

CPSC 440: Advanced Machine Learning Inference in Graphical Models

Mark Schmidt

University of British Columbia

Winter 2022

Treewidt

ICM

Inference in General DAGs

 $\bullet\,$ If we try to generalize the CK equations to DAGs we obtain

$$p(x_j = s) = \sum_{x_{\mathsf{pa}(j)}} p(x_j = s, x_{\mathsf{pa}(j)}) = \sum_{x_{\mathsf{pa}(j)}} \underbrace{p(x_j = s \mid x_{\mathsf{pa}(j)})}_{\text{given}} p(x_{\mathsf{pa}(j)}).$$

- What goes wrong if nodes have multiple parents?
 - The expression $p(x_{pa(j)})$ is a joint distribution depending on multiple variables.
- Consider the non-tree graph:

ICM

Block Inference

Inference in General DAGs

• We can compute $p(x_4)$ in this non-tree using:

$$p(x_4) = \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1, x_2, x_3, x_4)$$

= $\sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_4 \mid x_2, x_3) p(x_3 \mid x_1) p(x_2 \mid x_1) p(x_1)$
= $\sum_{x_3} \sum_{x_2} p(x_4 \mid x_2, x_3) \underbrace{\sum_{x_1} p(x_3 \mid x_1) p(x_2 \mid x_1) p(x_1)}_{M_{23}(x_2, x_3)}$

• Dependencies between $\{x_1, x_2, x_3\}$ mean our message depends on two variables.

$$p(x_4) = \sum_{x_3} \sum_{x_2} p(x_4 \mid x_2, x_3) M_{23}(x_2, x_3)$$
$$= \sum_{x_3} M_{34}(x_3, x_4),$$

Treewidt

ICM

Block Inference

Inference in General DAGs

- With 2-variable messages, our cost increases to $O(dk^3)$.
- If we add the edge $x_1 > x_4$, then the cost is $O(dk^4)$.

(the same cost as enumerating all possible assignments)

- Unfortunately, cost is not as simple as counting number of parents.
 - $\bullet\,$ Even if each node has 2 parents, we may need huge messages.
 - Decoding is NP-hard and computing marginals is #P-hard in general.
 - We'll see later that maximum message size is "treewidth" of a particular graph.
- On the other hand, ancestral sampling is easy:
 - We can obtain Monte Carlo estimates of solutions to these NP-hard problems.

Conditional Sampling in DAGs

- What about conditional sampling in DAGs?
 - Could be easy or hard depending on what we condition on.
- For example, easy if we condition on the first variables in the order:
 - Just fix these and run ancestral sampling.

- Hard to condition on the last variables in the order:
 - Conditioning on descendent makes ancestors dependent.

Structure Learning

More UGMs

Treewidt

ICM

Block Inference

Outline

DAG Inference

2 Structure Learning

3 More UGMs

5 ICM

ICM

DAG Structure Learning

- Structure learning is the problem of choosing the graph.
 - Input is data X.
 - Output is a graph G.
- The "easy" case is when we're given the ordering of the variables.
 - So the parents of j must be chosen from $\{1,2,\ldots,j-1\}.$
- Given the ordering, structure learning reduces to feature selection:
 - Select features $\{x_1, x_2, \ldots, x_{j-1}\}$ that best predict "label" x_j .
 - $\bullet\,$ We can use any feature selection method to solve these d problems.

Example: Structure Learning in Rain Data Given Ordering

• Structure learning in rain data using L1-regularized logistic regression.

 $\bullet\,$ For different λ values, assuming chronological ordering.

DAG Structure Learning without an Ordering

• Without an ordering, a common approach is "search and score"

- Define a score for a particular graph structure (like BIC or other L0-regularizers).
- Search through the space of possible DAGs.
 - "DAG-Search": at each step greedily add, remove, or reverse an edge.
- May have equivalent graphs with the same score (don't trust edge direction).
 - Do not interpret causally a graph learned from data.
- Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
 - For symmetric scores, can be found by minimum spanning tree ("Chow-Liu").
 - Score is symmetric if score $(x_j \to x_{j'})$ is the same as score $(x_{j'} \to x_j)$.
 - For asymetric scores, can be found by minimum spanning arborescence.

Treewidt

Structure Learning on USPS Digits

An optimal tree on USPS digits (16 by 16 images of digits).

Treewid

ICM

Block Inference

20 Newsgroups Data

• Data containing presence of 100 words from newsgroups posts:

car	drive	files	hockey	mac	league	рс	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

• Structure learning should give some relationship between word occurrences.

