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Last Time: Bernoulli Distribution MLE©:- .., .,

sshameif 1i friday
The Bernoulli distribution for binary variables: /o(x l@)= & (I-o

We talked about difference inference tasks in Bernoulli models:

— Compute likelihood of data, p(x%, x?,...,x" | 8).

— Compute decoding, argmax, {p(x | 6}).

— Generate samples X from p(x | ).

We discussed learning with maximum likelihood estimation (MLE).
— Find a @ in argmax,{p(xt, x4,....x" | 0)}.

— Equivalent to finding 6 in argmaxgf{log(p(xt, x%,...x" | 8))} (“log-likelihood”).
For Bernoulli, equating derivative with respect to 0 to O gives:

— 6= n,/n (proportion of examples that are “1”).



Derivation MLE for Bernoulli

* We showed log-likelihood derivative is zero for 8 = n,/(n,+n,).
— Or 6 =n,/n, since nj+ny=n.

e We still need to convince ourselves this is a maximum:

— You can verify that the second derivative of log-likelihood is negative.
e So the function is “curved downwards” and this is a maximum.
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* What about if n,=0 or n,=0?
— In these cases we would get a “divide by zero” in our derivation.
— If n;=0 then MLE is 8 = 0 and if n,=0 then MLE is 8 = 1.

* Can show that likelihood is increasing as it approaches 0/1 in these cases.
* So the formula 6 = n,/n still works.



Learning Task: Computing MLE

e Computing MLE for Bernoulli in code given data ‘X:

n/ = 5\4#\()()
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e Cost: O(n).

— You need to sum up the ‘n’ values (there is a “for” loop hidden inside “sum(X)”).

* You can then use this 6 value for inference:
— Compute likelihood of test data.
— Compute expected number of samples before first 1.
— Compute probability of seeing at least three 1 values in 10 samples.



Next Topic: MAP Estimation



Problems with MLE

* |In most settings, MLE is optimal as ‘n’ goes to oo.

— It converges to the true parameter(s).
 This is called “asymptotic consistency” (covered in honours/grad stats classes).

 However, it can be very sensitive for small ‘n’:
— Consider our example where x'=1, x?=1, x3=0, and MLE was 0.67.
— If x4=1, then MLE goes up to 0.75.

— If x4=0, then MLE goes down to 0.5.
 If you get “unlucky” with your samples, the MLLE might be really bad.

* For Bernoullis, this sensitivity goes away quickly as we increase ‘n’.
— But for more complicated models, MILE tends to lead to overfitting.



Problems with MLE

* Consider a different dataset consisting of x1=0, x?>=0, x3=0.
— In this case the MLE is 8 = 0.

* |t assigns zero probability to events that do not occur in training data.

>0
e Causes problems if we have a ‘1’ in test data: e !

— Then likelihood of entire test set is 0, since: & N = e % My
* A case of overfitting to the training data.
 If you have no COVD-19 cases in your sample, does that mean there are none in population?

* |tis common to add Laplace smoothing to the estimator:
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— MLE for a dataset with an extra “imaginary” ‘1’ and ‘0’ in data.
* This is a special case of “MAP estimation”.



MLE and MAP Estimation

* In MLE we maximize the probability of the data given parameters:
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 But Il find this weird:

— “Find the 0 that makes ‘X’ have the highest probability given 6.”

— Get overfitting because data could be likely for an unlikely 6.
* For example, a complex model that overfits by memorizing the data.

 What we really want if we are trying to find the “best” 0:
— “Find the 0 that has the highest probability given the data ‘X"

(3 € Grc]g\qx?P(S)l’X)g

IP.IerSA
— This is called MAP estimation (“maximum a posteriori”).



Digression: Super-Quick “Probability Rule” Review

Product rule: p(a,b) = p(a | b)p(b).
— Re-arrange to get conditional probability formula: p(a | b) = p(a,b)/p(b).

— Order dot not matter in joint probabilities: p(a,b) = p(b, a).
— Use product rule twice to get Bayes rule: p(a | b) =p(b | a)p(a)/p(b). ’

Conditional in terms of “reverse” conditional, and the “marginals” p(b) and p(a).

