CPSC 440: Machine Learning

MAP Estimation Winter 2022

- Last Time: Bernoulli Distribution M_{α} : Monday The Bernoulli distribution for binary variables: $\rho(x \mid \Theta) = \Theta^{x} (1 \Theta)^{1/x}$
 - We talked about difference inference tasks in Bernoulli models:
 - Compute likelihood of data, $p(x^1, x^2, ..., x^n | \theta)$.
 - Compute decoding, argmax, $\{p(x \mid \theta)\}$.
 - Generate samples \tilde{x} from p(x | θ).
 - We discussed learning with maximum likelihood estimation (MLE). - Find a $\hat{\theta}$ in argmax_{θ}{p(x¹, x²,...,xⁿ | θ)}.
 - Equivalent to finding $\hat{\theta}$ in argmax_{θ}{log(p(x¹, x²,...,xⁿ | θ))} ("log-likelihood").
 - For Bernoulli, equating derivative with respect to θ to 0 gives:
 - $-\hat{\theta} = n_1/n$ (proportion of examples that are "1").

Derivation MLE for Bernoulli

- We showed log-likelihood derivative is zero for $\theta = n_1/(n_1+n_0)$. - Or $\theta = n_1/n$, since $n_1+n_0=n$.
- We still need to convince ourselves this is a maximum:
 - You can verify that the second derivative of log-likelihood is negative.
 - So the function is "curved downwards" and this is a maximum.
- What about if n₁=0 or n₀=0?
 - In these cases we would get a "divide by zero" in our derivation.
 - If $n_1=0$ then MLE is $\theta = 0$ and if $n_0=0$ then MLE is $\theta = 1$.
 - Can show that likelihood is increasing as it approaches 0/1 in these cases.
 - So the formula $\theta = n_1/n$ still works.

Learning Task: Computing MLE

• Computing MLE for Bernoulli in code given data 'X':

Version 1:
$$nl = sum(X)$$

 $\Theta = n - n\hat{O}$
 $\Theta = nl/(nl + n\hat{O})$

$$V_{ersion} : G = sum(X)/n$$

- Cost: O(n).
 - You need to sum up the 'n' values (there is a "for" loop hidden inside "sum(X)").
- You can then use this θ value for inference:
 - Compute likelihood of test data.
 - Compute expected number of samples before first 1.
 - Compute probability of seeing at least three 1 values in 10 samples.

Next Topic: MAP Estimation

Problems with MLE

- In most settings, MLE is optimal as 'n' goes to ∞ .
 - It converges to the true parameter(s).
 - This is called "asymptotic consistency" (covered in honours/grad stats classes).
- However, it can be very sensitive for small 'n':
 - Consider our example where $x^1=1$, $x^2=1$, $x^3=0$, and MLE was 0.67.
 - If $x^4=1$, then MLE goes up to 0.75.
 - If $x^4=0$, then MLE goes down to 0.5.
 - If you get "unlucky" with your samples, the MLE might be really bad.
- For Bernoullis, this sensitivity goes away quickly as we increase 'n'.
 - But for more complicated models, MLE tends to lead to overfitting.

Problems with MLE

- Consider a different dataset consisting of x¹=0, x²=0, x³=0.
 - In this case the MLE is θ = 0.
 - It assigns zero probability to events that do not occur in training data.
- Causes problems if we have a '1' in test data:
 - Then likelihood of entire test set is 0, since: $(\hat{\chi} | 6) = \theta^{n} (|-6)^{n} = 0^{n} | e^{n} = 0^{n}$ A case of overfitting to the training data.

 - If you have no COVD-19 cases in your sample, does that mean there are none in population?
- It is common to add Laplace smoothing to the estimator:

$$\hat{\Theta} = \frac{n_{1} + 1}{(n_{1} + 1) + (n_{0} + 1)} = \frac{n_{1} + 1}{n + 2}$$

- MLE for a dataset with an extra "imaginary" '1' and '0' in data.
 - This is a special case of "MAP estimation".

