logistic, conditional distribution over all labels in one image is

p(y1, y2, . . . , yk | x1, x2, . . . , xk) =
k∏

c=1

exp(ycw
Txc)

exp(wTxc) + exp(−wTxc)

∝ exp

(
d∑

c=1

ycw
Txc

)
,

where here xc is the feature vector for position c in the image.

We can view this as a log-linear UGM with no edges,

φc(yc) = exp(ycw
Txc),

so given the xc there is no dependence between the yc.
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Brain Tumour Segmentation with Label Dependencies

Adding an Ising-like term to model dependencies between yi gives

p(y1, y2, . . . , yk | x1, x2, . . . , xk) ∝ exp

 k∑
c=1

ycw
Txc +

∑
(c,c′)∈E

ycyc′v

 ,

Now we have the same “good” logistic regression model,
but v controls how strongly we want neighbours to be the same.

We can run gradient descent to jointly optimize w and v (convex NLL).

So we find the optimal joint logistic regression and Ising model.
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Conditional Random Fields for Segmentation

Recall the performance with the independent classifier:

The pairwise CRF better modelled the “guilt by association”:
Trained with pseudo-likelihood, constraining v ≥ 0.

Decoding with “graph cuts” (see bonus lecture).

(We were using edge features xcc′ too, see bonus (and different λ on edges).)
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Combining Neural Networks and UGMs
Instead of fixed features, you could use a neural network:

p(y | x) ∝ exp

 k∑
c=1

ycv
Th(W 3h(W 2(W 1xc))) +

∑
(c,c′)∈E

uycyc′

 .

or you could have an encode-decode model spit out potentials of a UGM:

These are sometimes called a conditional neural fields or deep structured model.
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Multi-Label Classification
Learned dependencies on a mult-label image classification dataset:

http://proceedings.mlr.press/v37/chenb15.pdf

http://proceedings.mlr.press/v37/chenb15.pdf
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Automatic Differentiation (AD) vs. Inference
Deep structured model gradient combines neural/Markov gradients:

1 Forward pass through neural network to get ŷc predictions.
2 Forward message passing to compute normalizing constant.
3 Backwards message passing to compute marginals.
4 Backwards pass through neural network to get all gradients.

You could skip the last two steps if you use automatic differentiation.

But with approximate inference, AD may or may not work:
AD will work for iterative variational inference methods (which we’ll cover later).

But it takes way more memory than needed (needs to store all iterations).

AD will not tend to work for Monte Carlo methods.
Cannot AD through sampling (need tricks like “common random numbers”).

Recent trend: run iterative variational method for a fixed number of iterations.
AD can give gradient of result after this fixed number of iterations.
“Train the inference you will use at test time”.
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Combining FCNs and CRFs

DeepLab used a fully-connected pairwise UGM on top layer of FCN:

https://arxiv.org/pdf/1606.00915.pdf

But most recent version of the paper removed the UGM.

https://arxiv.org/pdf/1606.00915.pdf
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Do we need UGMs in Neural Networks?

Recall that encode-decode hidden layers already capture label dependencies.

So do we need a UGM to explicitly model label dependencies in output layer?

Factor 1: data size (big vs. small).

With a small dataset, it could be helpful to have direct dependencies in model.
With a large dataset, the hidden layers should reflect dependencies.

Factor 2: how you evaluate the model (individual parts or full decoding).

If you measure “pixel level” or “word level” error, UGMs may not help.
If you measure “whole image” or “whole sentence” error, UGMs may help.

Because for example inference can discourage unlikely joint labelings.
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Combining RNNs and Graphical Models

An example where we use explicit label dependencies is language translation:

Above model has usual deterministic edges, and DAG edges on labels.
Can use Viterbi decoding to find best translation in this model.

Taking into account probability of seeing neighbouring words.

But there is not much information in the DAG part of the model.
Only modeling dependencies between adjacent words.

What we really want is to have the label we output affect the hidden state.
So that the encoding reflects previously-output words.
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Combining RNNs and Graphical Models

In order for the hidden states to depend on the output, we have this monstrosity:

This can still be written as a Markov chain, but we cannot do Viterbi decoding.
Problem is that the hidden states in decoder become random variables.
So the state at each time has discrete and continuous parts (cannot be enumerated).

To do decoding in this thing, we typically use beam search.
Heuristic algorithm that maintains “k best decodings up to time t”.

Can be arbitrarily bad, but works if decoding is obvious as we go forward in time.

The type of edge and decoding strategy is also common with transformers.
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Summary

Log-linear parameterization can be used to learn UGMs:

Maximum likelihood is convex, but requires normalizing constant and inference.