Marginalization rule (“summing or integrating over a variable”):

— Variable ‘b’ with discrete domain: p(a) = )., p(a, b).
— Variable ‘b’ with continuous domain ‘b’: p(a) = [ p(a, b)db.

These two rules are good friends and usually appear together:
— p(a)=Xpp(ab) = Xpplalb)p(b).

— pla|b)= p(b;?c)lz)a(b) _ Zp;b(ll?al)ap);b()b) (some people call this “Bayes rule”). /V\ L/Vl Op IZ é
) — ——
Rules still work if you add extra “conditioning” on the right: ﬁ V E RYTH I /1/6 O/\/

— pla,b | c)=p(a|b,c)pb|c).

~ plalc)=3,p@b o). -
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Maximum a Posteriori (MAP) Estimation

e Maximum a posteriori (MAP) estimate maximizes posterior probability:

Q ¢ afqu?P 6’ | X)}

Posteri o
— | would argue that this is what we want: the probability of 6 glven our data

 MLE and MAP are connected by Bayes rule: prop tid o
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— So posterior is proportional the likelihood p(X| @) times the prior p(8).

* See “probability” notes on course webpage if equalities above aren’t obvious (you need catch up fast).



The prior

* The prior p(@) can encode our preference for different parameters.

— If we are flipping coins, we might think p(0) is higher for values close to .

* We could make it really high for the exact value .

— In COVID-19 example, we might make p(@) higher for values close to 0.05.

* Because, for example, we estimated a value of 0.05 from a similar population.

— In CPSC 340, you learned that priors correspond to regularizers.

* You often choose p(@) to be lower for values that are likely to overfit.

e Laplace smoothing corresponds to a particular p(6).
— We will show this shortly.



MAP Estimation for Bernoulli with Discrete Prior

* Consider our example where x1=1, x?=1, x3=0 (and MLE was 0.67).

* Consider using a prior of: Posterior values are proportional to:
— p(6 = 0.00) = 0.05 — p(6@ = 0.00 | X) < (0*0*1)*.05=0
—p(@ = 0.25)=0.2 — p(6@ = 0.25 | X) o (.25*.25%.75)*.2 = 0.01
— p(6 = 0.50)=0.5 —p(@ = 0.50 | X) o (.5%.5%.5)*.5 =~ 0.06
—p(6 =0.75)=0.2 — p(6@ = 0.75 | X) « (.75*.75*.25)*.2 =~ 0.03
— p(6 = 1.00) =0.05 —p(@ =1.00 | X) < (1*1*0)*.05=0

e So our MAP estimate is 8 = 0.5.

— Based on our prior “guesses for 8”7, we think this is a fair coin.

* Notice that we don’t need p(X) in our calculations (since it’s the same for all 8).



Digression: “Proportional to” (<) Notation

* In math, the notation f(6) o« g(8)
means that f(0) = kg(6) for some number k (for all 8).

— But k may not be known and/or may not be unique.
* For example, f(6) < 2 for both f(8)= 1082 and f(6) = -5002.

* For discrete probabilities, the constant k is positive and unique.
— This is because probabilities are non-negative and sum to 1.

\/qlllf’) ﬂ‘
 Consider a discrete variable ‘0’ with p(8)= kg(6) «x g(6): f«))?'erior was papor linm)
— Since X4, p(0") =1, we have Y.y, kg(8") = 1. /i b
: R
Solving for k gives: k = SPICOS /J‘/\
— Using this value for k we have p(8) = kg(0) = _90)
g, 9(6") 00é
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— You can use this trick to get posterior probabilities on last slide: 9{0'05 X) = (+Q01+ 0060034



Digression?: “Probability” vs. “Probability Density”

e Recall that the value 6 can be any number between 0 and 1.

— Instead of putting non-zero probability on a finite number of possible 6 values,
we could treat 8 as a continuous random variable (to allow 8 = 0.3452).

