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Last Time: Undirected Graphical Models

@ We discussed undirected graphical models
p(a1, w2, ., xq) x [ ] delze),
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which write joint distribution as product of non-negative potentials over subsets c.
@ The most common variant is pairwise UGMs,
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which includes Markov chains and multivariate Gaussians as special cases.
@ In tree-structured graphs (no loops), common inference operations are O(dk?).

o By generalizing the methods used for Markov chains.
e But runtime is exponential in “treewidth” for graphs with loops.
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Vancouver Rain Data: DAG vs. UGM

@ We previously considered the “Vancouver Rain" dataset:
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@ We previously fit this with a Markov chain under the DAG factorization:
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where we used tabular potentials (so learning was counting).
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Conditional Random Fields

Vancouver Rain Data: DAG vs. UGM

o Consider fitting a Markov chain under the UGM factorization:
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o Consider the following UGM parameterization (for z; € {—1,+1}):

dj(xj) = exp(wjz;), ¢ij(xi, ;) = exp(vijziz;),

where w; is a node weight, v;; is an edge weight, and we have used Ising edges.
o We use the exponential function to make the potentials non-negative.
o We call this a log-linear model: logarithms of potentials are linear.
e Ising potentials can reflect how strongly neighbours are attracted/repulsed.

o For the rain data, we would expect v;; > 0 (adjacent days likely to have same value).
o For the rain data, it makes sense to tie w; across j and v;; across (i, j) values.
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Vancouver Rain Data: DAG vs. UGM

@ Our log-linear model of the rain data under the Ising parameterization:
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which is an exponential family in canonical form.

o NLL will be convex in terms of w and v, derivative of NLL has simple form.
o If we did not tie parameters, we would have a statistic for each time.
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Log-Linear UGM NLL and Gradient (Rain Data)

@ Our convex NLL over n training examples is

f(w :—wZZx —’UZZ.CL‘ _1 +nlog Z(w,v),
=1 j=1 =1 j=2
and we typically train log-linear models using gradient descent.
@ The derivative with respect to w has simple form but requires inference,

Vwf(w,v) = ZZx+n2p zj=1]w,v).

=1 j=1

where in Markov chains all marginals can be obtained from forward-backward.
e The gradient with respect to v is similar, using pairwise marginals.
o If you did the forward pass to compute log Z(w,v), autodif could do backward pass.
e At solution, we will that p(z; = 1) is frequency of this happening in data.
o And p(x; = x;_1) matching frequency in data from the Ising edge parameter.
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Log-Linear NLL and Gradient (General Case)
@ We often write log-linear UGMs in an exponential family form
exp (W' F(z))
Z(w)

where the feature functions F'(x) count the number of times we use each w;.
e Examples of feature functions, and potentails for categoricals, in bonus.

p(z | w) =

@ This leads to a convex NLL (first term is linear, second is a big log-sum-exp),
—logp(z | w) = —w" F(z) + log(Z(w)),
@ The gradient has a simple form but requires inference,
Vi —logp(z | w) = —F(x) + Ey | [F(2)],

which is #P-hard in general graphs.
e So we need to consider approximations when learning.
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Approximate Learning: Pseudo-Likelihood

@ A popular approximation to the NLL is pseudo-likelihood.
e “Fast, convex, and crude.”

@ Pseudo-likelihood turns learning into d single-variables problem (similar to DAGs),

d d
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J=1 J=1



Log-Linear Models Conditional Random Fields

Approximate Learning: Marginal Approximations

@ Another way to approximate the NLL is with approximate inference.
@ Deterministic variational approximations of E[F(x)] (we will cover these later).
@ Approximate p by a simpler ¢, and compute expectation for q.

@ Monte Carlo approximation of E[F;(z)] given current parameters w:

Vi(w) = ~Flz) + E[F(2)
SF@)+ Y FE)
i=1

Monte Carlo approx

Q

based on samples from p(x | w).
e Unfortunately, usually we also cannot generate |ID samples efficiently.
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Approximate Learning with MCMC Marginal Approximation

@ An innefficient approach to using MCMC approximation of gradient:
© At iteration k, we want to sample from p(x | w¥).

o Start from some z°, sample z!, sample z2, and so on.
o Treat the last sample 2* from the Markov chain as an I[ID sample.