Approximate UGM learning:
1 Change objective function: pseudolikelihood.
2 Approximate marginals: Monte Carlo or variational methods.

Younes algorithm for using MCMC within SGD.

Conditional random fields generalize logistic regression:

Multi-label model that explicitly models label dependencies.

Combining CRFs with deep learning.

You can learn features and and the explicit label dependencies.

Next time: a universal model for continuous density estimation.
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Example: Ising Model of Rain Data

E.g., for the rain data we could parameterize our node potentials using

log(φi(xi)) =

{
w1 no rain

0 rain
.

Why do we only need 1 parameter?

Scaling φi(1) and φ(2) by constant doesn’t change distribution.

In general, we only need (k − 1) parameters for a k-state variable.

But if we’re using regularization we may want to use k anyways (symmetry).
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Example: Ising Model of Rain Data

The Ising parameterization of edge potentials,

log(φij(xi, xj)) =

{
w2 xi = xj

0 xi 6= xj
.

Applying gradient descent gives MLE of

w =

[
0.16
0.85

]
, φi =

[
exp(w1)
exp(0)

]
=

[
1.17
1

]
, φij =

[
exp(w2) exp(0)
exp(0) exp(w2)

]
=

[
2.34 1
1 2.34

]
,

preference towards no rain, and adjacent days being the same.

Average NLL of 16.8 vs. 19.0 for independent model.
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Full Model of Rain Data

We could alternately use fully expressive edge potentials

log(φij(xi, xj)) =

[
w2 w3

w4 w5

]
,

but these don’t improve the likelihood much.

We could fix one of these at 0 due to the normalization.

But we often don’t do this when using regularization.

We could also have special potentials for the boundaries.

Many language models are homogeneous, except for start/end of sentences.
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Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

For this dataset, using untied or general edges doesn’t change likelihood much.
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Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:
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Example of Feature Function

Consider the 2-node 1-edge UGM (1)–(2), where each state has 2 values.

So we have potentials φ1(x1), φ2(x2), and φ12(x1, x2) and want to have

wTF (x) = w1,x1
+ w2,x2

+ w1,2,x1,x2
.

With no parameter tieing and x =
[
2 1

]
, our parameter vector and features are

w =



w1,1

w1,2

w2,1

w2,2

w1,2,1,1

w1,2,1,2

w1,2,2,1

w1,2,2,2


, F (x) =



0
1
1
0
0
0
1
0


,
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Example of Feature Function

If we instead had Ising potentials (just measuring whether x1 = x2) we would have

wTF (x) = w1,x1 + w2,x2 + w1,2,same,

where w1,2,same is the parameter specifying how much we want x1 = x2.

With no parameter tieing and x =
[
2 1

]
, our parameter vector and features are

w =


w1,1

w1,2

w2,1

w2,2

w1,2.same

 , F (x) =


0
1
1
0
0

 ,
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UGM Training Objective Function

With log-linear parameterization, NLL for IID training examples is

f(w) = −
n∑

i=1

log p(xi | w) = −
n∑

i=1

log

(
exp(wTF (xi))

Z(w)

)

= −
n∑

i=1

wTF (xi) +

n∑
i=1

logZ(w)

= −wTF (X) + n logZ(w).

where the F (X) =
∑

i F (x
i) are called the sufficient statistics of the dataset.

Given sufficient statistics F (X), we can throw out the examples xi.
(only go through data once)

Function f(w) is convex (it’s linear plus a big log-sum-exp function).
But notice that Z depends on w

.



Log-Linear Models Conditional Random Fields

Log-Linear UGM Gradient

For 1 example x, we showed that NLL with log-linear parameterization is

f(w) = −wTF (x) + logZ(w).

The partial derivative with respect to parameter wj has a simple form

∇wjf(w) = −Fj(x) +
∑
x

exp(wTF (x))

Z(w)
Fj(x)

= −Fj(x) +
∑
x

p(x | w)Fj(x)

= −Fj(x) + E[Fj(x)].

Observe that derivative of log(Z) is expected value of feature.
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Brain Tumour Segmentation with Label Dependencies
We got a bit more fancy and used edge features xij ,

p(y1, y2, . . . , yd | x1, x2, . . . , xd) = 1

Z
exp

 d∑
i=1

yiwTxi +
∑

(i,j)∈E

yiyjvTxij

 .

For example, we could use xij = 1/(1 + |xi − xj |).
Encourages yi and yj to be more similar if xi and xj are more similar.

