CPSC 440: Advanced Machine Learning Directed Acyclic Graphical Models

Mark Schmidt

University of British Columbia

Winter 2022

Last Time: DAG Models

• Directed acyclic graphical (DAG) models write joint probability as

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j \mid x_{\mathsf{pa}(j)}),$$

where pa(j) are the "parents" of feature j.

- Assumes independence of non-parents in 1:(j-1) given parents.
- Markov chains are special case where pa(j) is (j-1).
- "Graphical" name comes from visualizing parents/features as a graph:
 - We have a node for each feature *j*.
 - We place an edge into j from each of its parents.
- This graph is not just a visualization tool:
 - Can be used to test arbitrary conditional independences ("d-separation").
 - Graph structure tells us whether message passing is efficient ("treewidth").

D-Separation

Graph Structure Examples

With product of independent we have

$$p(x) = \prod_{j=1}^{d} p(x_j),$$

so $pa(j) = \emptyset$ and the graph is:

$$(X_1)$$
 (X_2) (X_3) (X_4) (X_7)

D-Separation

Graph Structure Examples

With Markov chain we have

$$p(x) = p(x_1) \prod_{j=2}^{d} p(x_j \mid x_{j-1}),$$

so $pa(j) = \{j - 1\}$ and the graph is:



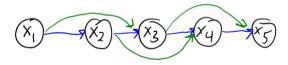
D-Separation

Graph Structure Examples

With second-order Markov chain we have

$$p(x) = p(x_1)p(x_2 \mid x_1) \prod_{j=3}^d p(x_j \mid x_{j-1}, x_{j-2}),$$

so $pa(j) = \{j - 2, j - 1\}$ and the graph is:



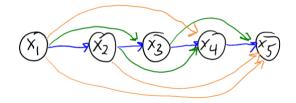
D-Separation

Graph Structure Examples

With general distribution we have

$$p(x) = \prod_{j=1}^{d} p(x_j \mid x_{1:j-1}).$$

so $\mathsf{pa}(j) = \{1, 2, \dots, j-1\}$ and the graph is:

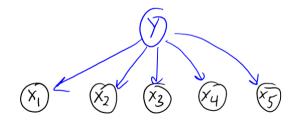


Graph Structure Examples

In naive Bayes (or GDA with diagonal Σ) we add an extra variable y and use

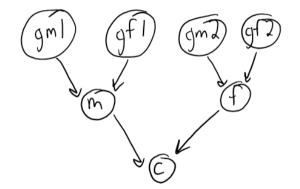
$$p(y,x) = p(y) \prod_{j=1}^{d} p(x_j \mid y),$$

which has $pa(y) = \emptyset$ and $pa(x_j) = y$ giving



Graph Structure Examples

We can consider genetic phylogeny (family trees):



The "parents" in the graph are the actual parents.

• Independence assumption: only depend on grandparent's genes through parents.

First DAG Model

• DAGs were first used to analyze inheritance in guinea pigs:

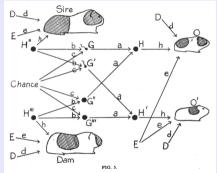


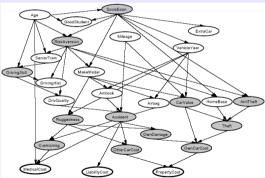
Diagram illustrating the casual relations between litter mates $(0, 0^{-})$ and between each of them and their parents. In H, H^{+}, H^{-}, H^{-} propresent the generic constitutions of the four individuals, G, G', G', and G'' that of four germ cells. E represents such environmental factors as are common to litter mates. D represents other factors, largely ontogenetic irregularity. The small letters stand for the various path coefficients:

https://www.pnas.org/doi/pdf/10.1073/pnas.6.6.320

D-Separation

Example: Vehicle Insurance

• Want to predict bottom three "cost" variables, given observed and unobserved values:

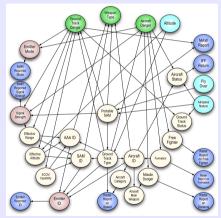


https://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/bayes

D-Separation

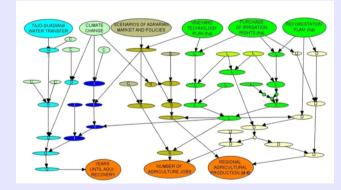
Example: Radar and Aircraft Control

• Modeling multiple planes and radar signals:



Example: Water Resource Management

• Dependencies in environmental monitor and susatainability issues:



https://www.jstor.org/stable/26268156

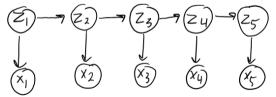
D-Separation

Outline

1 DAG Examples

Density Estimators vs. Relationship Visualizers?

