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Last Time: “Stupid MCMC”
Consider finding the expected value of a fair di:

For a 6-sided di, the expected value is 3.5.

Consider the following “stupid MCMC” algorithm:
Start with some initial value, like “4”.

At each step, roll the di and generate a random number u:

If u < 0.5, “accept” the roll and take the roll as the next sample.

Othewise, “reject” the roll and take the old value (“4”) as the next sample.

Stationary distribution of is π(c) = 1/6, so

π(x) = p(x),

which is the key feature underlying MCMC methods.
If you run it a really long time then stop, it will look like a sample from p.
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Markov Chain Monte Carlo (MCMC)

Markoc chain Monte Carlo (MCMC):
Design a Markov chain that has π(x) = p(x).

For large enough k, a sample xk from the chain will be distributed according to p(x).

Use the Markov chain samples within a Monte Carlo estimator,

E[g(x)] ≈ 1

n

n∑
t=1

g(xi).

Law of large numbers can be generalized to show this converges as n→∞.

“Ergodic theroem”.
But convergence is slower since we’re generating dependent samples.

A popular way to design the Markov chain is Metropolis-Hastings algorithm.

Oldest algorithm among the “10 Best Algorithms of the 20th Century”.
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Special Case of Metropolis Algorithm

The Metropolis algorithm for sampling from a continuous target p(x):
Assumes we can evaluate p up to a normalizing constant, p(x) = p̃(x)/Z.
Start with some initial value x0.
On each iteration add zero-mean Gaussian noise to xt to give proposal x̂t.

And generate a u uniformly between 0 and 1.

“Accept” the proposal and set xt+1 = x̂t if

u ≤ p̃(x̂t)

p̃(xt)
,

(probability of proposed)

(probability of current)

Otherwise “reject” the sample and use xt again as the next sample xt+1.
Proposals that increase probability are always accepted.
Proposals that decrease probability might be accepted or rejected.

A random walk, but sometimes rejecting steps that decrease probability:
A valid MCMC algorithm on continuous densities, but convergence may be slow.
You can implement this even if you don’t know normalizing constant.
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Metropolis Algorithm in Action

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/

styled-11/code-5

Pseudo-code:
eps = randn(d,1)

xhat = x + eps

u = rand()

if u < ( p(xhat) / p(x) )

set x = xhat

otherwise

keep x

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
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Metropolis Algorithm Analysis
Markov chain with transitions qss′ = q(xt = s′ | xt−1 = s) is reversible if

π(s)qss′ = π(s′)qs′s,

for some distribution π (this condition is called detailed balance).

Reversibility implies π is a stationary distribution,

∑
s

π(s)qss′ =
∑
s

π(s′)qs′s (sum reversibility over s values)∑
s

π(s)qss′ = π(s′)
∑
s

qs′s︸ ︷︷ ︸
=1∑

s

π(s)qss′ = π(s′) (stationary condition).

Metropolis is reversible with π = p (bonus slide) so p is stationary distribution.
And positive transition probabilities mean π exsists, and is unique/reached.
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Markov Chain Monte Carlo
MCMC sampling from a Gaussian:

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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MCMC Implementation Issues

In practice, we often don’t take all samples in our Monte Carlo estimate:
Burn in: throw away the initial samples when we haven’t converged to stationary.
Thinning: only keep every k samples, since they will be highly correlated.

Two common ways that MCMC is applied:
1 Sample from a huge number of Markov chains for a long time, use final states.

Great for parallelization.
No need for thinning, since you throw all but last samples.
Need to worry about burn in.

2 Sample from one Markov chain for a really long time, use states across time.
Less worry about burn in.
Need to worry about thinning.

It can very hard to diagnose if we have reached stationary distribution.
It is P-space hard (not polynomial-time even if P=NP).
Various heuristics exist.
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Metropolis-Hastings

Metropolis algorithm is a special case of Metropolis-Hastings.
Uses a proposal distribution q(x̂ | x), giving probability of proposing x̂ at x.

In Metropolis, q is a Gaussian with mean x.

Metropolis-Hastings accepts a proposed x̂t if

u ≤ p̃(x̂t)q(xt | x̂t)
p̃(xt)q(x̂t | xt)

,

where extra terms ensures reversibility for asymmetric q:

E.g., if you are more likely to propose to go from xt to x̂t than the reverse.

This works under very weak conditions, such as q(x̂t | xt) > 0.

But you can make performance much better/worse with an appropriate q.
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Metropolis-Hastings Example: Rolling Dice with Coins
Suppose we want to sample from a fair 6-sided di.

p(x=1) = p(x=2) = p(x=3) = p(x=4) = p(x=5) = p(x=6) = 1/6.
But don’t have a di or a computer and can only flip coins.