MLE and MAP Estimation

• In MLE we maximize the probability of the data given parameters:

- But I find this weird:
 - "Find the θ that makes 'X' have the highest probability given θ ."
 - Get overfitting because data could be likely for an unlikely θ .
 - For example, a complex model that overfits by memorizing the data.
- What we really want if we are trying to find the "best" θ :

– "Find the θ that has the highest probability given the data 'X'."

$$\hat{\Theta} \in \operatorname{arg} \max \{ p(\Theta | X) \}$$

- This is called MAP estimation ("maximum a posteriori").

Digression: Super-Quick "Probability Rule" Review

- Product rule: p(a,b) = p(a | b)p(b).
 - Re-arrange to get conditional probability formula: p(a | b) = p(a,b)/p(b).
 - Order dot not matter in joint probabilities: p(a,b) = p(b, a).
 - Use product rule twice to get Bayes rule: p(a | b) = p(b | a)p(a)/p(b).
 - Conditional in terms of "reverse" conditional, and the "marginals" p(b) and p(a).
- Marginalization rule ("summing or integrating over a variable"):
 - Variable 'b' with discrete domain: $p(a) = \sum_{b} p(a, b)$.
 - Variable 'b' with continuous domain 'b': $p(a) = \int p(a, b) db$.
- These two rules are good friends and usually appear together:
 - $p(a) = \sum_{b} p(a, b) = \sum_{b} p(a|b)p(b).$
 - $p(a \mid b) = \frac{p(b \mid a)p(b)}{p(a)} = \frac{p(b \mid a)p(b)}{\sum_{b} p(b \mid a)p(b)}$ (some people call this "Bayes rule").
- Rules still work if you add extra "conditioning" on the right:
 - p(a,b | c) = p(a | b, c)p(b | c).
 - $p(a \mid c) = \sum_{b} p(a, b \mid c).$

MEMORIZE EVERYTHING ON THIS SLIDE

Maximum a Posteriori (MAP) Estimation

• Maximum a posteriori (MAP) estimate maximizes posterior probability:

- I would argue that this is what we want: the probability of θ given our data.

ullet

- MLE and MAP are connected by Bayes rule: $\begin{pmatrix} posterior \\ p(\Theta | X) = \rho(X, \Theta) = \rho(X | \Theta) \rho(\Theta) & (likelihood) (prior) \\ \rho(\Theta | X) = \rho(X, \Theta) = \rho(X | \Theta) \rho(\Theta) & \rho(X | \Theta) \rho(\Theta) \\ p(X) & \rho(X) & \rho(X) & \rho(X | \Theta) \rho(\Theta) \\ e^{(ond limel poleblity)} & p^{(ond limel poli$
 - So posterior is proportional the likelihood $p(X|\theta)$ times the prior $p(\theta)$.
 - See "probability" notes on course webpage if equalities above aren't obvious (you need catch up fast).

The prior

- The prior $p(\theta)$ can encode our preference for different parameters.
 - If we are flipping coins, we might think $p(\theta)$ is higher for values close to $\frac{1}{2}$.
 - We could make it really high for the exact value 1/2.
 - In COVID-19 example, we might make $p(\theta)$ higher for values close to 0.05.
 - Because, for example, we estimated a value of 0.05 from a similar population.
 - In CPSC 340, you learned that priors correspond to regularizers.
 - You often choose $p(\theta)$ to be lower for values that are likely to overfit.
- Laplace smoothing corresponds to a particular $p(\theta)$.
 - We will show this shortly.

MAP Estimation for Bernoulli with Discrete Prior

- Consider our example where x¹=1, x²=1, x³=0 (and MLE was 0.67).
- Consider using a prior of:
 - $p(\theta = 0.00) = 0.05$
 - $p(\theta = 0.25) = 0.2$
 - $p(\theta = 0.50) = 0.5$
 - $p(\theta = 0.75) = 0.2$
 - $p(\theta = 1.00) = 0.05$

- Posterior values are proportional to:
 - $-p(\theta = 0.00 | X) \propto (0*0*1)*.05 = 0$
 - $-p(\theta = 0.25 | X) \propto (.25^*.25^*.75)^*.2 \approx 0.01$
 - $-p(\theta = 0.50 | X) \propto (.5^*.5^*.5)^*.5 \approx 0.06$
 - $-p(\theta = 0.75 | X) \propto (.75^*.75^*.25)^*.2 \approx 0.03$
 - $-p(\theta = 1.00 | X) \propto (1*1*0)*.05 = 0$
- So our MAP estimate is θ = 0.5.
 - Based on our prior "guesses for θ ", we think this is a fair coin.
 - Notice that we don't need p(X) in our calculations (since it's the same for all θ).

