
DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

CPSC 440: Advanced Machine Learning
Inference in Graphical Models

Mark Schmidt

University of British Columbia

Winter 2022

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Inference in General DAGs

If we try to generalize the CK equations to DAGs we obtain

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s | xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

What goes wrong if nodes have multiple parents?
The expression p(xpa(j)) is a joint distribution depending on multiple variables.

Consider the non-tree graph:

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Inference in General DAGs
We can compute p(x4) in this non-tree using:

p(x4) =
∑
x3

∑
x2

∑
x1

p(x1, x2, x3, x4)

=
∑
x3

∑
x2

∑
x1

p(x4 | x2, x3)p(x3 | x1)p(x2 | x1)p(x1)

=
∑
x3

∑
x2

p(x4 | x2, x3)
∑
x1

p(x3 | x1)p(x2 | x1)p(x1)︸ ︷︷ ︸
M23(x2,x3)

Dependencies between {x1, x2, x3} mean our message depends on two variables.

p(x4) =
∑
x3

∑
x2

p(x4 | x2, x3)M23(x2, x3)

=
∑
x3

M34(x3, x4),

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Inference in General DAGs

With 2-variable messages, our cost increases to O(dk3).

If we add the edge x1− > x4, then the cost is O(dk4).
(the same cost as enumerating all possible assignments)

Unfortunately, cost is not as simple as counting number of parents.

Even if each node has 2 parents, we may need huge messages.
Decoding is NP-hard and computing marginals is #P-hard in general.

We’ll see later that maximum message size is “treewidth” of a particular graph.

On the other hand, ancestral sampling is easy:

We can obtain Monte Carlo estimates of solutions to these NP-hard problems.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Conditional Sampling in DAGs
What about conditional sampling in DAGs?

Could be easy or hard depending on what we condition on.
For example, easy if we condition on the first variables in the order:

Just fix these and run ancestral sampling.

Hard to condition on the last variables in the order:
Conditioning on descendent makes ancestors dependent.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Outline

1 DAG Inference

2 Structure Learning

3 More UGMs

4 Treewidth

5 ICM

6 Block Inference

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

DAG Structure Learning

Structure learning is the problem of choosing the graph.

Input is data X.
Output is a graph G.

The “easy” case is when we’re given the ordering of the variables.

So the parents of j must be chosen from {1, 2, . . . , j − 1}.

Given the ordering, structure learning reduces to feature selection:

Select features {x1, x2, . . . , xj−1} that best predict “label” xj .
We can use any feature selection method to solve these d problems.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Example: Structure Learning in Rain Data Given Ordering
Structure learning in rain data using L1-regularized logistic regression.

For different λ values, assuming chronological ordering.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

DAG Structure Learning without an Ordering

Without an ordering, a common approach is “search and score”

Define a score for a particular graph structure (like BIC or other L0-regularizers).
Search through the space of possible DAGs.

“DAG-Search”: at each step greedily add, remove, or reverse an edge.

May have equivalent graphs with the same score (don’t trust edge direction).

Do not interpret causally a graph learned from data.

Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
For symmetric scores, can be found by minimum spanning tree (“Chow-Liu”).

Score is symmetric if score(xj → xj′) is the same as score(xj′ → xj).

For asymetric scores, can be found by minimum spanning arborescence.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Structure Learning on USPS Digits
An optimal tree on USPS digits (16 by 16 images of digits).