@ Update the parameters using z* to get an unbiased gradient approximation,

whtl = wk + ag(F(x) — F(xk))»

o If the Markov chain is run long enough, can show convergence
using standard stochastic gradient descent arguments.

e But have to run MCMC on each iteration of the SGD method.
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Younes Algorithm (“Persistent Contrastive Divergence”)

@ Younes algorithm (also known as “persistent contrastive divergence”):
@ At iteration k, we want to sample from p(z | w*).

o Set 2° = 2", sample z*, sample 22, and so on.

o Treat the last sample z* from the Markov chain as an 11D sample.

@ Update the parameters using z* to get an unbiased gradient approximation,

whtl = wk 4 o (F(x) — F(2)),

@ In Younes algorithm, you do not need to run Markov chain to stationarity.
e Usually you only run MCMC for 1 or a small number of iterations.
o This gives a biased estimate, but is much faster than running MCMC to stationarity.
e And with small-enough step-size, can show convergence.
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Pairwise UGM on MNIST Digits

@ Samples from a lattice-structured pairwise UGM trained on MNIST:

5 10 15 20 25

5 10 15 20 25 5 10 15 20 25

@ Training: 100k stochastic gradient w/ Gibbs sampling steps with o, = 0.01.
@ Samples are iteration 100k of Gibbs sampling with fixed w.
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Outline

@ Conditional Random Fields
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Motivation: Rain Data with Month Information

Our Ising UGM model for the rain data with tied parameters,

k k
P(W1,Y2, - -, Yk | W) o exp (Z wye + Zvycyc1> :

c=1 c=2

where | have switched the variable names from z; to y. (but model is same).

First term will refelct that “not rain” is a more likely.
Second term reflects that consecutive days are more likely to be the same.
e This model is equivalent to a Markov chain model.

@ But the model does not reflect that some months are less rainy.

@ We can add features that reflect the month (or other information).
o Multi-label supervised learning, but modeling dependence in labels ..
o Adding fixed features to a UGM is also called a conditional random field (CRF).
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Conditional Random Field (CRF) for Rain Data

@ A CRF model of rain data, conditioned on 12 “one of k" month features x;,

k k k
P(Y1, Y25 -5 Yk | %, w0, w,v) X exp (Z wWoYe + Vel 1 + Zychx) :

c=1 c=2 c=1

@ The potentials in this model over the random variables . are:

¢i(yi) = exp (woyi + yiw' x) ,  ¢ij(yi, y;) = exp(vyy;).

o If we draw the UGM over 3, variables we get a chain structure.

e So inference can be done using forward-backward.
e And it’s still log-linear so the NLL will be convex.

o Gradient descent finds global optimum jointly with respect to wo, w, and v.
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Rain Data with Month Information
@ Samples from CRF conditioned on x being December (left) and July (right):

Samples from CRF model (for D

ber) Samples from CRF model (for July)

e Conditional NLL is 16.21, compared to Markov chain which gets NLL 16.81.
e Code for this and a variety of other UGM models is here:
https://www.cs.ubc.ca/~schmidtm/Software/UGM. html


https://www.cs.ubc.ca/~schmidtm/Software/UGM.html
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Conditional Random Fields (General Case)
@ We often write the likelihood for general CRFs in the form

1
m eXP(wTF(%?J)),

for some parameters w and features F'(z,y).

p(y | wi) =

@ The NLL is convex and has the form
—logp(y | z,w) = —w" F(z,y) +log Z(z,w),
and the gradient can be written as

_VIng(y ‘ mﬂ”) = _F("an) +Ey | x,w[F(xay)]a

which requires inference for each value of z in training data.
e For rain data need to do run forward-backward 12 times.
o If each example has its own features, need to run it n times.
e So it can make sense to use stochastic gradient if n is large.
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Motivation: Automatic Brain Tumor Segmentation

@ Task: identification of tumours in multi-modal MRI.

@ Applications:
e Radiation therapy target planning, quantifying treatment response.
e Mining growth patterns, image-guided surgery.

o Challenges:

e Variety of tumor appearances, similarity to normal tissue.
e “You are never going to solve this problem™.
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Brain Tumour Segmentation with Label Dependencies

o After a lot pre-processing and feature engineering (convolutions, priors, etc.),
final system used logistic regression to label each pixel as “tumour” or not.

