CPSC 440: Advanced Machine Learning Learning Graphical Models

Mark Schmidt

University of British Columbia

Winter 2022

Last Time: D-Separation

- D-separation can be used to "read" conditional independence from graph.
 - Can be derived by considering DAG as "inheritance of genes".
- 3 Cases that can "block" a path between nodes:

- Case 1: Observing a variable in a "chain" blocks a path.
- Case 2: Observing a parent in a "fork" blocks a path.
- Case 3: Not observing a child in a "v-structure" blocks a path.
 - We say that variables are "d-separated" if every path between them is blocked.

Discussion of D-Separation

- Last time we discussed equivalent graphs (same independent assumptions).
- We also discussed how extra independence assumptions may not appear in graph.
- So the graph is not necessarily unique and is not the whole story.
- But, we can do a lot with d-separation:
 - Implies every independence/conditional-independence we've used in 340/440.
 - Except for multivariate Gaussians, which are undirected graphical models.
- Requires using DAGs to represent relationships between data and parameters.
 - This allows us to see and reason about their relationships.

Tilde Notation as a DAG

• When we write

$$y^i \sim \mathcal{N}(w^T x^i, 1),$$

this can be interpretd as a DAG model:

- ullet "The variables on the right of \sim are the parents of the variables on the left".
 - We can see our standard $X \perp w$ assumption in the graph.
 - Common child case: w only depends on X if we know y.

IID Assumption as a DAG

• During week 1, our first independence assumption was the IID assumption:

- Training/test examples come independently from data-generating process D.
- But D is unobserved, so knowing about some x^i tells us about the others.
 - This why the IID assumptions lets us learn.

Plate Notation

• Graphical representation of the IID assumption:

• It's common to represent repeated parts of graphs using plate notation:

Tilde Notation as a DAG

 $\bullet\,$ If the x^i are IID then we can represent linear regression as

From d-separation on this graph we have p(y | X, w) = ∏ⁿ_{i=1} p(yⁱ | xⁱ, w).
 Our standard assumption that data is independent given parameters.

or

- We often omit the data-generating distribution *D*.
 - But if you want to learn then you should remember that it's there.
- Note that plate reflects parameter tieing: that we use same w for all i.

IID Bernoulli-Beta Model

• The Bernoulli-beta model as a DAG (with parameters and hyper-parameters):

- Notice data is independent of hyper-parameters given parameters.
 - This is another of our standard independence assumptions.

Plate Notation

Non-IID Bernoulli-Beta Model

• The non-IID variant we considered with grouped data:

- DAG reflects that we do not tie parameters across all training examples.
- Notice that if you fix α and β then you can't learn across groups:
 - The θ_j are d-separated given α and β .

Non-IID Bernoulli-Beta Model

• Variant of the previous model with a hyper-hyper-parameter:

• Which is needed to avoid degeneracy.

Bayesian Linear Regression as a DAG

• In Bayesian linear regression we assume

$$y^i \sim \mathcal{N}(w^T x^i, 1), \quad w_j \sim \mathcal{N}(0, 1/\lambda),$$

which we can interpret it as the DAG model:

• Or introducing a second plate over parmaeters:

Plate Notation

2 Graphical Model Learning and Inference

Density Estimators vs. Relationship Visualizers

- Besides dependency visualization, we can use DAGs as density estimators.
- Recall that DAGs model joint distribution using

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j \mid x_{\mathsf{pa}(j)}).$$

- We need to choose a parameterization for these conditional probabilities:
 - Tabular parameterization (discrete x_j): can model any joint probability.
 - Common choice, sometimes setting parameters using expert knowledge.
 - Gaussian (continuous x_j): $x_j \sim \mathcal{N}(\bar{w^T}x_{\mathsf{pa}(j)}, \sigma^2)$.
 - Called a Gaussian belief net. Jointdistribution becomes a multivariate Gaussian.
 - Sigmoid (binary $x_j \in \{-1, +1\}$): $p(x_j \mid x_{j-1}, w) = 1/1 + \exp(-x_j w^T x_{\mathsf{pa}(j)})$.
 - Called a sigmoid belief net.
 - Could use softmax, probabilistic random forest, neural network, and so on.
 - Our tricks for probabilistic supervised learning can be used for unsuperivsed learning.