1,1

2,11,2

2,2

1,3

2,3

1,4

2,4

1,5

2,5

1,6

2,61,7

2,7

1,8

2,8

1,9

2,9

1,10

2,10

1,11

2,11 1,12

2,121,13

2,131,14

2,14

1,15

2,15 2,16

1,16

3,2 3,3 3,4 3,5

3,6

3,8 3,9 3,10 3,11

3,12

3,143,153,16

3,1

4,1 4,2 4,3 4,4

3,7 4,5

4,6

4,8 4,9 4,10

4,113,13

4,144,15

5,1 5,2 5,3

5,4

5,5

4,7

5,8 5,9

4,12

5,11

4,13

5,13

5,144,16

5,16

6,1 6,2 6,3

6,45,6

6,56,6

5,7

6,76,8 6,9

5,10

6,10 6,11

5,12

6,12 6,13

5,15

6,15

7,1 7,2 7,3

7,4

7,5 7,67,77,8 7,9 7,10 7,11 7,12

6,14

7,14

6,16

7,15

8,1 8,2 8,3

8,4

8,5 8,68,78,8 8,9 8,10 8,11

7,13

8,128,13

8,148,15

7,16

9,1 9,2 9,3

9,4

9,59,79,8 9,9 9,10

9,119,12

9,149,15

8,16

10,1 10,2 10,3

10,49,6

10,510,610,710,8 10,9

10,1010,11 9,13

10,12 10,1310,1410,15

9,16

10,16

11,1 11,2 11,3

11,4

11,511,6 11,711,8

11,911,10

11,11 11,12 11,1311,1411,1511,16

12,1 12,2 12,3

12,412,5 12,612,7 12,8

12,1212,1312,1412,1512,16

13,1

13,5

12,9

12,10

12,11

13,1213,1313,14

13,2 14,1

13,3

14,3

13,4

13,6

14,513,7

14,6

13,8

13,9

13,10

13,11

14,1314,14

13,15

14,15

13,16

14,2

15,2

15,3 14,4

15,4

15,5 14,7

15,6 15,7

14,8

14,9 15,8

14,10

14,11

14,12

15,1215,13 15,14 14,1615,15

15,1

16,1

16,2

16,3

16,4

16,5 16,6 16,7

16,8

15,9

15,1016,9

15,11 16,10

16,11

16,1216,13 16,14 15,16 16,15

16,16

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

20 Newsgroups Data

Data containing presence of 100 words from newsgroups posts:

car drive files hockey mac league pc win

0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

Structure learning should give some relationship between word occurrences.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Structure Learning on News Words
Optimal tree on newsgroups data:

aids

baseball

hit

bible

bmw

cancer

car

dealer engine honda

card

graphics video

case

children

christian

computercourse

data

disease

disk

drive memory system

display

server

doctor

dos

scsi

driver

earth

god

email

ftp phone

oil

evidence

fact

question

fans

files

format windows

food

msg water

image

games

jesus religion

government

power president rights state war

gun

health

insurance medicine

help hockey

nhl

human

israel

jews

launch

law

league

lunar

mac

mars

patients studies

mission

moon nasa

number

orbit

satellite solar

vitamin

pc

software

players

problem

program

space

puck

research science

seasonshuttle technology

university

team

version

world

win

won

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

“Constraint-Based” DAG Structure Learning

Another common structure learning approach is “constraint-based”:

Based on performing a sequence of conditional independence tests.
Prune edge between xi and xj if you find variables S making them independent,

xi ⊥ xj | xS .

Challenge is considering exponential number of sets xS (heuristic: “PC algorithm”).
Assumes “faithfulness” (all independences are reflected in graph).

Otherwise it’s weird (a duplicated feature would be disconnected from everything.)

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Outline

1 DAG Inference

2 Structure Learning

3 More UGMs

4 Treewidth

5 ICM

6 Block Inference

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Gaussians as Undirected Graphical Models
Multivariate Gaussian can be written as

p(x) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
∝ exp

−1

2
xTΣ−1x+ xT Σ−1µ︸ ︷︷ ︸

v

 ,

and writing it in summation notation we can see that it’s a pairwise UGM:

p(x) ∝ exp(

−1

2

d∑
i=1

d∑
j=1

xixj(Σ
−1)ij +

d∑
i=1

xivi

=

d∏
i=1

d∏
j=1

exp

(
−1

2
xixj(Σ

−1)ij

)
︸ ︷︷ ︸

φij(xi,xj)

 d∏
i=1

exp (xivi)︸ ︷︷ ︸
φi(xi)

Above we include all edges. You can “remove” edges by setting (Σ−1)ij = 0.

