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Last Time: Bernoulli Distribution MLE

• The Bernoulli distribution for binary variables:

• We talked about difference inference tasks in Bernoulli models:

– Compute likelihood of data, p(x1, x2,…,xn | 𝜃).

– Compute decoding, argmaxx {p(x | 𝜃}).

– Generate samples 𝑥 from p(x | 𝜃).

• We discussed learning with maximum likelihood estimation (MLE).

– Find a መ𝜃 in argmax𝜃{p(x1, x2,…,xn | 𝜃)}.

– Equivalent to finding መ𝜃 in argmax𝜃{log(p(x1, x2,…,xn | 𝜃))} (“log-likelihood”).

• For Bernoulli, equating derivative with respect to 𝜃 to 0 gives:

– መ𝜃 = n1/n (proportion of examples that are “1”).



Derivation MLE for Bernoulli

• We showed log-likelihood derivative is zero for 𝜃 = n1/(n1+n0).
– Or 𝜃 = n1/n, since n1+n0=n.

• We still need to convince ourselves this is a maximum:
– You can verify that the second derivative of log-likelihood is negative.

• So the function is “curved downwards” and this is a maximum.

• What about if n1=0 or n0=0?
– In these cases we would get a “divide by zero” in our derivation.

– If n1=0 then MLE is 𝜃 = 0 and if n0=0 then MLE is 𝜃 = 1.
• Can show that likelihood is increasing as it approaches 0/1 in these cases.

• So the formula 𝜃 = n1/n still works.



Learning Task: Computing MLE

• Computing MLE for Bernoulli in code given data ‘X’:

• Cost: O(n).
– You need to sum up the ‘n’ values (there is a “for” loop hidden inside “sum(X)”).

• You can then use this 𝜃 value for inference:
– Compute likelihood of test data.
– Compute expected number of samples before first 1.
– Compute probability of seeing at least three 1 values in 10 samples.



Next Topic: MAP Estimation



Problems with MLE

• In most settings, MLE is optimal as ‘n’ goes to ∞.
– It converges to the true parameter(s).

• This is called “asymptotic consistency” (covered in honours/grad stats classes).

• However, it can be very sensitive for small ‘n’:
– Consider our example where x1=1, x2=1, x3=0, and MLE was 0.67.

– If x4=1, then MLE goes up to 0.75.

– If x4=0, then MLE goes down to 0.5.
• If you get “unlucky” with your samples, the MLE might be really bad.

• For Bernoullis, this sensitivity goes away quickly as we increase ‘n’.
– But for more complicated models, MLE tends to lead to overfitting.



Problems with MLE

• Consider a different dataset consisting of x1=0, x2=0, x3=0.
– In this case the MLE is 𝜃 = 0.

• It assigns zero probability to events that do not occur in training data.

• Causes problems if we have a ‘1’ in test data:
– Then likelihood of entire test set is 0, since:

• A case of overfitting to the training data.
• If you have no COVD-19 cases in your sample, does that mean there are none in population?

• It is common to add Laplace smoothing to the estimator:

– MLE for a dataset with an extra “imaginary” ‘1’ and ‘0’ in data.
• This is a special case of “MAP estimation”.



MLE and MAP Estimation

• In MLE we maximize the probability of the data given parameters:

• But I find this weird:
– “Find the 𝜃 that makes ‘X’ have the highest probability given 𝜃.”
– Get overfitting because data could be likely for an unlikely 𝜃.

• For example, a complex model that overfits by memorizing the data.

• What we really want if we are trying to find the “best” 𝜃:
– “Find the 𝜃 that has the highest probability given the data ‘X’.”

– This is called MAP estimation (“maximum a posteriori”).



Digression: Super-Quick “Probability Rule” Review

• Product rule: p(a,b) = p(a | b)p(b).
– Re-arrange to get conditional probability formula: p(a | b) = p(a,b)/p(b).
– Order dot not matter in joint probabilities: p(a,b) = p(b, a).
– Use product rule twice to get Bayes rule: p(a | b) = p(b | a)p(a)/p(b).

• Conditional in terms of “reverse” conditional, and the “marginals” p(b) and p(a).

• Marginalization rule (“summing or integrating over a variable”):
– Variable ‘b’ with discrete domain: p(a) = σ𝑏 𝑝 𝑎, 𝑏 .
– Variable ‘b’ with continuous domain ‘b’: p(a) = ∫ 𝑝 𝑎, 𝑏 𝑑𝑏.