1 exp(yew” zc)
p(Ye | ze) = — T = T — T
1+ exp(—2y.wlz.)  exp(wlz.)+ exp(—wlz,)

@ Gives a high “pixel-level” accuracy, but sometimes gives silly results:

e Classifying each pixel independently misses dependence in labels y':
o We prefer neighbouring voxels to have the same value.
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Brain Tumour Segmentation with Label Dependencies
e With independent logistic, conditional distribution over all labels in one image is

k
p(y17y27"'7yk | ‘Tlana"‘?xk) = H@Xp

c=1

d
X exp (Z ychxc> )

c=1

exp(ychxc)
(wac) + exp(_wac)

where here x. is the feature vector for position ¢ in the image.

@ We can view this as a log-linear UGM with no edges,

Pe(Ye) = exp(ych:L‘c),

so given the x. there is no dependence between the ..
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Brain Tumour Segmentation with Label Dependencies

@ Adding an Ising-like term to model dependencies between y; gives

PW1, Y2, - Yk | T1, @2, .., @) X exp Zycw Tt D YeYov
(e,d)eE

@ Now we have the same “good” logistic regression model,
but v controls how strongly we want neighbours to be the same.

@ We can run gradient descent to jointly optimize w and v (convex NLL).
e So we find the optimal joint logistic regression and Ising model.
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Conditional Random Fields for Segmentation

@ Recall the performance with the independent classifier:

@ The pairwise CRF better modelled the “guilt by association™:
o Trained with pseudo-likelihood, constraining v > 0.
o Decoding with “graph cuts” (see bonus lecture).

(We were using edge features .- too, see bonus (and different A on edges).)
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Combining Neural Networks and UGMs
@ Instead of fixed features, you could use a neural network:

k

p(y | x) < exp Zy(jUTh(W:Sh(W2(VVI.’L‘C))) + Z UYeYer
c=1 (c,c)eE

or you could have an encode-decode model spit out potentials of a UGM:

Oo— o P
O — @)

®
@ —
@ [elalt orl-w O

L I | :[fct-.ln

/3
L4

@ These are sometimes called a conditional neural fields or deep structured model.
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Conditional Random Fields

Multi-Label Classification

@ Learned dependencies on a mult-label image classification dataset:

female
people
indoor
baby

sea
portrait
transport
flower
sky

lake
structures
bird
plant life
food

male
clouds
water
animals
car

tree

dog
sunset
night
river

http://proceedings.mlr

.press/v37/chenbi15.pdf


http://proceedings.mlr.press/v37/chenb15.pdf

Conditional Random Fields

Automatic Differentiation (AD) vs. Inference

@ Deep structured model gradient combines neural/Markov gradients:
@ Forward pass through neural network to get g. predictions.
@ Forward message passing to compute normalizing constant.
© Backwards message passing to compute marginals.
© Backwards pass through neural network to get all gradients.

@ You could skip the last two steps if you use automatic differentiation.

@ But with approximate inference, AD may or may not work:
o AD will work for iterative variational inference methods (which we'll cover later).
e But it takes way more memory than needed (needs to store all iterations).
e AD will not tend to work for Monte Carlo methods.
e Cannot AD through sampling (need tricks like “common random numbers”).

@ Recent trend: run iterative variational method for a fixed number of iterations.
e AD can give gradient of result after this fixed number of iterations.
e “Train the inference you will use at test time".
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Combining FCNs and CRFs

@ Deeplab used a fully-connected pairwise UGM on top layer of FCN:

Input

Aeroplane
Deep Coarse Score map
= Convolutional »
o : Neural
o Network
Final Output Fully Connected CRF Bi-linear Interpolation

Fig. 1: Model Illustration. A Deep Convolutional Neural Network such as VGG-16 or ResNet-101 is employed in a fully
convolutional fashion, using atrous convolution to reduce the degree of signal downsampling (from 32x down 8x). A
bilinear interpolation stage enlarges the feature maps to the original image resolution. A fully connected CRF is then
applied to refine the segmentation result and better capture the object boundaries.

https://arxiv.org/pdf/1606.00915.pdf

@ But most recent version of the paper removed the UGM.


https://arxiv.org/pdf/1606.00915.pdf
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Do we need UGMs in Neural Networks?

@ Recall that encode-decode hidden layers already capture label dependencies.
e So do we need a UGM to explicitly model label dependencies in output layer?

e Factor 1: data size (big vs. small).

o With a small dataset, it could be helpful to have direct dependencies in model.
o With a large dataset, the hidden layers should reflect dependencies.

@ Factor 2: how you evaluate the model (individual parts or full decoding).

o If you measure “pixel level” or “word level” error, UGMs may not help.
e If you measure “whole image” or “whole sentence” error, UGMs may help.