“Gaussian graphical model” (GGM) or “Gaussian Markov random field” (GMRF).

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

General Pairwise UGM

For general discrete xi a generalization of Ising models is

p(x1, x2, . . . , xd) =
1

Z
exp

 d∑
i=1

wi,xi +
∑

(i,j)∈E

wi,j,xi,xj

 ,

which can represent any “positive” pairwise UGM (meaning p(x) > 0 for all x).

Interpretation of weights for this UGM:

If wi,1 > wi,2 then we prefer xi = 1 to xi = 2.
If wi,j,1,1 > wi,j,2,2 then we prefer (xi = 1, xj = 1) to (xi = 2, xj = 2).

As before, we can use parameter tieing:

We could use the same wi,xi
for all positions i.

Ising model corresponds to a particular parameter tieing of the wi,j,xi,xj
.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Label Propagation (Graph-Based Semi-Supervised) as a UGM

Consider modeling the probability of a vector of labels ȳ ∈ Rt using

p(ȳ1, ȳ2, . . . , ȳt) ∝ exp

− n∑
i=1

t∑
j=1

wij(y
i − ȳi)2 − 1

2

t∑
i=1

t∑
j=1

w̄ij(ȳ
i − ȳj)2

 .

Decoding in this model is the label propagation problem.

This is a pairwise UGM:

φj(ȳ
j) = exp

(
−

n∑
i=1

wij(y
i − ȳj)2

)
, φij(ȳ

i, ȳj) = exp

(
−1

2
w̄ij(ȳ

i − ȳj)2
)
.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Factor Graphs
Factor graphs are a way to visualize UGMs that distinguishes different orders.

Use circles for variables, squares to represent dependencies.

Factor graph of p(x1, x2, x3) ∝ φ12(x1, x2)φ13(x1, x3)φ23(x2, x3):

Factor graph of p(x1, x2, x3) ∝ φ123(x1, x2, x3):

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Other Graphical Models

Factor graphs: we use a square between variables that appear in same factor.

Can distinguish between a 3-way factor and 3 pairwise factors.

Chain-graphs: DAGs where each block can be a UGM.

Ancestral-graph:

Generalization of DAGs that is closed under conditioning.

Structural equation models (SEMs): generalization of DAGs that allows cycles.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Outline

1 DAG Inference

2 Structure Learning

3 More UGMs

4 Treewidth

5 ICM

6 Block Inference

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Moralization: Converting DAGs to UGMs
To address the NP-hard problems, DAGs and UGMs use same techniques.
We’ll focus on UGMs, but we can convert DAGs to UGMs:

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj |xpa(j)) =

d∏
j=1

φj(xj , xpa(j))︸ ︷︷ ︸
=p(xj | xpa(j))

,

which is a UGM with Z = 1.
Graphically: we drop directions and “marry” parents (moralization).

May no longer see some independences, but doesn’t change computational cost.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Easy Cases: Chains, Trees and Forests
The forward-backward algorithm still works for chain-structured UGMs:

We compute the forward messages M and the backwards messages V .
With both M and V we can [conditionally] decode/marginalize/sample.

Belief propagation generalizes this to trees (undirected graphs with no cycles):
Pick an arbitrary node as the “root”, and order the nodes going away from the root.

Pass messages starting from the “leaves” going towards the root.
“Root” is like the last node in a Markov chain.

Backtrack from root to leaves to do decoding/sampling.
Send messages from the root going to the leaves to compute all marginals.

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Easy Cases: Chains, Trees and Forests
Recall the CK equations in Markov chains:

Mc(xc) =
∑
xp

p(xc | xp)Mp(xp).

For chain-structure UGMs we would have:

Mc(xc) ∝
∑
xp

φ(xp)φ(xp, xc)Mp(xp).