Treewidt

ICM

Structure Learning on News Words

Optimal tree on newsgroups data:

"Constraint-Based" DAG Structure Learning

- Another common structure learning approach is "constraint-based":
 - Based on performing a sequence of conditional independence tests.
 - Prune edge between x_i and x_j if you find variables S making them independent,

$$x_i \perp x_j \mid x_S.$$

- Challenge is considering exponential number of sets x_S (heuristic: "PC algorithm").
 Assumes "faithfulness" (all independences are reflected in graph).
 - Otherwise it's weird (a duplicated feature would be disconnected from everything.)

Outline

- DAG Inference
- 2 Structure Learning

3 More UGMs

Gaussians as Undirected Graphical Models

• Multivariate Gaussian can be written as

$$p(x) \propto \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) \propto \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \underbrace{\Sigma^{-1}\mu}_v\right),$$

and writing it in summation notation we can see that it's a pairwise UGM:

$$p(x) \propto \exp\left(\left(-\frac{1}{2}\sum_{i=1}^{d}\sum_{j=1}^{d}x_{i}x_{j}(\Sigma^{-1})_{ij} + \sum_{i=1}^{d}x_{i}v_{i}\right)\right)$$
$$= \left(\prod_{i=1}^{d}\prod_{j=1}^{d}\underbrace{\exp\left(-\frac{1}{2}x_{i}x_{j}(\Sigma^{-1})_{ij}\right)}_{\phi_{ij}(x_{i},x_{j})}\right) \left(\prod_{i=1}^{d}\underbrace{\exp\left(x_{i}v_{i}\right)}_{\phi_{i}(x_{i})}\right)$$

• Above we include all edges. You can "remove" edges by setting $(\Sigma^{-1})_{ij} = 0$. • "Gaussian graphical model" (GGM) or "Gaussian Markov random field" (GMRF).

Treewidt

ICM

General Pairwise UGM

• For general discrete x_i a generalization of Ising models is

$$p(x_1, x_2, \dots, x_d) = \frac{1}{Z} \exp\left(\sum_{i=1}^d w_{i,x_i} + \sum_{(i,j)\in E} w_{i,j,x_i,x_j}\right),$$

which can represent any "positive" pairwise UGM (meaning p(x) > 0 for all x).

- Interpretation of weights for this UGM:
 - If $w_{i,1} > w_{i,2}$ then we prefer $x_i = 1$ to $x_i = 2$.
 - If $w_{i,j,1,1} > w_{i,j,2,2}$ then we prefer $(x_i = 1, x_j = 1)$ to $(x_i = 2, x_j = 2)$.
- As before, we can use parameter tieing:
 - We could use the same w_{i,x_i} for all positions *i*.
 - Ising model corresponds to a particular parameter tieing of the w_{i,j,x_i,x_j} .

Label Propagation (Graph-Based Semi-Supervised) as a UGM

ullet Consider modeling the probability of a vector of labels $\bar{y}\in\mathbb{R}^t$ using

$$p(\bar{y}^1, \bar{y}^2, \dots, \bar{y}^t) \propto \exp\left(-\sum_{i=1}^n \sum_{j=1}^t w_{ij}(y^i - \bar{y}^i)^2 - \frac{1}{2} \sum_{i=1}^t \sum_{j=1}^t \bar{w}_{ij}(\bar{y}^i - \bar{y}^j)^2\right).$$

- Decoding in this model is the label propagation problem.
- This is a pairwise UGM:

$$\phi_j(\bar{y}^j) = \exp\left(-\sum_{i=1}^n w_{ij}(y^i - \bar{y}^j)^2\right), \quad \phi_{ij}(\bar{y}^i, \bar{y}^j) = \exp\left(-\frac{1}{2}\bar{w}_{ij}(\bar{y}^i - \bar{y}^j)^2\right).$$

Factor Graphs

• Factor graphs are a way to visualize UGMs that distinguishes different orders.

- Use circles for variables, squares to represent dependencies.
- Factor graph of $p(x_1, x_2, x_3) \propto \phi_{12}(x_1, x_2)\phi_{13}(x_1, x_3)\phi_{23}(x_2, x_3)$:

• Factor graph of $p(x_1, x_2, x_3) \propto \phi_{123}(x_1, x_2, x_3)$:

Other Graphical Models

• Factor graphs: we use a square between variables that appear in same factor.