Digression: "Proportional to" (\propto) Notation

- In math, the notation $f(\theta) \propto g(\theta)$ means that $f(\theta) = \kappa g(\theta)$ for some number κ (for all θ).
 - But κ may not be known and/or may not be unique.
 - For example, $f(\theta) \propto \theta^2$ for both $f(\theta) = 10\theta^2$ and $f(\theta) = -50\theta^2$.
- For discrete probabilities, the constant κ is positive and unique.
 This is because probabilities are non-negative and sum to 1.
- Consider a discrete variable ' θ ' with $p(\theta) = \kappa q(\theta) \propto q(\theta)$:
 - Since $\sum_{\theta} p(\theta') = 1$, we have $\sum_{\theta} \kappa g(\theta') = 1$.
 - Solving for κ gives: $\kappa = \frac{1}{\sum_{\theta'} g(\theta')}$.
 - Using this value for κ we have $p(\theta) = \kappa g(\theta) = \frac{g(\theta)}{\sum_{\theta, t} g(\theta')}$.
 - You can use this trick to get posterior probabilities on last slide: $\rho(\theta=05|\chi) =$

Values the posterior was proportion,

Digression²: "Probability" vs. "Probability Density"

- Recall that the value θ can be any number between 0 and 1.
 - Instead of putting non-zero probability on a finite number of possible θ values, we could treat θ as a continuous random variable (to allow $\theta = 0.3452$).
- For continuous variables, we use a probability density function (PDF): - Function 'p' that is non-negative and integrates to 1 over domain: $\rho(\theta) \ge 0$ for all θ , and $\int_{-\infty}^{\infty} \rho(\theta) d\theta = 1$
- We get probabilities from the PDF by integrating over ranges:

$$p_{10}b(0.45 \le \Theta \le 0.55) = \int_{0.45}^{0.55} p(\theta) d\theta$$

- If the PDF is continuous, probability of an individual θ is 0: $prob(\theta=0.5)=\sum_{n=0}^{0.5} \rho(\theta)d\theta=0$

Digression²: "Probability" vs. "Probability Density"

• Recall the relationship between posterior, likelihood, and prior:

 $\begin{array}{l} (postorior) & (likelihood) (prior) \\ \rho(\Theta | X) \propto \rho(X | \Theta) \rho(\Theta) \end{array}$

- What are these 'p' functions in discrete and continuous case?
 - If θ is discrete: prior and posterior 'p' functions are probabilities.
 - If θ is continuous: prior and posterior 'p' functions are PDFs.
 - So $p(\theta)$ is not the "probability of θ ", but the "probability density of θ ".

- With our binary 'X' values, likelihood $p(X | \theta)$ is a probability.
 - But when we later talk about continuous 'X', likelihood will be a PDF.
- Important: I'm really sloppy about this! (Most ML people are!) – I will usually say "probability of θ " for p(θ), even for continuous θ .

Digression: "Proportional to" (\propto) Notation

• Consider a continuous variable θ with PDF $p(\theta) = \kappa g(\theta) \propto g(\theta)$:

- Since
$$\int_{\theta} p(\theta') d\theta' = 1$$
, we have $\int_{\theta} \kappa g(\theta') d\theta' = 1$.

• Solving for κ gives: $\kappa = \frac{1}{\int_{\theta} g(\theta') d\theta'}$.

- So we have
$$p(\theta) = \frac{g(\theta)}{\int_{\theta'} g(\theta') d\theta'}$$

• For continuous θ in MAP estimation, we have $p(\theta \mid X) \propto p(X \mid \theta)p(\theta)$,

- So we have
$$p(\theta \mid X) = \frac{p(X \mid \theta)p(\theta)}{\int_{\theta}, p(X \mid \theta')p(\theta')d\theta'} = p(X)$$
 by "marginalization rule" $p(n) = \xi p(n_0)$
(discrete)

• You should memorize these "digression" slides.

or $p(a) = S_{b} p(a, b) db$ g. (continuous) – Knowing how to use " \propto " simplifies a lot of things in machine learning.