@ Because for example inference can discourage unlikely joint labelings.
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Combining RNNs and Graphical Models

An example where we use explicit label dependencies is language translation:

0-0-0-0-0
1 t j 1 t
P00 O0O008-0
o

Above model has usual deterministic edges, and DAG edges on labels.
Can use Viterbi decoding to find best translation in this model.
e Taking into account probability of seeing neighbouring words.

But there is not much information in the DAG part of the model.
e Only modeling dependencies between adjacent words.

What we really want is to have the label we output affect the hidden state.
e So that the encoding reflects previously-output words.
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Combining RNNs and Graphical Models

@ In order for the hidden states to depend on the output, we have this monstrosity:

ot )t

aaaa;ﬁ]bé
)

@ This can still be written as a Markov chain, but we cannot do Viterbi decoding.
o Problem is that the hidden states in decoder become random variables.
o So the state at each time has discrete and continuous parts (cannot be enumerated).

@ To do decoding in this thing, we typically use beam search.
o Heuristic algorithm that maintains “k best decodings up to time t".
e Can be arbitrarily bad, but works if decoding is obvious as we go forward in time.
e The type of edge and decoding strategy is also common with transformers.
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Summary

Log-linear parameterization can be used to learn UGMs:
e Maximum likelihood is convex, but requires normalizing constant and inference.
Approximate UGM learning:

@ Change objective function: pseudolikelihood.
@ Approximate marginals: Monte Carlo or variational methods.

@ Younes algorithm for using MCMC within SGD.
Conditional random fields generalize logistic regression:
e Multi-label model that explicitly models label dependencies.
Combining CRFs with deep learning.
e You can learn features and and the explicit label dependencies.

Next time: a universal model for continuous density estimation.
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Example: Ising Model of Rain Data

o E.g., for the rain data we could parameterize our node potentials using

log(¢:(z:)) = {w1 no rain '

0 rain

@ Why do we only need 1 parameter?
o Scaling ¢;(1) and ¢(2) by constant doesn't change distribution.

@ In general, we only need (k — 1) parameters for a k-state variable.
o But if we're using regularization we may want to use k anyways (symmetry).
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Example: Ising Model of Rain Data

@ The Ising parameterization of edge potentials,

wy Ty :."L‘j

log(¢ij(xi, x;)) = {0 oL
7 J

@ Applying gradient descent gives MLE of

w 0.16 b = exp(wy)|  [1.17 i = exp(wz) exp(0) | (234 1
10857 " lexp(0) | | 1|7 Y |exp(0) exp(wa)| | 1 2.34]’
preference towards no rain, and adjacent days being the same.

o Average NLL of 16.8 vs. 19.0 for independent model.
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Full Model of Rain Data

@ We could alternately use fully expressive edge potentials

log (s (i, ;) = [w2 wB] 7

w4 Ws

but these don't improve the likelihood much.

@ We could fix one of these at 0 due to the normalization.
o But we often don't do this when using regularization.

@ We could also have special potentials for the boundaries.

e Many language models are homogeneous, except for start/end of sentences.
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Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

@ For this dataset, using untied or general edges doesn’t change likelihood much.

Samples from MAF model

‘Samples based on independent model
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Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:

Conditional samples from MRF model
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Example of Feature Function

o Consider the 2-node 1-edge UGM (1)—(2), where each state has 2 values.
e So we have potentials ¢1 (1), ¢2(x2), and ¢12(z1, z2) and want to have

T
w F(x) = Wiz, T W2z + W12,2,2,-

o With no parameter tieing and = = [2 1], our parameter vector and features are

w1,1
w1,2
w21
w=| Y2 , F(z)=
wW1,2,1,1
w1,2,1,2
w1,2,2,1
[ W1,2,2,2 ] L

(= N elNaeNel S =
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Example of Feature Function

o If we instead had Ising potentials (just measuring whether x1 = x3) we would have
’LUTF(QZ‘) = W1,z + W2y + W12 sames

where w1 2 same is the parameter specifying how much we want z; = .

e With no parameter tieing and = [2 1], our parameter vector and features are

wi,1 0
w1,2 1
w = w271 y F(m) = |1 y
w2,2 0
0

W1,2.same
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UGM Training Objective Function

@ With log-linear parameterization, NLL for IID training examples is

exp(w?
) = —Zlogp ) Zl (2t L)
= —ZwTF(xi) + ZlogZ(w
i=1 i=1

= _w}F(X) + nlog Z(w).