In tree-structured UGMs, parent p in the ordering may have multiple parents.
Message coming from “neighbour” i that itself has neighbours j and k would be

Mic(xc) ∝
∑
xi

φi(xi)φic(xi, xc)Mji(xi)Mki(xi),

Univariate marginals are proportional to φi(xi) times all “incoming” messages.
The“forward” and “backward” Markov chain messages are a special case.
Replace

∑
xi

with maxxi
for decoding.

“Sum-product” and “max-product” algorithms.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Exact Inference in UGMs
For general graphs, the cost of message passing depends on

1 Graph structure.
2 Variable order.

To see the effect of the order, consider Markov chain inference with bad ordering:

p(x5) =
∑
x5

∑
x4

∑
x3

∑
x2

∑
x1

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)

=
∑
x5

∑
x1

∑
x4

∑
x3

∑
x2

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)

=
∑
x5

∑
x1

p(x1)
∑
x3

∑
x4

p(x4 | x3)p(x5 | x4)
∑
x2

p(x2 | x1)p(x3 | x2)︸ ︷︷ ︸
M13(x1,x3)

So even though we have a chain, we have an M with k2 values instead of k.
Increases cost to O(dk3) instead of O(dk2).
Inference can be exponentially more expensive with the wrong ordering.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Exact Inference in UGMs
For general graphs, the cost of message passing depends on

1 Graph structure.
2 Variable order.

As a non-tree example, consider computing Z in a simple 4-node cycle:

Z =
∑
x4

∑
x3

∑
x2

∑
x1

φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ14(x1, x4)

=
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)
∑
x1

φ12(x1, x2)φ14(x1, x4)

=
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)M24(x2, x4)

=
∑
x4

∑
x3

φ34(x3, x4)M34(x3, x4) =
∑
x4

M4(x4).

We again have an M with k2 values instead of k.
We can do inference tasks with this graph, but it costs O(dk3) instead of O(dk2).

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Variable Order and Treewidth

Cost of message passing in general graphs is given by O(dkω+1).

Here, ω is the number of dimensions of the largest message.
For trees, ω = 1 so we get our usual cost of O(dk2).

The minimum value of ω across orderings for a given graph is called treewidth.
In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.

Also called “graph dimension” or “ω-tree”.

Intuitively, you can think of low treewidth as being “close to a tree”.

Trees have a treewidth of 1, and a single loop has a treewidth of 2.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Treewidth Examples

Examples of k-trees:

2-tree and 3-tree are trees if you use dotted circles to group nodes.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Treewidth Examples

Trees have ω = 1, so with the right order inference costs O(dk2).

A big loop has ω = 2, so cost with the right ordering is O(dk3).

The below grid-like structure has ω = 3, so cost is O(dk4).

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Variable Order and Treewidth

Junction trees generalize belief propagation to general graphs (requires ordering).
This is the algorithm that achieves the O(dkω+1) runtime.

Computing ω and the optimal ordering is NP-hard.
But various heuristic ordering methods exist.

An m1 by m2 lattice has ω = min{m1,m2}.
So you can do exact inference on “wide chains” with Junction tree.
But for 28 by 28 MNIST digits it would cost O(784 · 229).

Some links if you want to read about treewidth:
https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf

https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf

For some graphs ω = (d− 1) so there is no gain over brute-force enumeration.
Many graphs have high treewidth so we need approximate inference.

https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf
https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Outline

1 DAG Inference

2 Structure Learning

3 More UGMs

4 Treewidth

5 ICM

6 Block Inference

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Iterated Conditional Mode (ICM)

The iterated conditional mode (ICM) algorithm for approximate decoding:

On each iteration k, choose a variable jt.
Maximie the joint probability in terms of xjt (with other variables fixed),

xt+1
j ∈ argmax

c
p(xt1, . . . , x

t
j−1, xj = c, xtj+1, . . . , x

t
d).