Tabular Parameterization Example

Some companies sell software to help companies reason using tabular DAGs:

http://www.hugin.com/index.php/technology

DAG Learning and Sampling

- For j = 1 : d:
 Set y
 ⁱ = xⁱ_j and x
 ⁱ = xⁱ_{pa(j)}.
 Solve a supervised learning problem using {X, y}.
 Gives you a model of p(x_j | x_{pa(j)}).
- Can sample from DAGs using ancestral sampling:
 - Sample x_1 from $p(x_1)$.
 - Sample x_2 from $p(x_2 \mid x_{pa(2)})$.
 - Sample x_3 from $p(x_3 \mid x_{pa(3)})$.
 - Until we have sampled x_d .
- This allows us to do inference with Monte Carlo methods.
 - Conditional sampling can be hard, may need rejection sampling for conditionals.

MNIST Digits with Tabular DAG Model

• Recall our latest MNIST model using a tabular DAG:

• This model is pretty bad because you only see 8 parents.

MNIST Digits with Sigmoid Belief Network

• Samples from sigmoid belief network:

(DAG with logistic regression for each variable)

where we use all previous pixels as parents (from 0 to 783 parents).

• Models long-range dependencies but has a linear assumption.

Exact Inference in DAGs?

- Can we do exact inference in DAGs like in Markov chains?
- Continuous-state Gaussian DAGs:
 - Special case of multvariate Gaussian, so inference is tractable.
 - Most operations are O(d) or $O(d^3)$.
- Continuous-state non-Gaussian DAGs:
 - Inference usually not closed-form, so need Monte Carlo or variational inference.
 - If parents are conjugate, then Gibbs sampling is easy to implement.
- Discrete-state DAGs (whether tabular or sigmoid or other):
 - Inference takes exponential-time in the "treewidth" of the graph.
 - Exact inference is cheap in trees and forests, which have a treewidth of 1.
 - Low-treewidth graphs allow efficient exact inference, otherwise need approximations.

Inference in Forest DAGs ("Belief Propagation")

• Graphs with at most one parent per node are called trees (connected).

- Also called "singly-connected" or forests (if disconnected).
- We can generalize the CK equations to trees/forests:

$$p(x_j = s) = \sum_{x_{\mathsf{pa}(j)}} p(x_j = s, x_{\mathsf{pa}(j)}) = \sum_{x_{\mathsf{pa}(j)}} \underbrace{p(x_j = s \mid x_{\mathsf{pa}(j)})}_{\text{given}} p(x_{\mathsf{pa}(j)}).$$

- Trees/forests allow efficient dynamic programming methods as in Markov chains.
 - In particular, decoding and univariate marginals/conditionals in $O(dk^2)$.
 - Forward-backward applied to tree-structured graphs is called belief propagation.
 - It also possible to find optimal tree given data ("structure learning").

Undirected Graphical Models (UGMs)

- Undirected graphical models (UGMs) are another popular graphical model class.
 - UGMs are also known as Markov random fields.
- UGMs define joint distribution in terms of non-negative potential functions,

$$p(x_1, x_2, \ldots, x_d) \propto \prod_{c \in \mathcal{C}} \phi_c(x_c).$$

- Define potential ϕ_c for each set c where we want to model a direct relationship.
- The most common choice is a pairwise UGM,

$$p(x_1, x_2, \dots, x_d) \propto \left(\prod_{j=1}^d \phi_j(x_j)\right) \left(\prod_{(i,j)\in\mathcal{E}} \psi_{ij}(x_i, x_j)\right)$$

which only has potentials on single variables (ϕ) and pairs of variables (ψ). • The "edge potentials" ψ are defined on edge of an undirected graph \mathcal{E} .

Pairwise Undirected Graphical Models

• Pairwise undirected graphical models factorize probability using

$$p(x_1, x_2, \dots, x_d) \propto \left(\prod_{j=1}^d \phi_j(x_j)\right) \left(\prod_{(i,j)\in\mathcal{E}} \psi_{ij}(x_i, x_j)\right)$$

- Special cases:
 - $\bullet\,$ Markov chains are the special case ${\cal E}$ only has edges between adjacent nodes.
 - $\bullet\,$ Multivaiate Gaussian corresponds to specific choice of the ϕ and ψ functions.
 - Gaussians AKA "Gaussian graphical models" or "Gaussian Markov random fields".
 - Ising model for binary x_j uses

$$\phi_j(x_j) = \exp(x_i w_i), \quad \phi_{ij}(x_i, x_j) = \exp(x_i x_j w_{ij}),$$

where w_i is the node weight and w_{ij} is the edge weight.