- In Machine learning, DAGs are often used in two different ways:
 - As a multivariate density estimation method.
 - We will talk inference and learning in DAGs next time.
 - As a way to describe the relationships we are modeling.
 - All independence assumptions we have used in 340/440 have DAG representation*.
 - Includes product of Bernoullis and naive Bayes, but also IID and prior vs. hyper-prior.
 - *Except multivariate Gaussians (which can use "undirected" independence).
- For example, later we will talk about hidden Markov models (HMMs):



The graph and variable names already give you an idea of what this model does:
Hidden variables z_j that follow a Markov chain, with feature x_j depend on z_j.

Extra Conditional Independences in Markov Chains

- The Markov assumption in Markov chains is $x_j \perp x_1, x_2, \ldots, x_{j-2} \mid x_{j-1}$ for all j
- But this implies other independences, like $x_j \perp x_1, x_2, \ldots, x_{j-3} \mid x_{j-2}$.
 - We did not assume this directly, it follows from assumptions we made.
 - And we can use this property to easily compute $p(x_j | x_{j-2}, x_{j-3}, \ldots, x_1)$:

$$\begin{split} p(x_j \mid x_{j-2}, x_{j-3}, \dots x_1) &= p(x_j \mid x_{j-2}) \\ &= \sum_{x_{j-1}} p(x_j, x_{j-1} \mid x_{j-2}) \\ &= \sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2}) \\ &= \sum_{x_{j-1}} \underbrace{p(x_j \mid x_{j-1})}_{\text{tran prob}} \underbrace{p(x_{j-1} \mid x_{j-2})}_{\text{tran prob}}. \end{split}$$

- Mathematically showing extra independence assumptions is tedious (see bonus).
- But all conditional independences implied by a DAG can seen in the graph.

D-Separation: From Graphs to Conditional Independence

- In DAGs: variables A and B are conditionally independent given C if:
 - "D-separation blocks all undirected paths in the graph from any variable in A to any variable in B."
- In the special case of product of independent models our graph is:

- Here there are no paths to block, which implies the variables are independent.
- Checking paths in a graph tends to be faster than tedious calculations.

D-Separation as Genetic Inheritance

• The rules of d-separation are intuitive in a simple model of gene inheritance:

- Each node/person has single number, which we'll call a "gene".
- If you have no parents, your gene is a random number.
- If you have parents, your gene is a sum of your parents plus noise.
- For example, think of something like this:

 $\sim N(x_1 + x_2)$

• Graph corresponds to the factorization $p(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3 \mid x_1, x_2)$.

• In this model, does $p(x_1, x_2) = p(x_1)p(x_2)$? (Are x_1 and x_2 independent ?)

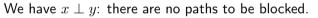
D-Separation as Genetic Inheritance

- Genes of people are independent if knowing one says nothing about the other.
- Your gene is dependent on your parents:
 - If I know your parent's gene, I know something about yours.
- Your gene is independent of your (unrelated) friends:
 - If you know your friend's gene, it doesn't tell me anything about you.
- Genes of people can be conditionally independent given a third person:
 - Knowing your grandparent's gene tells you something about your gene.
 - But grandparent's gene isn't useful if you know parent's gene.

D-Separation Case 0 (No Paths and Direct Links)

Are genes in person x independent of the genes in person y?

• No path: x and y are not related (independent).



• Direct link: x is the parent of y.

We have $x \not\perp y$: knowing x tells you about y (direct paths aren't blockable).

• And similarly knowing y tells you about x.

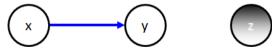
D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

• No path: If x and y are independent,

We have $x \perp y$: adding z doesn't make a path.

• Direct link: x is the parent of y,



We have $x \not\perp y \mid z$: adding z doesn't block path.

- We use **black or shaded** nodes to denote values we condition on (in this case z).
 - We sometimes also call the nodes that we condition on the "observations".

D-Separation Case 1: Chain

- Case 1: x is the grandparent of y.
 - If z is the mother we have:

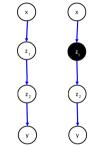
We have $x \not\perp y$: knowing x would give information about y because of z

• But if z is observed:

In this case $x \perp y \mid z:$ knowing $z \ \mbox{``breaks''}$ dependence between x and y.

D-Separation Case 1: Chain

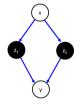
• The same logic holds for great-grandparents:



- We have $x \not\perp y$ (left), but $x \perp y \mid z_1$ (right).
 - We also have $x \perp y \mid z_2$ and that $x \perp y \mid z_1, z_2$.
- This case lets you test any independence in Markov chains.
 - "Variables are independent conditioned on any variable inbetweeen".