Equivalently, iterations correspond to finding mode of conditional p(xj | xt−j),

xt+1
j ∈ argmax

c
p(xj = c | xt−j),

where x−j means “xi for all i except xj”: x1, x2, . . . , xj−1, xj+1, . . . , xd.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

ICM in Action

Start with some initial value: x0 =
[
2 2 3 1

]
.

Select random j like j = 3.

Set j to maximize p(x3 | x0−3): x1 =
[
2 2 1 1

]
.

Select random j like j = 1.

Set j to maximize p(x1 | x1−1): x2 =
[
3 2 1 1

]
.

Select random j like j = 2.

Set j to maximize p(x2 | x2−2): x3 =
[
3 2 1 1

]
.

. . .

Repeat until you can no longer improve by single-variable changes.

Intead of random, could cycle through the variables in order.
Or you could greedily choose the variable that increases the probability the most.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Optimality and Globalization of ICM

Does ICM find the global optimum?

Decoding is usually non-convex, so doesn’t find global optimum.

ICM is an approximate decoding method.

There exist many globalization methods that can improve its performance:

Restarting with random initializations.
Global optimization methods:

Simulated annealing, genetic algorithms, ant colony optimization, GRASP, etc.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Using the Unnormalized Objective
How can you maximize p(x) in terms of xj if evaluating it is NP-hard?

Let’s define the unnormalized probability p̃ as

p̃(x) =
∏
c∈C

φc(xc).

So the normalized probability is given by

p(x) =
p̃(x)

Z
.

In UGMs evaluating Z is hard but evaluating p̃(x) is easy.

And for decoding we only need unnormalized probabilities,

argmax
x

p(x) ≡ argmax
x

p̃(x)

Z
≡ argmax

x
p̃(x),

so we can decode based on p̃ without knowing Z.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

ICM Iteration Cost

How much does ICM cost?

Consider a pairwise UGM,

p̃(x) =

 d∏
j=1

φj(xj)

 ∏
(i,j)∈E

φij(xi, xj)

 .

Each ICM update would:
1 Set Mj(xj = s) to product of terms in p̃(x) involving xj , with xj set to s.
2 Set xj to the largest value of Mj(xj).

The variable xj has k values and appears in at most d factors here.
You can compute the k values of these d factors in O(dk) to find the largest.
If you only have m nodes in “Markov blanket”, this reduces to O(mk).

We will define “Markov blanket” in a couple slides.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

ICM in Action
Consider using a UGM for binary image denoising:

We have

Unary potentials φj for each position.
Pairwise potentials φij for neighbours on grid.
Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Digression: Closure of UGMs under Conditioning

UGMs are closed under conditioning:

If p(x) is a UGM, then p(xA | xB) can be written as a UGM (for partition A and B).

Conditioning on x2 and x3 in a chain,

gives a UGM defined on x1 and x4 that is disconnected:

Graphically, we “erase the black nodes and their edges”.

Notice that inference in the conditional UGM may be mucher easier.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Digression: Closure of UGMs under Conditioning

Mathematically, a 4-node pairwise UGM with a chain structure assumes

p(x1, x2, x3, x4) ∝ φ1(x1)φ2(x2)φ3(x3)φ4(x4)φ12(x1, x2)φ23(x2, x3)φ34(x3, x4).

Conditioning on x2 and x3 gives UGM over x1 and x4.

p(x1, x4 | x2, x3) =
1

Z ′
φ′1(x1)φ

′
4(x4),

where new potentials “absorb” the shared potentials with observed nodes:

φ′1(x1) = φ1(x1)φ12(x1, x2), φ′4(x4) = φ4(x4)φ34(x3, x4).

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Conditioning in UGMs

Conditioning on x2 and x3 in 4-node chain-UGM gives

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Simpler Inference in Conditional UGMs

Consider the following graph which could describe bus stops:

If we condition on the “hubs”, the graph forms a forest (and inference is easy).
Simpler inference after conditioning is used by many approximate inference methods.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Digression: Local Markov Property and Markov Blanket

Approximate inference methods often use conditional p(xj | x−j),

where xk−j means “xki for all i except xkj ”: xk1 , x
k
2 , . . . , x

k
j−1, x

k
j+1, . . . , x

k
d.