* For continuous variables, we use a probability density function (PDF):
— Function ‘p’ that is non-negative and integrates to 1 over domain:

f(@? 0 o al 6, and §°”,,(am=

=0

* We get probabilities from the PDF by integrating over ranges:
65
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— If the PDF is continuous, probability of an individual & is O: er(fl 05)':5 WCO)JJ—
05



Digression?: “Probability” vs. “Probability Density”

Recall the relationship between posterior, likelihood, and prior:
(@06“?’;0‘.) (l'-k(\'-l\oﬂ‘? ((r'-bl')

p(@“() o< ,o()( I@) r(‘?)
What are these ‘p’ functions in discrete and continuous case?

— If 8 is discrete: prior and posterior ‘p’ functions are probabilities.

— |f 8 is continuous: prior and posterior ‘p’ functions are PDFs.
* So p(@) is not the “probability of 68”7, but the “probability density of 8”.

With our binary ‘X’ values, likelihood p(X | 8) is a probability.
— But when we later talk about continuous X/, likelihood will be a PDF.

Important: I’'m really sloppy about this! (Most ML people are!)
— | will usually say “probability of 8” for p(8), even for continuous 6.




Digression: “Proportional to” (<) Notation

* Consider a continuous variable 8 with PDF p(8) = Kg(H) e g(@)
— Since [, p(8")d6’ = 1, we have [, kg(8")d6’ = 1. i
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* Solving for k gives: k =

— So we have p(0) =

* For continuous @ in MAP estimation, we have p(@ | X) < p(X | 8)p(60),
p(X | 8)p(6)

— Sowe have p(e I X) - fg, p(X | 9’)p(9’)d9’}-<7 oy P(X) ‘)./ "MG fq'.v\q‘izq“p/\ {u';\ : P(vl) 2 (1757
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* You should memorize these “digression” slides. A V( =S fg{qu,)‘j/3

— Knowing how to use “«” simplifies a lot of things in machine learning. ((M“ )
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Beta Distribution

For Bernoulli likelihoods, most common prior is beta distribution:
X =1 -
f(@ltx,ﬂ)x@ (l‘@)‘g' for 0$@§)} o ) B>]

Looks like a Bernoulli likelihood, with (& — 1) ones and (f-1) zeroes.
Key difference with the Bernoulli is on the left side:

— |t defines a PDF over real numbers @ in the range 0 through 1.

* Beta distribution is not assigning probabilities to binary values, but to PDF of 4.

— “Probability over probabilities”.

From the “digression”, we can resolve what is hidden in the « sign:
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Beta Distribution

The beta distribution for different choices of @ and f3:
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Why is using the beta distribution as prior so popular?

— Fake reason: it is quite flexible, so can encode a variety of priors.
e Can represent bias towards 0.5, towards 1 or 0, towards 0.2, towards only 1, or uniformifa = f = 1.
e Butitis still limited. For example, you can’t say that “the exact value 0.5 is particularly likely”.



Posterior for Bernoulli Likelihood and Beta Prior

* Real reason people use the beta: posterior and MAP have simple forms.
— The posterior with a Bernoulli likelihood and beta prior:

p (61 XaB) o o(X16)p(ala)ot §"(1-6)" ¢ (1-5)"
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— This is another beta distribution with “updated” parameters & and E
e Where@ =n; + aand ff = ny + .
— How do we know that this is a beta distribution?

* Because constant in & is unique.
— “If you are proportional to a beta distribution, you are a beta distribution.”

* Make sure you understand why posterior is a beta distribution (important in this course).



Summary

MAP Estimation:

— Find parameters maximizing probability of parameters given data.
 The “posterior”.

— Requires prior distribution on parameters:
e Can be used as bias towards parameters that overfit less.

Probability review:
— Product rule, marginalization rule, Bayes rule.

— Continuous “probabilities” and how “o” has a restricted meaning for
probabilities.

Beta distribution:
— Prior for Bernoulli that yields a closed-form posterior (another beta distribution).

Next time: end the streak of “numbers of lectures with no MNIST digits”.