Consider the following random walk on the numbers 1-6:
If x = 1, always propose 2.
If x = 2, 50% of the time propose 1 and 50% of the time propose 3.
If x = 3, 50% of the time propose 2 and 50% of the time propose 4.
If x = 4, 50% of the time propose 3 and 50% of the time propose 5.
If x = 5, 50% of the time propose 4 and 50% of the time propose 6.
If x = 6, always propose 5.

“Flip a coin: go up if it’s heads and go down it it’s tails”.
The PageRank “random surfer” applied to this graph:
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Metropolis-Hastings Example: Rolling Dice with Coins

“Roll a di with a coin” by using random walk as transitions q in
Metropolis-Hastings to:

q(x̂ = 2 | x = 1) = 1, q(x̂ = 1 | x = 2) = 1
2 , q(x̂ = 2 | x = 3) = 1/2,. . .

If x is in the “middle” (2-5), we’ll always accept the random walk.

If x = 3 and we propose x̂ = 2, then:

u <
p(x̂ = 2)

p(x = 3)

q(x = 3 | x̂ = 2)

q(x̂ = 2 | x = 3)
=

1/6

1/6

1/2

1/2
= 1.

If x = 2 and we propose x̂ = 1, then we test u < 2 which is also always true.

If x is at the end (1 or 6), you accept with probability 1/2:

u <
p(x̂ = 2)

p(x = 1)

q(x = 1 | x̂ = 2)

q(x̂ = 2 | x = 1)
=

1/6

1/6

1/2

1
=

1

2
.
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Metropolis-Hastings Example: Rolling Dice with Coins

So Metropolis-Hastings modifies random walk probabilities:

If you’re at the end (1 or 6), stay there half the time.
This accounts for the fact that 1 and 6 have only one neighbour.

Which means they aren’t visited as often by the random walk.

Could also be viewed as a random surfer in a different graph:

You can think of Metropolis-Hastings as the modification that
“makes the random walk have the right probabilities”.

For any (reasonable) proposal distribution q.
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Special Case of Gibbs Sampling

An important special case of Metropolis-Hastings is Gibbs sampling.

Method to sample from a multi-dimensional distribution.
Probably the most common multi-dimensional sampler.

Gibbs sampling starts with some x and then repeats:
1 Choose a variable j uniformly at random.
2 Update xj by sampling it from its conditional,

xj ∼ p(xj | x−j),

where x−j means “all variables except xj”.

A common variation is to cycle through the variables in order.
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Gibbs Sampling in Action

Start with some initial value: x0 =
[
2 2 3 1

]
.

Select random j like j = 3.

Sample variable j: x1 =
[
2 2 1 1

]
.

Select random j like j = 1.

Sample variable j: x2 =
[
3 2 1 1

]
.

Select random j like j = 2.

Sample variable j: x3 =
[
3 2 1 1

]
.

. . .

Use the samples to form a Monte Carlo estimator.
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Gibbs Sampling in Action: Multivariate Gaussian
Gibbs sampling works for general distributions.

E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

Video: https://www.youtube.com/watch?v=AEwY6QXWoUg

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
https://www.youtube.com/watch?v=AEwY6QXWoUg
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Sampling from Conditionals

For discrete xj the conditionals needed for Gibbs sampling have a simple form,

p(xj = c | x−j) =
p(xj = c, x−j)

p(x−j)
=

p(xj = c, x−j)∑
xj=c′ p(xj = c′, x−j)

=
p̃(xj = c, x−j)∑

xj=c′ p̃(xj = c′, x−j)
,

where we use unnormalized p̃ since Z is the same in numerator/denominator.

Note that this expression is easy to evaluate: just summing over values of xj .

For continuous xj replace the sum by an integral.

May be able to figure out quantile function for inverse transform sampling.
May need to use rejection sampling, especially in non-conjugate cases.
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Gibbs Sampling as a Markov Chain

The “Gibbs sampling Markov chain” if p is over 4 binary variables:
The states are the possible configurations of the four variables:

s = [0 0 0 0], s = [0 0 0 1], s = [0 0 1 0], etc.

The initial probability q is set to 1 for the initial state, and 0 for the others:
If you start at s = [1 1 0 1], then q(x1 = [1 1 0 1]) = 1 and q(x1 = [0 0 0 0]) = 0.

The transition probabilities q are based on variable we choose and target p:
If we are at s = [1 1 0 1] and choose coordinate randomly we have:

q(xt+1 = [0 0 1 1] | xt = [1 1 0 1]) = 0 (Gibbs only updates on variable)

q(xt+1 = [1 0 0 1] | xt = [1 1 0 1]) =
1

d︸︷︷︸
uniform

p(x2 = 0 | x1 = 1, x3 = 0, x4 = 1)︸ ︷︷ ︸
from target distribution p

.

Not homogeneous if cycling, but homogeneous if add “last variable” to state.

Can show Gibbs sampling is a special case of Metropolis-Hastings.
In this case the acceptance rate is 1 so we never reject.