This is a pairwise UGM with

φi(y
i) = exp(yiwTxi), φij(y

i, yj) = exp(yiyjvTxij),

so it didn’t make inference any more complicated.
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Modeling OCR Dependencies

What dependencies should we model for this problem?

φ(yc, xc): potential of individual letter given image.
φ(yc−1, yc): dependency between adjacent letters (‘q-u’).
φ(yc−1, yc, xc−1, xc): adjacent letters and image dependency.
φc(yc−1, yc): inhomogeneous dependency (French: ‘e-r’ ending).
φc(yc−2, yc−1, yc): third-order and inhomogeneous (English: ‘i-n-g’ end).
φ(y ∈ D): is y in dictionary D?
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Tractability of Discriminative Models

Features can be very complicated, since we just condition on the xc, .

Given the xc, tractability depends on the conditional UGM on the yc.
Inference tasks will be fast or slow, depending on the yc graph.

Besides “low treewidth”, some other cases where exact computation is possible:
Semi-Markov chains (allow dependence on time you spend in a state).

For example, in rain data the seasons will be approximately 3 months.

Context-free grammars (allows potentials on recursively-nested parts of sequence).
Sum-product networks (restrict potentials to allow exact computation).
“Dictionary” feature is non-Markov, but exact computation still easy.

We can alternately use our previous approximations:
1 Pseudo-likelihood (what we used).
2 Monte Carlo approximate inference (eventually better but probably much slower).
3 Variational approximate inference (fast, quality varies).
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Structure Learning in UGMs

Recall that in Ising UGMs, our edge potentials have the form

φij(xi, xj) = exp(wijxixj).

If we set wij = 0, it sets φij(xi, xj) = 1 for all xi and xj .

Potential just “multiplies by 1”, which is equivalent to removing the edge.

L1-regularization of wij values performs structure learning in UGM.

For general log-linear, each edge has multiple parameters wi,j,s,s′ .
In this case we can use “group L1-regularization” for structure learning.

Each group will be all parameters wi,j,·,· associated with an edge (i, j).
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Structure Learning on Rain Data

Large λ (and optimal tree):
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Structure Learning on USPS Digits
Structure learning of pairwise UGM with group-L1 on USPS digits:
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Structure Learning on News Words
Group-L1 on newsgroups data:

baseball

games

league

players

bible

christian

god

jesus

question

car

dealerdrive engine

card

driver

graphics

pc

problem

system

video

windows

case

course

evidence

fact

government

human

lawnumber power

rights

state

world

children

president

religionwar

computer

data

email

program

science

software

university

memory

research

space

disk

files

display

imagedos

mac scsi

earth

orbit

format

ftp

help

phone

jews

fans

hockey

team

version

nhl

season

win

gun

health

insurance

israel

launch moon

nasa

shuttle

technology

won



Log-Linear Models Conditional Random Fields

Structure Learning on News Words
Group-L1 on newsgroups data:

baseball

games

league

players

bible

christian

god

jesus

question

car

dealerdrive engine

card

driver

graphics

pc

problem

system

video

windows

case

course

evidence

fact

government

human

lawnumber power

rights

state

world

children

president

religionwar

computer

data

email

program

science

software

university

memory

research

space

disk

files

display

imagedos

mac scsi

earth

orbit

format

ftp

help

phone

jews

fans

hockey

team

version

nhl

season

win

gun

health

insurance

israel

launch moon

nasa

shuttle

technology

won

baseball

games

league

players

bible

christian

god

jesus

question

car

dealerdrive engine

card

driver

graphics

pc

problem

system

video

windows

case

course

evidence

fact

government

human

lawnumber power

rights

state

world

children

president

religionwar

computer

data

email

program

science

software

university

memory

research

space

disk

files

display

imagedos

mac scsi

earth

orbit

format

ftp

help

phone

jews

fans

hockey

team

version

nhl

season

win

gun

health

insurance

israel

launch moon

nasa

shuttle

technology

won



Log-Linear Models Conditional Random Fields

Posterior Regularization
In some cases it might make sense to use posterior regularization:

Regularize the probabilities in the resulting model.

Consider an NLP labeling task where
You have a small amount of labeled sentences.
You have a huge amount of unlabeled sentences.

Maximize labeled likelihood, plus total-variation penalty on p(yc | x,w) values.
Give high regularization weights to words appearing in same trigrams:

http://jgillenw.com/conll2013-talk.pdf

Useful for “out of vocabulary” words (words that don’t appear in labeled data).
Has been replaced in recent by continuous word representations like word2vec.

http://jgillenw.com/conll2013-talk.pdf
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