In UGMs, the conditional simplifies due to conditional independence,

p(xj | x−j) = p(xj | xnei(j)),

this local Markov property means conditional only depends on neighbours.

We say that the neighbours of xj are its “Markov blanket”.

Markov blanket is the set nodes that make you independent of all other nodes.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Digression: Local Markov Property and Markov Blanket

In UGMs the Markov blanket is the neighbours.

Markov blanket in DAGs: parents, children, co-parents (parents of same children):

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Outline

1 DAG Inference

2 Structure Learning

3 More UGMs

4 Treewidth

5 ICM

6 Block Inference

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Block-Structured Approximate Inference

Basic approximate inference methods like ICM and Gibb sampling:

Update one xj at a time.
Efficient because conditional UGM is 1 node.

Better approximate inference methods use block updates:

Update a block of xj values at once.
Efficient if conditional UGM allows exact inference.

If we choose the blocks cleverly, this works substantially better.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Block-Structured Approximate Inference

Consider a lattice-structure and the following two blocks (“red-black ordering”):

Given black nodes, conditional UGM on red nodes is a disconnected graph.
“I can optimally update the red nodes given the black nodes” (and vice versa).

You update d/2 nodes at once for cost of this is O(dk), and easy to parallelize.

Minimum number of blocks to disconnect the graph is graph colouring.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Block-Structured Approximate Inference

We could also consider general forest-structured blocks:

We can still optimally update the black nodes given the gray nodes in O(dk2).

This works much better than “one at a time”.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Block Gibbs Sampling in Action

Gibbs vs. tree-structured block-Gibbs samples:

With block sampling, the samples are far less correlated.

We can also do tree-structured block ICM.

Harder to get stuck if you get to update entire trees.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Block-Structured Approximate Inference

Or we could define a new tree-structured block on each iteration:

The above block updates around two thirds of the nodes optimally.
(Here we’re updating the black nodes.)

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Block ICM Based on Graph Cuts

Consider a binary pairwise UGM with “attractive” potentials,

log φij(1, 1) + log φij(2, 2) ≥ log φij(1, 2) + log φij(2, 1).

In words: “neighbours prefer to have similar states”.

In this setting exact decoding can be formulated as a max-flow/min-cut problem.

Can be solved in polynomial time.

This is widely-used computer vision:

Want neighbouring pixels/super-pixels/regions to be more likely to get same label.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Graph Cut Example: “GrabCut”

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

1 User draws a box around the object they want to segment.
2 Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
3 Construct a pairwise UGM using:

φi(xi) set to GMM probability of pixel i being in class xi.
φij(xi, xj) set to Ising potential times RBF based on spatial/colour distance.

Use wij > 0 so the model is “attractive”.

4 Perform exact decoding in the binary attractive model using graph cuts.

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Graph Cut Example: “GrabCut”
GrabCut with extra user interaction:

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

If we have more than 2 states, we can’t use graph cuts.

Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log φij(α, α) + log φij(β, β) ≥ log φij(α, β) + log φij(β, α).

Each step choose an α and β, optimally “swaps” labels among these nodes.

Alpha-expansions are another variation based on a slightly stronger assumption,

log φij(α, α) + log φij(β1, β2) ≥ log φij(α, β1) + log φij(β2, α).

Steps choose label α, and consider replacing the label of any node not labeled α.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

These don’t find global optima in general, but make huge moves:

A somewhat-related MCMC method is the Swendson-Wang algorithm.

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Example: Photomontage

Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

Here, xi corresponds to identity of original image at position i.

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

DAG Inference Structure Learning More UGMs Treewidth ICM Block Inference

Example: Photomontage
Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

	DAG Inference
	Structure Learning
	More UGMs
	Treewidth
	ICM
	Block Inference