• These two rules are good friends and usually appear together:
– p(a) = σ𝑏 𝑝 𝑎, 𝑏 = σ𝑏 𝑝 𝑎 𝑏 𝑝 𝑏 .

– p(a | b) = 
𝑝 𝑏 𝑎)𝑝(𝑏)

𝑝(𝑎)
= 

𝑝 𝑏 𝑎)𝑝(𝑏)

σ𝑏 𝑝 𝑏 𝑎)𝑝(𝑏)
(some people call this “Bayes rule”).

• Rules still work if you add extra “conditioning” on the right:
– p(a,b | c) = p(a | b, c)p(b | c).
– p(a | c) = σ𝑏 𝑝 𝑎, 𝑏 𝑐).



Maximum a Posteriori (MAP) Estimation

• Maximum a posteriori (MAP) estimate maximizes posterior probability:

– I would argue that this is what we want: the probability of 𝜃 given our data.

• MLE and MAP are connected by Bayes rule:

– So posterior is proportional the likelihood p(X|𝜃) times the prior p(𝜃).
• See “probability” notes on course webpage if equalities above aren’t obvious (you need catch up fast).



The prior

• The prior p(𝜃) can encode our preference for different parameters.

– If we are flipping coins, we might think p(𝜃) is higher for values close to ½.

• We could make it really high for the exact value ½.

– In COVID-19 example, we might make p(𝜃) higher for values close to 0.05.

• Because, for example, we estimated a value of 0.05 from a similar population.

– In CPSC 340, you learned that priors correspond to regularizers.

• You often choose p(𝜃) to be lower for values that are likely to overfit.

• Laplace smoothing corresponds to a particular p(𝜃).

– We will show this shortly.



MAP Estimation for Bernoulli with Discrete Prior

• Consider our example where x1=1, x2=1, x3=0 (and MLE was 0.67).

• Consider using a prior of:

– p(𝜃 = 0.00) = 0.05

– p(𝜃 = 0.25) = 0.2

– p(𝜃 = 0.50) = 0.5

– p(𝜃 = 0.75) = 0.2

– p(𝜃 = 1.00) = 0.05

• So our MAP estimate is 𝜃 = 0.5.

– Based on our prior “guesses for 𝜃”, we think this is a fair coin.

• Notice that we don’t need p(X) in our calculations (since it’s the same for all 𝜃).

Posterior values are proportional to:

– p(𝜃 = 0.00 | X) ∝ (0*0*1)*.05 = 0

– p(𝜃 = 0.25 | X) ∝ (.25*.25*.75)*.2 ≈ 0.01

– p(𝜃 = 0.50 | X) ∝ (.5*.5*.5)*.5 ≈ 0.06

– p(𝜃 = 0.75 | X) ∝ (.75*.75*.25)*.2 ≈ 0.03

– p(𝜃 = 1.00 | X) ∝ (1*1*0)*.05 = 0



Digression: “Proportional to” (∝) Notation

• In math, the notation f(𝜃) ∝ g(𝜃)
means that f(𝜃) = 𝜅g(𝜃) for some number 𝜅 (for all 𝜃).

– But 𝜅 may not be known and/or may not be unique.
• For example, f(𝜃) ∝ 𝜃2 for both f(𝜃)= 10𝜃2 and f(𝜃) = -50𝜃2.

• For discrete probabilities, the constant 𝜅 is positive and unique.
– This is because probabilities are non-negative and sum to 1.

• Consider a discrete variable ‘𝜃’ with p(𝜃)= 𝜅𝑔 𝜃 ∝ 𝑔 𝜃 :
– Since σ𝜃′𝑝(𝜃

′) = 1, we have σ𝜃′ 𝜅𝑔(𝜃
′) = 1.

• Solving for 𝜅 gives: 𝜅 =
1

σ
𝜃′

𝑔 𝜃′
.

– Using this value for 𝜅 we have p(𝜃) = 𝜅𝑔 𝜃 =
𝑔(𝜃)

σ𝜃′ 𝑔(𝜃
′)

. 

– You can use this trick to get posterior probabilities on last slide:



Digression2: “Probability” vs. “Probability Density”

• Recall that the value 𝜃 can be any number between 0 and 1.
– Instead of putting non-zero probability on a finite number of possible 𝜃 values, 

we could treat 𝜃 as a continuous random variable (to allow 𝜃 = 0.3452).