D-Separation Case 1: Chain

- Consider weird case where parents z_1 and z_2 share parent x:
 - If z_1 and z_2 are observed we have:



We have $x\perp y\mid z_1,z_2:$ knowing both parents breaks dependency.

• But if only z_1 is *observed*:

We have $x \not\perp y \mid z_1$: dependence still "flows" through z_2 .

D-Separation Case 2: Common Parent

- Case 2: x and y are sibilings.
 - If z is a common unobserved parent:

We have $x \not\perp y$: knowing x would give information about y.

• But if *z* is *observed*:

In this case $x \perp y \mid z$: knowing z "breaks" dependence between x and y. • This is the type of independence used in naive Bayes.

D-Separation Case 2: Common Parent

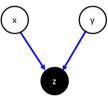
- Case 2: x and y are sibilings.
 - If z_1 and z_2 are common observed parents:

We have $x \perp y \mid z_1, z_2$: knowing z_1 and z_2 breaks dependence between x and y. • But if we only observe z_2 :

Then we have $x \not\perp y \mid z_2$: dependence still "flows" through z_1 .

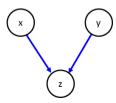
D-Separation Case 3: Common Child

- Case 3: x and y share a child z:
 - If we observe z then we have:



We have $x \not\perp y \mid z$: if we know z, then knowing x gives us information about y.

• But if z is not observed:



We have $x \perp y$: if you don't observe z then x and y are independent. • Different from Case 1 and Case 2: not observing the child blocks path.

D-Separation Case 3: Common Child

- Case 3: x and y share a child z_1 :
 - If there exists an unobserved grandchild z_2 :

We have $x \perp y$: the path is still blocked by not knowing z_1 or z_2 .

• But if z_2 is observed:

We have $x \not\perp y \mid z_2$: grandchild creates dependence even with unobserved child.

• Case 3 needs to consider descendants of child.

D-Separation Summary (MEMORIZE)

- Checking whether DAG implies A is independent of B given C:
 - Consider each undirected path from any node in any A to any node in B.
 - Ignoring directions and observations.
 - Use directions/observations, check if any of below hold somewhere along each path:
 - \bigcirc P includes a "chain" with an observed middle node (e.g., Markov chain):

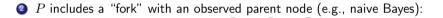
- 2 P includes a "fork" with an observed parent node (e.g., naive Bayes):
- \bigcirc P includes a "v-structure" or "collider" (e.g., genetic inheritance):

where the "child" and all its descendants are unobserved.

• If all paths are blocked by one of above, DAG implies the conditional independence.

D-Separation Summary (MEMORIZE)

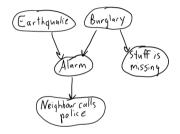
- We say that A and B are d-separated (conditionally independent) given C if all undirected paths from A to B are "blocked" because one of the following holds somewhere on the path:
 - **1** *P* includes a "chain" with an observed middle node (e.g., Markov chain):



 \bigcirc P includes a "v-structure" or "collider" (e.g., genetic inheritance):

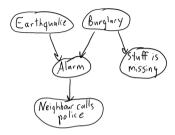
where the "child" and all its descendants are unobserved.

Alarm Example



- Case 1:
 - Earthquake $\not\perp$ Call.
 - Earthquake \perp Call | Alarm.
- Case 2:
 - Alarm $\not\perp$ Stuff Missing.
 - Alarm \perp Stuff Missing | Burglary.

Alarm Example



- Case 3:
 - Earthquake \perp Burglary.
 - Earthquake ⊥ Burglary | Alarm.
 - "Explaining away": knowing one parent can make the other less/more likely.
- Multiple Cases:
 - Call $\not\perp$ Stuff Missing.
 - Earthquake \perp Stuff Missing.
 - Earthquake $\not\perp$ Stuff Missing | Call.

Discussion of D-Separation

• D-separation lets you say if conditional independence is implied by assumptions:

 $(A \text{ and } B \text{ are d-separated given } C) \Rightarrow A \perp B \mid C.$

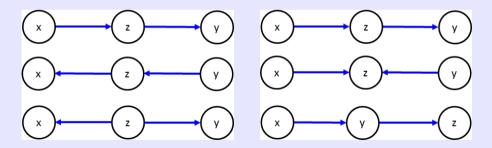
- However, there might be extra conditional independences in the distribution:
 - These would depend on specific choices of the DAG parameters.