- Can distinguish between a 3-way factor and 3 pairwise factors.
- Chain-graphs: DAGs where each block can be a UGM.
- Ancestral-graph:
 - Generalization of DAGs that is closed under conditioning.
- Structural equation models (SEMs): generalization of DAGs that allows cycles.

- DAG Inference
- 2 Structure Learning
- 3 More UGMs

Moralization: Converting DAGs to UGMs

- To address the NP-hard problems, DAGs and UGMs use same techniques.
- We'll focus on UGMs, but we can convert DAGs to UGMs:

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j | x_{\mathsf{pa}(j)}) = \prod_{j=1}^d \underbrace{\phi_j(x_j, x_{\mathsf{pa}(j)})}_{=p(x_j | x_{\mathsf{pa}(j)})},$$

which is a UGM with Z = 1.

• Graphically: we drop directions and "marry" parents (moralization).

• May no longer see some independences, but doesn't change computational cost.

Easy Cases: Chains, Trees and Forests

- The forward-backward algorithm still works for chain-structured UGMs:
 - ${\ensuremath{\, \bullet }}$ We compute the forward messages M and the backwards messages V.
 - $\bullet\,$ With both M and V we can [conditionally] decode/marginalize/sample.
- Belief propagation generalizes this to trees (undirected graphs with no cycles):
 - Pick an arbitrary node as the "root", and order the nodes going away from the root.
 - Pass messages starting from the "leaves" going towards the root.
 - "Root" is like the last node in a Markov chain.
 - Backtrack from root to leaves to do decoding/sampling.
 - Send messages from the root going to the leaves to compute all marginals.

https://www.quora.com/

 $\label{eq:probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-defined and the second sec$

Easy Cases: Chains, Trees and Forests

• Recall the CK equations in Markov chains:

$$M_c(x_c) = \sum_{x_p} p(x_c \mid x_p) M_p(x_p).$$

• For chain-structure UGMs we would have:

$$M_c(x_c) \propto \sum_{x_p} \phi(x_p) \phi(x_p, x_c) M_p(x_p).$$

- In tree-structured UGMs, parent p in the ordering may have multiple parents.
- Message coming from "neighbour" i that itself has neighbours j and k would be

$$M_{ic}(x_c) \propto \sum_{x_i} \phi_i(x_i) \phi_{ic}(x_i, x_c) M_{ji}(x_i) M_{ki}(x_i),$$

- Univariate marginals are proportional to $\phi_i(x_i)$ times all "incoming" messages.
 - The "forward" and "backward" Markov chain messages are a special case.
 - Replace \sum_{x_i} with \max_{x_i} for decoding.
 - "Sum-product" and "max-product" algorithms.

Treewidth

ICM

Exact Inference in UGMs

- For general graphs, the cost of message passing depends on
 - Graph structure.
 - ② Variable order.

• To see the effect of the order, consider Markov chain inference with bad ordering:

$$p(x_5) = \sum_{x_5} \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3) p(x_5 \mid x_4)$$

$$= \sum_{x_5} \sum_{x_1} \sum_{x_4} \sum_{x_3} \sum_{x_2} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3) p(x_5 \mid x_4)$$

$$= \sum_{x_5} \sum_{x_1} p(x_1) \sum_{x_3} \sum_{x_4} p(x_4 \mid x_3) p(x_5 \mid x_4) \underbrace{\sum_{x_2} p(x_2 \mid x_1) p(x_3 \mid x_2)}_{M_{13}(x_1, x_3)}$$

• So even though we have a chain, we have an M with k^2 values instead of k.

- Increases cost to $O(dk^3)$ instead of $O(dk^2)$.
- Inference can be exponentially more expensive with the wrong ordering.

Treewidth

ICM

Exact Inference in UGMs

- For general graphs, the cost of message passing depends on
 - Graph structure.
 - ② Variable order.

 $\bullet\,$ As a non-tree example, consider computing Z in a simple 4-node cycle:

$$Z = \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{23}(x_2, x_3) \phi_{34}(x_3, x_4) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) M_{24}(x_2, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) M_{34}(x_3, x_4) = \sum_{x_4} M_4(x_4).$$

• We again have an M with k^2 values instead of k.

• We can do inference tasks with this graph, but it costs $O(dk^3)$ instead of $O(dk^2)$.