• For continuous variables, we use a probability density function (PDF):
– Function ‘p’ that is non-negative and integrates to 1 over domain:

• We get probabilities from the PDF by integrating over ranges:

– If the PDF is continuous, probability of an individual 𝜃 is 0: 



Digression2: “Probability” vs. “Probability Density”

• Recall the relationship between posterior, likelihood, and prior:

• What are these ‘p’ functions in discrete and continuous case?
– If 𝜃 is discrete: prior and posterior ‘p’ functions are probabilities.

– If 𝜃 is continuous: prior and posterior ‘p’ functions are PDFs.
• So p(𝜃) is not the “probability of 𝜃”, but the “probability density of 𝜃”.

• With our binary ‘X’ values, likelihood p(X | 𝜃) is a probability.
– But when we later talk about continuous ‘X’, likelihood will be a PDF.

• Important: I’m really sloppy about this! (Most ML people are!)
– I will usually say “probability of 𝜃” for p(𝜃), even for continuous 𝜃.



Digression: “Proportional to” (∝) Notation

• Consider a continuous variable 𝜃 with PDF p(𝜃) = 𝜅g(𝜃) ∝ g(𝜃):
– Since ∫𝜃′ 𝑝 𝜃′ 𝑑𝜃′ = 1, we have ∫𝜃′ 𝜅𝑔 𝜃′ 𝑑𝜃′ = 1.

• Solving for 𝜅 gives: 𝜅 =
1

∫𝜃′ 𝑔(𝜃
′)𝑑𝜃′

.

– So we have p(𝜃) = 
𝑔(𝜃)

∫𝜃′ 𝑔(𝜃
′)𝑑𝜃′

. 

• For continuous 𝜃 in MAP estimation, we have p(𝜃 | X) ∝ p(X | 𝜃)p(𝜃),

– So we have p(𝜃 | X) = 
𝑝 𝑋 𝜃)𝑝(𝜃)

∫𝜃′ 𝑝 𝑋 𝜃′)𝑝(𝜃′)𝑑𝜃′

• You should memorize these “digression” slides.
– Knowing how to use “∝” simplifies a lot of things in machine learning.



Beta Distribution

• For Bernoulli likelihoods, most common prior is beta distribution:

• Looks like a Bernoulli likelihood, with (𝛼 – 1) ones and (𝛽-1) zeroes.

• Key difference with the Bernoulli is on the left side:

– It defines a PDF over real numbers 𝜃 in the range 0 through 1.

• Beta distribution is not assigning probabilities to binary values, but to PDF of 𝜃.
– “Probability over probabilities”.

• From the “digression”, we can resolve what is hidden in the ∝ sign:



Beta Distribution
• The beta distribution for different choices of 𝛼 and 𝛽:

• Why is using the beta distribution as prior so popular?
– Fake reason: it is quite flexible, so can encode a variety of priors.

• Can represent bias towards 0.5, towards 1 or 0, towards 0.2, towards only 1, or uniform if 𝛼 = 𝛽 = 1.
• But it is still limited. For example, you can’t say that “the exact value 0.5 is particularly likely”.

https://en.wikipedia.org/wiki/Beta_distribution



Posterior for Bernoulli Likelihood and Beta Prior

• Real reason people use the beta: posterior and MAP have simple forms.
– The posterior with a Bernoulli likelihood and beta prior:

– This is another beta distribution with “updated” parameters 𝛼 and ෨𝛽.
• Where 𝛼 = 𝑛1 + 𝛼 and ෨𝛽 = 𝑛0 + 𝛽.

– How do we know that this is a beta distribution?
• Because constant in ∝ is unique.

– “If you are proportional to a beta distribution, you are a beta distribution.”

• Make sure you understand why posterior is a beta distribution (important in this course).



Summary

• MAP Estimation:
– Find parameters maximizing probability of parameters given data.

• The “posterior”.

– Requires prior distribution on parameters:
• Can be used as bias towards parameters that overfit less.

• Probability review:
– Product rule, marginalization rule, Bayes rule.

– Continuous “probabilities” and how “∝” has a restricted meaning for 
probabilities.

• Beta distribution:
– Prior for Bernoulli that yields a closed-form posterior (another beta distribution).

• Next time: end the streak of “numbers of lectures with no MNIST digits”.