• For example, if we set Markov chain parameters so that $p(x_j \mid x_{j-1}) = p(x_j)$.

- Or some orderings of the chain rule may reveal different independences.
- So lack of d-separation does not imply dependence.
- Instead of restricting to $\{1, 2, \dots, j-1\}$, consider general parent choices.
 - So x_2 could be a parent of x_1 .
- As long the graph is acyclic, there exists a valid ordering (chain rule makes sense).
 (all DAGs have a "topological order" of variables where parents are before children)

Non-Uniqueness of Graph and Equivalent Graphs

- Note that some graphs imply same conditional independences:
 - Equivalent graphs: same v-structures and other (undirected) edges are the same.
 - Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):



Beware of the "Causal" DAG

- It can be helpful to use the language of causality when reasoning about DAGs.
 - You'll find that they give the correct causal interpretation based on our intuition.
- However, keep in mind that the arrows are not necessarily causal.
 - "A causes B" has the same graph as "B causes A".
- There is work on causal DAGs which add semantics to deal with "interventions".
 - But these require assuming that the arrow directions are causal.
 - Fitting a DAG to observational data doesn't imply anything about causality.

Summary

- DAG examples:
 - Most models can be represented as DAGs.

• D-separation allows us to test conditional independences based on graph.

- Conditional independence follows if all undirected paths are "blocked".
- Observed values in chain or parent block paths.
- Unobserved children (with no observed grandchildren) also blocks paths.
- Next time: the IID assumption as a DAG.

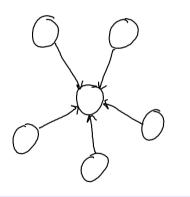
Extra Conditional Independences in Markov Chains

• Proof that x_j is independent of $\{x_1, x_2, \ldots, x_{j-3}\}$ given x_{j-2} in Markov chain:

$$\begin{split} p(x_j \mid x_{j-2}, x_{j-3}, \dots, x_1) &= \frac{p(x_j, x_{j-2}, x_{j-3}, \dots, x_1)}{p(x_{j-2}, x_{j-3}, \dots, x_1)} \quad (\text{def'n cond. prob.}) \\ &= \frac{\sum_{x_{j-1}} p(x_j, x_{j-1}, x_{j-2}, \dots, x_1)}{p(x_{j-2} \mid x_{j-3}, x_{j-4}, \dots, x_1) p(x_{j-3} \mid x_{j-4}, x_{j-5}, \dots, x_1) \cdots p(x_1)} \quad (\text{marg. and chain rule}) \\ &= \frac{\sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2}) \dots p(x_2 \mid x_1) p(x_1)}{p(x_{j-2} \mid x_{j-3}) p(x_{j-3} \mid x_{j-4}) \cdots p(x_1)} \quad (\text{chain rule and Markov}) \\ &= \frac{p(x_1) p(x_2 \mid x_1) \cdots p(x_{j-2} \mid x_{j-3}) \sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2})}{p(x_{j-2} \mid x_{j-3}) p(x_{j-3} \mid x_{j-4}) \cdots p(x_1)} \quad (\text{take terms outside}) \\ &= \sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2}) \quad (\text{cancel out in numerator/denominator}) \\ &= \sum_{x_{j-1}} p(x_j, x_{j-1} \mid x_{j-2}) \quad (\text{product rule}) \\ &= p(x_j \mid x_{j-2}) \quad (\text{marg rule}). \end{split}$$

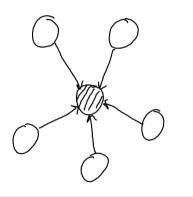
 Similar steps could be used to show x_j ⊥ x_{j+2} | x_{j+1}, and a variety of other conditional independences like x₁ ⊥ x₁₀ | x₅.

Conditional Independence in Star Graphs



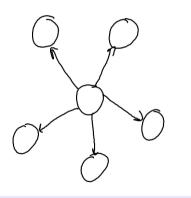
- "5 aliens get together and make a baby alien".
 - Unconditionally, the 5 aliens are independent.

Conditional Independence in Star Graphs



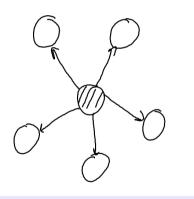
- "5 aliens get together and make a baby alien".
 - Conditioned on the baby, the 5 aliens are dependent.

Conditional Independence in Star Graphs



- "An organism produces 5 clones".
 - Unconditionally, the 5 clones are dependent.

Conditional Independence in Star Graphs



- "An organism produces 5 clones".
 - Conditioned on the original, the 5 clones are independent.