Variable Order and Treewidth

- Cost of message passing in general graphs is given by $O(dk^{\omega+1})$.
 - $\bullet\,$ Here, ω is the number of dimensions of the largest message.
 - For trees, $\omega=1$ so we get our usual cost of ${\cal O}(dk^2).$
- The minimum value of ω across orderings for a given graph is called treewidth.
 - In terms of graph: "minimum size of largest clique, minus 1, over all triangulations".
 - Also called "graph dimension" or " $\omega\text{-tree}$.
 - Intuitively, you can think of low treewidth as being "close to a tree".
 - Trees have a treewidth of 1, and a single loop has a treewidth of 2.

Treewidth

ICM

Block Inference

Treewidth Examples

• Examples of k-trees:

• 2-tree and 3-tree are trees if you use dotted circles to group nodes.

Treewidth

Treewidth Examples

• Trees have $\omega = 1$, so with the right order inference costs $O(dk^2)$.

• A big loop has $\omega = 2$, so cost with the right ordering is $O(dk^3)$.

• The below grid-like structure has $\omega = 3$, so cost is $O(dk^4)$.

Variable Order and Treewidth

- Junction trees generalize belief propagation to general graphs (requires ordering).
 - $\bullet\,$ This is the algorithm that achieves the $O(dk^{\omega+1})$ runtime.
- $\bullet\,$ Computing ω and the optimal ordering is NP-hard.
 - But various heuristic ordering methods exist.
- An m_1 by m_2 lattice has $\omega = \min\{m_1, m_2\}$.
 - So you can do exact inference on "wide chains" with Junction tree.
 - But for 28 by 28 MNIST digits it would cost $O(784 \cdot 2^{29})$.
- Some links if you want to read about treewidth:
 - https://www.win.tue.nl/~nikhil/courses/2015/2W008/treewidth-erickson.pdf
 - https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf
- For some graphs $\omega = (d-1)$ so there is no gain over brute-force enumeration.
 - Many graphs have high treewidth so we need approximate inference.

Outline

- 1 DAG Inference
- 2 Structure Learning
- 3 More UGMs

Treewidth

ICM

Iterated Conditional Mode (ICM)

- The iterated conditional mode (ICM) algorithm for approximate decoding:
 - On each iteration k, choose a variable j_t .
 - Maximie the joint probability in terms of x_{j_t} (with other variables fixed),

$$x_j^{t+1} \in \operatorname*{argmax}_c p(x_1^t, \dots, x_{j-1}^t, x_j = c, x_{j+1}^t, \dots, x_d^t).$$

• Equivalently, iterations correspond to finding mode of conditional $p(x_j \mid x_{-j}^t)$,

$$x_j^{t+1} \in \operatorname*{argmax}_c p(x_j = c \mid x_{-j}^t),$$

where x_{-j} means " x_i for all i except x_j ": $x_1, x_2, \ldots, x_{j-1}, x_{j+1}, \ldots, x_d$.

Block Inference

ICM in Action

- Start with some initial value: $x^0 = \begin{bmatrix} 2 & 2 & 3 & 1 \end{bmatrix}$.
- Select random j like j = 3.
- Set j to maximize $p(x_3 \mid x_{-3}^0)$: $x^1 = \begin{bmatrix} 2 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 1.
- Set j to maximize $p(x_1 \mid x_{-1}^1)$: $x^2 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 2.
- Set j to maximize $p(x_2 \mid x_{-2}^2)$: $x^3 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.
- . . .
- Repeat until you can no longer improve by single-variable changes.
 - Intead of random, could cycle through the variables in order.
 - Or you could greedily choose the variable that increases the probability the most.

Optimality and Globalization of ICM

- Does ICM find the global optimum?
- Decoding is usually non-convex, so doesn't find global optimum.
 - ICM is an approximate decoding method.
- There exist many globalization methods that can improve its performance:
 - Restarting with random initializations.
 - Global optimization methods:
 - Simulated annealing, genetic algorithms, ant colony optimization, GRASP, etc.

Treewidt

ICM

Using the Unnormalized Objective

- How can you maximize p(x) in terms of x_j if evaluating it is NP-hard?
- Let's define the unnormalized probability \tilde{p} as

$$\tilde{p}(x) = \prod_{c \in \mathcal{C}} \phi_c(x_c).$$

• So the normalized probability is given by

$$p(x) = \frac{\tilde{p}(x)}{Z}.$$

- In UGMs evaluating Z is hard but evaluating $\tilde{p}(x)$ is easy.
- And for decoding we only need unnormalized probabilities,

$$\mathop{\mathrm{argmax}}_{x} p(x) \equiv \mathop{\mathrm{argmax}}_{x} \frac{\tilde{p}(x)}{Z} \equiv \mathop{\mathrm{argmax}}_{x} \tilde{p}(x),$$

so we can decode based on \tilde{p} without knowing Z.