Metropolis-Hastings Directed Acyclic Graphical Models

Metropolis-Hastings

Common choices for proposal distribution q in Metropolis-Hastings:
Metropolis originally used random walks: xt = xt−1 + ε for ε ∼ N (0,Σ).
Hastings originally used independent proposal: q(xt | xt−1) = q(xt).

Usually not a good choice in high dimensions.

Gibbs sampling updates single variable based on conditional.
Block Gibbs sampling:

If you can sample multiple variables at once Gibbs sampling tends to work better.

Collapsed Gibbs sampling (Rao-Blackwellization):
MCMC provably works better at sampling marginals of a joint distribution.
“Try to integrate over variables you do not care about.”

Bonus slides survey some other advanced MCMC methods.

Unlike rejection sampling, high acceptance rate is not always good:
High acceptance rate may mean we’re not moving very much.
Low acceptance rate definitely means we’re not moving very much.
Designing good proposals q is an “art”.
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Outline

1 Metropolis-Hastings

2 Directed Acyclic Graphical Models
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Higher-Order Markov Models

Markov models use a density of the form

p(x) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3) · · · p(xd | xd−1).

They support efficient computation but Markov assumption is strong.

A more flexible model would be a second-order Markov model,

p(x) = p(x1)p(x2 | x1)p(x3 | x2, x1)p(x4 | x3, x2) · · · p(xd | xd−1, xd−2),

or even a higher-order models.

General case is called directed acyclic graphical (DAG) models:

They allow dependence on any subset of previous features.
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DAG Models

As in Markov chains, DAG models use the chain rule to write

p(x1, x2, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xd | x1, x2, . . . , xd−1).

We can alternately write this as:

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | x1:j−1).

In Markov chains, we assumed xj only depends on previous xj−1 given past.

In DAGs, xj can depend on any subset of the past x1, x2, . . . , xj−1.
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DAG Models

We often write joint probability in DAG models as

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | xpa(j)),

where pa(j) are the “parents” of feature j.

For Markov chains the only “parent” of j is (j − 1).
If we have k parents we only need 2k+1 parameters (for binary states).

This corresponds to a set of conditional independence assumptions,

p(xj | x1:j−1) = p(xj | xpa(j)),

that we’re independent of previous non-parents given the parents.
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MNIST DIgits with Markov Chains

Recall trying to model digits using an inhomogeneous Markov chain:

Only models dependence on pixel above, not on 2 pixels above nor across columns.
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MNIST Digits with DAG Model (Sparse Parents)

Samples from a DAG model with 8 parents per feature:

Parents of (i, j) are 8 other pixels in the neighbourhood (“up by 2, left by 2”):

{(i−2, j−2), (i−1, j−2), (i, j−2), (i−2, j−1), (i−1, j−1), (i, j−1), (i−2, j), (i−1, j)}.
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Summary

Markov chain Monte Carlo (MCMC) approximates complicated expectations.

Generate samples from a Markov chain that has p as stationary distribution.
Use these samples within a Monte Carlo approximation.

Metropolis-Hastings: MCMC method allowing arbitrary “proposals”.

By accepting/rejecting samples based on proposal and target probabilities.

Gibbs sampling: Samples each variable conditioned on all others.

Special case of Metropolis-Hastings MCMC method.

DAG models factorize joint distribution into product of conditionals.

Usually we assume conditionals depend on small number of “parents”.

Next time: conditional independence in DAGs.
(I am not going to pretend this is exciting, but its is useful.)
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Metropolis Algorithm Analysis
Metropolis algorithm has qss′ > 0 (sufficient to guarantee stationary distribution is
unique and we reach it) and satisfies detailed balance with target distribution p,

p(s)qss′ = p(s′)qs′s.

We can show this by defining transition probabilities

qss′ = min

{
1,
p̃(s′)

p̃(s)

}
,

and observing that

p(s)qss′ = p(s) min

{
1,
p̃(s′)

p̃(s)

}
= p(s) min

{
1,

1
Z p̃(s

′)
1
Z p̃(s)

}

= p(s) min

{
1,
p(s′)

p(s)

}
= min

{
p(s), p(s′)

}
= p(s′) min

{
1,
p(s)

p(s′)

}
= p(s′)qs′s.
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Advanced Monte Carlo Methods
“Adaptive MCMC”: tries to update q as we go: needs to be done carefully.
“Particle MCMC”: use particle filter to make proposal.

Auxiliary-variable sampling: introduce variables to sample bigger blocks:
E.g., introduce z variables in mixture models.
Also used in Bayesian logistic regression (beginning with Albert and Chib).

Trans-dimensional MCMC:
Needed when dimensionality of problem can change on different iterations.
Most important application is probably Bayesian feature selection.

Hamiltonian Monte Carlo:
Faster-converging method based on Hamiltonian dynamics.

Population MCMC:
Run multiple MCMC methods, each having different “move” size.
Large moves do exploration and small moves refine good estimates.

With mechanism to exchange samples between chains.
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