- If $w_{ij} > 0$ it encourages neighbours to have same value ("attractive").
- If $w_{ij} < 0$ it encourages neighbours to have different values ("repulsive").

Conditional Independence in UGMs

- UGM independence properties described by an undirected graph.
 - $\bullet\,$ For pairwise UGMs, the edges are given by the set of edges ${\cal E}.$

- Constructing graph when you may have 3-variable or higher-order potentials:
 - Graph has edge (i, j) if i and j are together in at least one c.
- So these two factorizations have the same graph:

 $p(x_1.x_2, x_3) \propto \phi_{12}(x_1, x_2)\phi_{13}(x_1, x_3)\phi_{23}(x_2, x_3), \quad p(x_1, x_2, x_3) \propto \phi_{123}(x_1, x_3, x_3).$

- UGM implies $A \perp B \mid C$ if C separates all nodes in A from all nodes in B.
 - Same rule as a Gaussians.

DAGs vs. UGMs

- Neither DAGs or UGMs are "more powerful" than the other.
 - Any distribution can be re-written as a DAG or UGM.
 - But may need to use a highly-connected graph.
- Set of independences in DAG cannot always be written as UGM (and vice versa).
 - UGMs cannot reflect independences in common child graph: $(x) \rightarrow (y) \leftarrow (z)$.
 - DAGs cannot reflect independences in 4-node loop: (x) (y) (z) (x).
 - Independences representable as both DAGs and UGMs are called decomposable.
 - An example is Markov chains: independences are same in DAG and UGM graphs.
- DAGs are often used when it makes sense to work with conditionals, or we have an idea of causal directions.
- UGMs are often used when there are no obvious directions (like MNIST), and are more-often used when we want to add features to do supervised learning.

Tractability of UGMs

• Without using \propto , a UGM probability would be

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

where Z is the constant that makes the probabilites sum up to 1.

$$Z = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_d} \prod_{c \in \mathcal{C}} \phi_c(x_c) \quad \text{or} \quad Z = \int_{x_1} \int_{x_2} \cdots \int_{x_d} \prod_{c \in \mathcal{C}} \phi_c(x_c) dx_d dx_{d-1} \dots dx_1.$$

• Whether you can compute Z (and do inference) depends on the choice of the ϕ_c :

- Gaussian case: $O(d^3)$ in general, but O(d) for forests (no loops).
- Continuous non-Gaussian: usually requires approximate inference.
- Discrete case: #P-hard in general, but $O(dk^2)$ for forests (no loops).

Discrete DAGs vs. Discrete UGMs

- Common inference tasks in graphical models:
 - Compute p(x) for an assignment to the variables x.
 - **2** Generate a sample x from the distribution.
 - **③** Compute univariate marginals $p(x_j)$.
 - Compute decoding $\operatorname{argmax}_{x} p(x)$.
 - **(**) Compute univariate conditional $p(x_j | x_{j'})$.
- With discrete x_i , all of the above are easy in tree-structured graphs.
 - For DAGs, a tree-structured graph has at most one parent.
 - For UGMs, a tree-structured graph has no cycles.
- With discrete x_i , the above may be harder for general graphs:
 - In DAGs the first two are easy, the others are NP-hard.
 - In UGMs all of these are NP-hard.

Bonus Slides on Inference in UGMs

• I am not planning to go into details on inference in graphical models.

- I put all my slides on the topic available here:
 - https://www.cs.ubc.ca/~schmidtm/Courses/440-W22/L31.5.pdf
- Covers topics such as:
 - $\bullet\,$ Inference in non-tree DAGs/UGMs.
 - Learning the graph structure.
 - Writing Gaussians as pairwise UGMs.
 - Treewidth of graphs, and efficient inference with low treewidth.
 - Exact decoding for binary attractive models using graph cuts.
 - ICM and alpha-expansion algorithms for approximate decoding.
 - Block Gibbs sampling in UGMs (UGMs are what Gibbs sampling was invented for).