Treewidt

ICM

ICM Iteration Cost

- How much does ICM cost?
- Consider a pairwise UGM,

$$\tilde{p}(x) = \left(\prod_{j=1}^{d} \phi_j(x_j)\right) \left(\prod_{(i,j)\in E} \phi_{ij}(x_i, x_j)\right).$$

• Each ICM update would:

Set M_j(x_j = s) to product of terms in p̃(x) involving x_j, with x_j set to s.
Set x_j to the largest value of M_j(x_j).

- The variable x_j has k values and appears in at most d factors here.
 - You can compute the k values of these d factors in ${\cal O}(dk)$ to find the largest.
 - If you only have m nodes in "Markov blanket", this reduces to ${\cal O}(mk).$
 - We will define "Markov blanket" in a couple slides.

ICM in Action

Consider using a UGM for binary image denoising:

We have

- Unary potentials ϕ_j for each position.
- Pairwise potentials ϕ_{ij} for neighbours on grid.
- Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).

Digression: Closure of UGMs under Conditioning

- UGMs are closed under conditioning:
 - If p(x) is a UGM, then $p(x_A \mid x_B)$ can be written as a UGM (for partition A and B).
- Conditioning on x_2 and x_3 in a chain,

- Graphically, we "erase the black nodes and their edges".
- Notice that inference in the conditional UGM may be mucher easier.

Digression: Closure of UGMs under Conditioning

• Mathematically, a 4-node pairwise UGM with a chain structure assumes

 $p(x_1, x_2, x_3, x_4) \propto \phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_{12}(x_1, x_2)\phi_{23}(x_2, x_3)\phi_{34}(x_3, x_4).$

• Conditioning on x_2 and x_3 gives UGM over x_1 and x_4 .

$$p(x_1, x_4 \mid x_2, x_3) = \frac{1}{Z'} \phi'_1(x_1) \phi'_4(x_4),$$

where new potentials "absorb" the shared potentials with observed nodes:

$$\phi_1'(x_1) = \phi_1(x_1)\phi_{12}(x_1, x_2), \quad \phi_4'(x_4) = \phi_4(x_4)\phi_{34}(x_3, x_4).$$

Treewidt

ICM

Block Inference

Conditioning in UGMs

 \bullet Conditioning on x_2 and x_3 in 4-node chain-UGM gives

$$p(x_1, x_4 | x_2, x_3) = \frac{p(x_1, x_2, x_3, x_4)}{p(x_2, x_3)}$$

$$= \frac{\frac{1}{Z}\phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_4)}{\sum_{x_1', x_4'} \frac{1}{Z}\phi_1(x_1')\phi_2(x_2)\phi_3(x_3)\phi_4(x_4')\phi_1(x_1', x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_4')}$$

$$= \frac{\frac{1}{Z}\phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_4)}{\frac{1}{Z}\phi_2(x_2)\phi_3(x_3)\phi_2(x_2, x_3)\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')\phi_1(x_1', x_2)\phi_3(x_3, x_4')}$$

$$= \frac{\phi_1(x_1)\phi_4(x_4)\phi_1(x_1, x_2)\phi_3(x_3, x_4)}{\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')\phi_1(x_1', x_2)\phi_3(x_3, x_4')}$$

$$= \frac{\phi_1(x_1)\phi_4(x_4)}{\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')}$$

Treewidt

Simpler Inference in Conditional UGMs

• Consider the following graph which could describe bus stops:

If we condition on the "hubs", the graph forms a forest (and inference is easy).
Simpler inference after conditioning is used by many approximate inference methods.

Digression: Local Markov Property and Markov Blanket

- Approximate inference methods often use conditional p(x_j | x_{-j}),
 where x^k_{-j} means "x^k_i for all i except x^k_j": x^k₁, x^k₂, ..., x^k_{j-1}, x^k_{j+1}, ..., x^k_d.
- In UGMs, the conditional simplifies due to conditional independence,

$$p(x_j \mid x_{-j}) = p(x_j \mid x_{\mathsf{nei}(j)}),$$

this local Markov property means conditional only depends on neighbours.

- We say that the neighbours of x_j are its "Markov blanket".
- Markov blanket is the set nodes that make you independent of all other nodes.