Beta Distribution

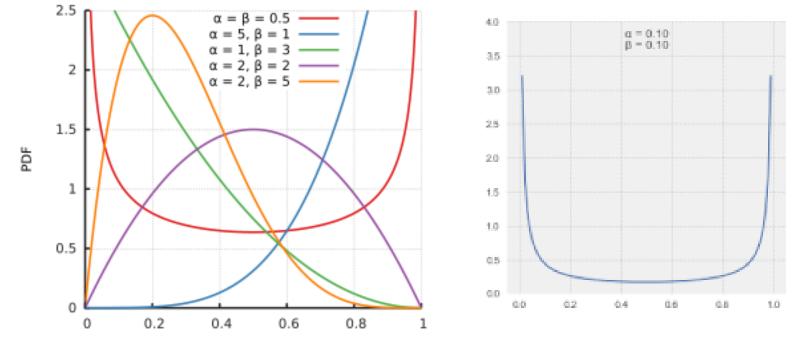
• For Bernoulli likelihoods, most common prior is beta distribution:

$$p(\Theta|\alpha,\beta) \propto \Theta^{\alpha-1}(1-\Theta)^{\beta-1}$$
 for $O \leq \Theta \leq |\alpha| \approx |\beta|$

- Looks like a Bernoulli likelihood, with $(\alpha 1)$ ones and $(\beta 1)$ zeroes.
- Key difference with the Bernoulli is on the left side:
 - It defines a PDF over real numbers θ in the range 0 through 1.
 - Beta distribution is not assigning probabilities to binary values, but to PDF of θ.
 "Probability over probabilities".
- From the "digression", we can resolve what is hidden in the \propto sign: $\rho(\theta \mid \alpha, \beta) = \frac{\Theta^{\alpha-1}(1-\theta)^{\beta-1}}{\int \sigma^{\alpha-1}(1-\theta)^{\beta-1} d\theta} = \frac{\Theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)} = \frac{\Theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha,$

Beta Distribution

• The beta distribution for different choices of α and β :



- Why is using the beta distribution as prior so popular?
 - Fake reason: it is quite flexible, so can encode a variety of priors.
 - Can represent bias towards 0.5, towards 1 or 0, towards 0.2, towards only 1, or uniform if $\alpha = \beta = 1$.
 - But it is still limited. For example, you can't say that "the exact value 0.5 is particularly likely".

Posterior for Bernoulli Likelihood and Beta Prior

- Real reason people use the beta: posterior and MAP have simple forms.
 - The posterior with a Bernoulli likelihood and beta prior:

$$\rho(\Theta|X_{,\alpha},B) \propto \rho(X|\Theta)\rho(\Theta|\alpha,B) \propto \Theta^{n}(1-\Theta)^{n}\Theta^{\alpha-1}(1-\Theta)^{B-1}$$

$$= \Theta^{(n,+\alpha)-1}(1-\Theta)^{(n_0+B)-1}$$

$$= \Theta^{\alpha-1}(1-\Theta)^{B-1}$$

$$= \Theta^{\alpha-1}(1-\Theta)^{B-1}$$

- This is another beta distribution with "updated" parameters $\tilde{\alpha}$ and $\tilde{\beta}$.
 - Where $\tilde{\alpha} = n_1 + \alpha$ and $\tilde{\beta} = n_0 + \beta$.
- How do we know that this is a beta distribution?
 - Because constant in \propto is unique.
 - "If you are proportional to a beta distribution, you are a beta distribution."
 - Make sure you understand why posterior is a beta distribution (important in this course).

Summary

- MAP Estimation:
 - Find parameters maximizing probability of parameters given data.
 - The "posterior".
 - Requires prior distribution on parameters:
 - Can be used as bias towards parameters that overfit less.
- Probability review:
 - Product rule, marginalization rule, Bayes rule.
 - Continuous "probabilities" and how "∝" has a restricted meaning for probabilities.
- Beta distribution:
 - Prior for Bernoulli that yields a closed-form posterior (another beta distribution).
- Next time: end the streak of "numbers of lectures with no MNIST digits".