where the F(X) = 3. F(z") are called the sufficient statistics of the dataset.

o Given sufficient statistics F'(X), we can throw out the examples z°.
(only go through data once)

@ Function f(w) is convex (it's linear plus a big log-sum-exp function).
e But notice that Z depends on w
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Log-Linear UGM Gradient

@ For 1 example z, we showed that NLL with log-linear parameterization is
f(w) = —w? F(x) + log Z(w).
@ The partial derivative with respect to parameter w; has a simple form

ex 'lUT X
Vs f(0) = ~Fy(@) + 3 22 S

= —Fj(z)+ Y _pla | w)F;(z)
= —Fj(z) + E[F;(x)].

@ Observe that derivative of log(Z) is expected value of feature.
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Brain Tumour Segmentation with Label Dependencies

@ We got a bit more fancy and used edge features z%/,

py' Pyt 2l a? *exp Zwax“r > yiyv o
(i,5)€E

o For example, we could use 2/ = 1/(1 4 |2* — 27]).
o Encourages y; and y; to be more similar if z* and 27 are more similar.

@ This is a pairwise UGM with

$i(y)) = exp(y'wlz?), ¢y, y') = exp(yiyvT ),

so it didn't make inference any more complicated.
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Modeling OCR Dependencies

@ What dependencies should we model for this problem?

nput: (P (o)~ )i (s

Output: "Paris"

(ye, x.): potential of individual letter given image.

(Ye—1,Yc): dependency between adjacent letters (‘g-u').

(Ye—1, Yes Te—1, %) adjacent letters and image dependency.

¢(Ye—1, yc): inhomogeneous dependency (French: ‘e-r’ ending).
e(Ye—2,Yc—1,Yc): third-order and inhomogeneous (English: ‘i-n-g’ end).
(y € D): is y in dictionary D?

%%%@%\%\
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Tractability of Discriminative Models

@ Features can be very complicated, since we just condition on the z, .

o Given the x., tractability depends on the conditional UGM on the ..
o Inference tasks will be fast or slow, depending on the y. graph.

@ Besides “low treewidth”, some other cases where exact computation is possible:
o Semi-Markov chains (allow dependence on time you spend in a state).
o For example, in rain data the seasons will be approximately 3 months.
o Context-free grammars (allows potentials on recursively-nested parts of sequence).
o Sum-product networks (restrict potentials to allow exact computation).
e “Dictionary” feature is non-Markov, but exact computation still easy.

@ We can alternately use our previous approximations:
© Pseudo-likelihood (what we used).
@ Monte Carlo approximate inference (eventually better but probably much slower).
© Variational approximate inference (fast, quality varies).
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Structure Learning in UGMs

Recall that in Ising UGMs, our edge potentials have the form

Gij(xi, ) = exp(wi;z;x;).
If we set w;; = 0, it sets ¢;;(x;, z;) =1 for all z; and z;.

o Potential just “multiplies by 1", which is equivalent to removing the edge.

L1-regularization of w;; values performs structure learning in UGM.

For general log-linear, each edge has multiple parameters wj ; s .
o In this case we can use “group L1-regularization” for structure learning.
e Each group will be all parameters w; ;... associated with an edge (3, j).
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Structure Learning on Rain Data
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Log-Linear Models
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Structure Learning on USPS Digits

Structure learning of pairwise UGM with group-L1 on USPS digits:

Teoooo86y | %

5



Log-Linear Models Conditional Random Fields

Structure Learning on News Words
Group-L1 on newsgroups data:
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Structure Learning on News Words
Group-L1 on newsgroups data:

‘ Q Q

A
© N .
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Posterior Regularization

@ In some cases it might make sense to use posterior regularization:
o Regularize the probabilities in the resulting model.

@ Consider an NLP labeling task where
e You have a small amount of labeled sentences.
e You have a huge amount of unlabeled sentences.

@ Maximize labeled likelihood, plus total-variation penalty on p(y. | x,w) values.
o Give high regularization weights to words appearing in same trigrams:

they run over

blood run cold a run for

0.5
- ....“-- =
we run out 04

a run along
luck run out ninth run for

http://jgillenw.com/conl12013-talk.pdf

@ Useful for “out of vocabulary” words (words that don't appear in labeled data).
o Has been replaced in recent by continuous word representations like word2vec.


http://jgillenw.com/conll2013-talk.pdf
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