Summary

- Independence assumptions about data and parameters can be written as DAGs.
- Plate Notation lets us compactly draw graphs with repeated patterns.
 - There are fancier versions of plate notation called "probabilistic programming".
- Parameter learning in DAGs:
 - Can fit each $p(x_j \mid x_{\mathsf{pa}(j)})$ independently.
 - Tabular parameterization, or treat as supervised learning.
- Sampling in DAGs is easy (ancestral sampling).
- Exact inference in discrete DAGs is easy for trees.
 - But becomes exponential in "treewidth" of graph.
- Undirected graphical models factorize probability into non-negative potentials.
 - Gaussians are a special case, but can place potentials on any subset of variables.
 - Inference is again exponential in "treewidth" of graph.
- Next time: adding graphical models to neural networks.

Naive Bayes with DAGs/Plates

• For naive Bayes we have

• Or in plate notation as

Does Semi-Supervised Learning Make Sense?

- Should unlabeled examples always help supervised learning?
 - No!
- Consider choosing unlabeled features \bar{x}^i uniformly at random.
 - Unlabeled examples collected in this way will not help.
 - By construction, distribution of \bar{x}^i says nothing about \bar{y}^i .
- Example where SSL is not possible:
 - Try to detect food allergy by trying random combinations of food:
 - The actual random process isn't important, as long as it isn't affected by labels.
 - You can sample an infinite number of $ar{x}^i$ values, but they says nothing about labels.
- Example where SSL is possible:
 - Trying to classify images as "cat" vs. "dog.:
 - Unlabeled data would need to be images of cats or dogs (not random images).
 - Unlabeled data contains information about what images of cats and dogs look like.
 - For example, there could be clusters or manifolds in the unlabeled images.

Does Semi-Supervised Learning Make Sense?

• Let's assume our semi-supervised learning model is represented by this DAG:

- Assume we observe $\{X, y, \overline{X}\}$ and are interested in test labels \tilde{y} :
 - There is a dependency between y and \tilde{y} because of path through w.
 - $\bullet\,$ Parameter w is tied between training and test distributions.
 - There is a dependency between X and \tilde{y} because of path through w (given y).
 - But note that there is also a second path through D and \tilde{X} .
 - There is a dependency between \bar{X} and \tilde{y} because of path through D and \bar{X} .
 - Unlabeled data helps because it tells us about data-generating distribution D.

Does Semi-Supervised Learning Make Sense?

• Now consider generating \bar{X} independent of D:

- Assume we observe $\{X, y, \overline{X}\}$ and are interested in test labels \tilde{y} :
 - $\bullet\,$ Knowing X and y are useful for the same reasons as before.
 - But knowing \bar{X} is not useful:
 - Without knowing \bar{y} , \bar{X} is *d*-separated from \tilde{y} (no dependence).

Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Some quantities can be directly read from the tables:

p(R = 1) = 0.2. $p(G = 1 \mid S = 0, R = 1) = 0.8.$

Can calculate any probabilities using marginalization/product-rule/Bayes-rule (bonus).

Tabular Parameterization Example

Can calculate any probabilities using marginalization/product-rule/Bayes-rule, for example:

$$p(G = 1 | R = 1) = p(G = 1, S = 0 | R = 1) + p(G = 1, S = 1 | R = 1) \quad \left(p(a | c) = \sum_{b} p(a, b | c) \right)$$
$$= p(G = 1 | S = 0, R = 1)p(S = 0 | R = 1) + p(G = 1 | S = 1, R = 1)p(S = 1 | R = 1)$$
$$= 0.8(0.99) + 0.99(0.01) = 0.81.$$

Dynamic Bayesian Networks

- Dynamic Bayesian networks combine ideas from DAGs and Markov chains:
 - At each time, we have a set of variables x^t .
 - The initial x^0 comes from an "initial" DAG.
 - Given x^{t-1} , we generate x^t from a "transition" DAG.

Figure 1: (a) A prior network and transition network defining a DPN for the attributes X_1 , X_2 , X_3 . (b) The corresponding "unrolled" network.

https://www.cs.ubc.ca/~murphyk/Papers/dbnsem_uai98.pdf

- Can be used to model multiple variables over time.
 - Unconditional sampling is easy but inference may be hard.