Treewidth

ICM

Digression: Local Markov Property and Markov Blanket

• In UGMs the Markov blanket is the neighbours.

• Markov blanket in DAGs: parents, children, co-parents (parents of same children):

Outline

- 1 DAG Inference
- 2 Structure Learning
- 3 More UGMs

Block-Structured Approximate Inference

• Basic approximate inference methods like ICM and Gibb sampling:

- Update one x_j at a time.
- Efficient because conditional UGM is 1 node.
- Better approximate inference methods use block updates:
 - Update a block of x_j values at once.
 - Efficient if conditional UGM allows exact inference.
- If we choose the blocks cleverly, this works substantially better.

Treewidth

Block-Structured Approximate Inference

• Consider a lattice-structure and the following two blocks ("red-black ordering"):

• Given black nodes, conditional UGM on red nodes is a disconnected graph.

- "I can optimally update the red nodes given the black nodes" (and vice versa).
 - You update d/2 nodes at once for cost of this is O(dk), and easy to parallelize.
- Minimum number of blocks to disconnect the graph is graph colouring.

Treewidtl

ICM

Block-Structured Approximate Inference

• We could also consider general forest-structured blocks:

• We can still optimally update the black nodes given the gray nodes in $O(dk^2)$. • This works much better than "one at a time".

Treewidt

ICM

Block Gibbs Sampling in Action

• Gibbs vs. tree-structured block-Gibbs samples:

Samples from Gibbs sampler

Samples from Block Gibbs sampler

- With block sampling, the samples are far less correlated.
- We can also do tree-structured block ICM.
 - Harder to get stuck if you get to update entire trees.

Treewidth

Block-Structured Approximate Inference

• Or we could define a new tree-structured block on each iteration:

• The above block updates around two thirds of the nodes optimally.

(Here we're updating the black nodes.)

Block ICM Based on Graph Cuts

• Consider a binary pairwise UGM with "attractive" potentials,

 $\log \phi_{ij}(1,1) + \log \phi_{ij}(2,2) \ge \log \phi_{ij}(1,2) + \log \phi_{ij}(2,1).$

- In words: "neighbours prefer to have similar states".
- In this setting exact decoding can be formulated as a max-flow/min-cut problem.
 - Can be solved in polynomial time.
- This is widely-used computer vision:
 - Want neighbouring pixels/super-pixels/regions to be more likely to get same label.

Treewidt

ICM

Graph Cut Example: "GrabCut"

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

- User draws a box around the object they want to segment.
- **②** Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
- Onstruct a pairwise UGM using:
 - $\phi_i(x_i)$ set to GMM probability of pixel *i* being in class x_i .
 - $\phi_{ij}(x_i, x_j)$ set to Ising potential times RBF based on spatial/colour distance.
 - Use $w_{ij} > 0$ so the model is "attractive".
- Perform exact decoding in the binary attractive model using graph cuts.

Treewidth

ICM

Graph Cut Example: "GrabCut"

• GrabCut with extra user interaction:

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

- If we have more than 2 states, we can't use graph cuts.
- Alpha-beta swaps are an approximate decoding method for "pairwise attractive",

 $\log \phi_{ij}(\alpha, \alpha) + \log \phi_{ij}(\beta, \beta) \ge \log \phi_{ij}(\alpha, \beta) + \log \phi_{ij}(\beta, \alpha).$

- $\bullet\,$ Each step choose an α and $\beta,$ optimally "swaps" labels among these nodes.
- Alpha-expansions are another variation based on a slightly stronger assumption, $\log \phi_{ij}(\alpha, \alpha) + \log \phi_{ij}(\beta_1, \beta_2) \ge \log \phi_{ij}(\alpha, \beta_1) + \log \phi_{ij}(\beta_2, \alpha).$
 - Steps choose label α , and consider replacing the label of any node not labeled α .

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

• These don't find global optima in general, but make huge moves:

Figure 1: From left to right: Initial labeling, labeling after $\alpha\beta$ -swap, labeling after α -expansion, labeling after α -expansion β -shrink. The optimal labeling of the α pixels is outlined by a white triangle, and is achieved from the initial labeling by one α -expansion β -shrink move. ex-Swap Move

• A somewhat-related MCMC method is the Swendson-Wang algorithm.

Treewidt

ICM

Block Inference

Example: Photomontage

• Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

• Here, x_i corresponds to identity of original image at position i.

Treewidt

ICM

Block Inference

Example: Photomontage

• Photomontage: combining different photos into one photo:

