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Last Time: “Stupid MCMC"

o Consider finding the expected value of a fair di:
o For a 6-sided di, the expected value is 3.5.

@ Consider the following “stupid MCMC" algorithm:
o Start with some initial value, like “4".

e At each step, roll the di and generate a random number w:
o If u < 0.5, “accept” the roll and take the roll as the next sample.

o Othewise, “reject” the roll and take the old value (“4") as the next sample.
e Stationary distribution of is 7(c) = 1/6, so
m(z) = p(z),

which is the key feature underlying MCMC methods.
o If you run it a really long time then stop, it will look like a sample from p.
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Markov Chain Monte Carlo (MCMC)

@ Markoc chain Monte Carlo (MCMC):
o Design a Markov chain that has 7(x) = p(z).
o For large enough k, a sample 2" from the chain will be distributed according to p(x).

o Use the Markov chain samples within a Monte Carlo estimator,
1 n
Elg(a)] ~ — > g(a).
t=1

@ Law of large numbers can be generalized to show this converges as n — oo.

e “Ergodic theroem".
e But convergence is slower since we're generating dependent samples.

@ A popular way to design the Markov chain is Metropolis-Hastings algorithm.
o Oldest algorithm among the “10 Best Algorithms of the 20th Century”.
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Special Case of Metropolis Algorithm

@ The Metropolis algorithm for sampling from a continuous target p(x):
o Assumes we can evaluate p up to a normalizing constant, p(z) = p(x)/Z.

e Start with some initial value z°.

o On each iteration add zero-mean Gaussian noise to x! to give proposal %
@ And generate a u uniformly between 0 and 1.

“Accept” the proposal and set z'+! = & if

p(2')  (probability of proposed)
~ p(zt)”  (probability of current)

o Otherwise “reject” the sample and use =’ again as the next sample z/*1.

@ Proposals that increase probability are always accepted.
@ Proposals that decrease probability might be accepted or rejected.

e A random walk, but sometimes rejecting steps that decrease probability:
e A valid MCMC algorithm on continuous densities, but convergence may be slow.
@ You can implement this even if you don’t know normalizing constant.
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Metropolis Algorithm in Action

ICC,

=0.39
I1+]

| N
M=0.615,0.398; N,,=1000, 2
Ny

0.8

Pseudo-code:
eps = randn(d,1)
xhat = x + eps
u = rand()
if u < ( p(xhat) / p(x) )
set x = xhat
otherwise
keep x
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http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
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Metropolis Algorithm Analysis

@ Markov chain with transitions ¢,¢ = q(2! = s’ | 2!=! = s) is reversible if

W(S)QSS’ = W(SI)QS’57

for some distribution 7 (this condition is called detailed balance).

@ Reversibility implies 7 is a stationary distribution,

Z?T( Ve = Z (s)qsrs (sum reversibility over s values)
S
Z ( S)qss’ = 71— qu s
8 \W_/
=1
Z 7(8)qss = m(s") (stationary condition).

S

@ Metropolis is reversible with ™ = p (bonus slide) so p is stationary distribution.
o And positive transition probabilities mean 1 exsists and is uniaue/reached.
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Markov Chain Monte Carlo
MCMC sampling from a Gaussian:
From top left to bottom right: histograms of 1000 independent

Markov chains with a normal distribution as target distribution.
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http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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MCMC Implementation Issues

@ In practice, we often don't take all samples in our Monte Carlo estimate:
e Burn in: throw away the initial samples when we haven't converged to stationary.
e Thinning: only keep every k samples, since they will be highly correlated.

@ Two common ways that MCMC is applied:
@ Sample from a huge number of Markov chains for a long time, use final states.
o Great for parallelization.
@ No need for thinning, since you throw all but last samples.
@ Need to worry about burn in.

@ Sample from one Markov chain for a really long time, use states across time.

@ Less worry about burn in.
@ Need to worry about thinning.

@ It can very hard to diagnose if we have reached stationary distribution.
o It is P-space hard (not polynomial-time even if P=NP).
e Various heuristics exist.
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Metropolis-Hastings
@ Metropolis algorithm is a special case of Metropolis-Hastings.

o Uses a proposal distribution ¢(& | ), giving probability of proposing & at x.

@ In Metropolis, ¢ is a Gaussian with mean x.

@ Metropolis-Hastings accepts a proposed & if

~

p(at)q(z

where extra terms ensures reversibility for asymmetric g¢:
o E.g., if you are more likely to propose to go from 2t to #* than the reverse.

@ This works under very weak conditions, such as ¢(Z! | 2t) > 0.
e But you can make performance much better/worse with an appropriate g.



Metropolis-Hastings Directed Acyclic Graphical Models

Metropolis-Hastings Example: Rolling Dice with Coins

@ Suppose we want to sample from a fair 6-sided di.
o p(x=1) = p(x=2) = p(x=3) = p(x=4) = p(x=5) = p(x=6) = 1/6.
e But don't have a di or a computer and can only flip coins.

o Consider the following random walk on the numbers 1-6:

o If x =1, always propose 2.
If x =2, 50% of the time propose 1 and 50% of the time propose 3.
If z =3, 50% of the time propose 2 and 50% of the time propose 4.
If x = 4, 50% of the time propose 3 and 50% of the time propose 5.
If z =5, 50% of the time propose 4 and 50% of the time propose 6.
If z =6, always propose 5.

@ “Flip a coin: go up if it's heads and go down it it's tails".
e The PageRank “random surfer” applied to this graph:

OCHSOHSHO0
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Metropolis-Hastings Example: Rolling Dice with Coins

@ “Roll a di with a coin” by using random walk as transitions ¢ in
Metropolis-Hastings to:

e q@=2z=1)=1q(@=1|z=2)=1%q@@=2|z=3)=1/2,...

o If z is in the “middle” (2-5), we'll always accept the random walk.
o If x = 3 and we propose & = 2, then:

2)_1/61/2_
=3) 1/61/2

o If x =2 and we propose & = 1, then we test u < 2 which is also always true.

o If  is at the end (1 or 6), you accept with probability 1/2:

§=2) 1/61/2 1
r=1) 1/6 1 2

u <
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Metropolis-Hastings Example: Rolling Dice with Coins

@ So Metropolis-Hastings modifies random walk probabilities:

o If you're at the end (1 or 6), stay there half the time.
e This accounts for the fact that 1 and 6 have only one neighbour.

@ Which means they aren't visited as often by the random walk.

@ Could also be viewed as a random surfer in a different graph:

&\/e— S
@ You can think of Metropolis-Hastings as the modification that
“makes the random walk have the right probabilities”.

o For any (reasonable) proposal distribution g.
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Special Case of Gibbs Sampling

@ An important special case of Metropolis-Hastings is Gibbs sampling.

e Method to sample from a multi-dimensional distribution.
e Probably the most common multi-dimensional sampler.

@ Gibbs sampling starts with some x and then repeats:

@ Choose a variable j uniformly at random.
@ Update x; by sampling it from its conditional,

zj ~pzj | z-5),

where x_; means “all variables except z;".

@ A common variation is to cycle through the variables in order.
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Gibbs Sampling in Action

Start with some initial value: 2 =[2 2 3 1].
Select random j like j = 3.

Sample variable j: ' =[2 2 1 1].
@ Select random j like j = 1.

o Sample variable j: 2% = [3 2 1 1].
@ Select random j like j = 2.

o Sample variable j: 2% = [3 2 1 1].
° ...

@ Use the samples to form a Monte Carlo estimator.
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Gibbs Sampling in Action: Multivariate Gaussian

@ Gibbs sampling works for general distributions.
e E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

4
2
0
XN "
ot
. Samples
_4'. o 15t 50 Samples
#(1=0])
I . . . . .
-4 2 0 2 4 5

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

e Video: https://www.youtube.com/watch?v=AEwY6QXWoUg


https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
https://www.youtube.com/watch?v=AEwY6QXWoUg
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Sampling from Conditionals

@ For discrete x; the conditionals needed for Gibbs sampling have a simple form,

plxj=cx_j)  plr;=cz_j) B p(xj =c,x_j)

plzj =cla_j) = = ; = = 7
p(l'fj) Z$jiclp(x] = C7x*j) ijzc/p(x] = C,l',j)
where we use unnormalized p since Z is the same in numerator/denominator.

o Note that this expression is easy to evaluate: just summing over values of z;.

@ For continuous x; replace the sum by an integral.

e May be able to figure out quantile function for inverse transform sampling.
e May need to use rejection sampling, especially in non-conjugate cases.
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Gibbs Sampling as a Markov Chain

@ The “Gibbs sampling Markov chain” if p is over 4 binary variables:
e The states are the possible configurations of the four variables:
©s=1[0000],s=[0001],s=[0010], etc.
e The initial probability ¢ is set to 1 for the initial state, and 0 for the others:
o If youstart at s =[1101], then g(2' =[1101]) =1 and g(z' =[0000]) =0.
e The transition probabilities ¢ are based on variable we choose and target p:
o If we are at s = [1 1 0 1] and choose coordinate randomly we have:

gz =0011]|2"*=[1101]) =0 (Gibbs only updates on variable)

g™ =[1001] 2" =[1101]) = pxa =021 =123 =0,24 = 1).

from target distribution p

o Not homogeneous if cycling, but homogeneous if add “last variable” to state.

@ Can show Gibbs sampling is a special case of Metropolis-Hastings.
e In this case the acceptance rate is 1 so we never reject.
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Metropolis-Hastings

@ Common choices for proposal distribution ¢ in Metropolis-Hastings:
o Metropolis originally used random walks: z‘ = 2!=! + ¢ for e ~ N (0, ).
o Hastings originally used independent proposal: g(z! | z!=1) = q(a?).
@ Usually not a good choice in high dimensions.
Gibbs sampling updates single variable based on conditional.
Block Gibbs sampling:
o If you can sample multiple variables at once Gibbs sampling tends to work better.
Collapsed Gibbs sampling (Rao-Blackwellization):
o MCMC provably works better at sampling marginals of a joint distribution.
o “Try to integrate over variables you do not care about.”

e Bonus slides survey some other advanced MCMC methods.

@ Unlike rejection sampling, high acceptance rate is not always good:
e High acceptance rate may mean we're not moving very much.
o Low acceptance rate definitely means we're not moving very much.
e Designing good proposals ¢ is an “art”.
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Outline

© Directed Acyclic Graphical Models
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Higher-Order Markov Models

@ Markov models use a density of the form
p(z) = p(z1)p(z2 | 21)p(xs | z2)p(2s | 23) -+ p(ad | 2a—1).
@ They support efficient computation but Markov assumption is strong.
@ A more flexible model would be a second-order Markov model,
p(z) = p(x1)p(x2 | 21)p(xs [ z2, 21)p(2s | 23, 22) - P(Ta | Ta—1,Ta—2),

or even a higher-order models.

@ General case is called directed acyclic graphical (DAG) models:
e They allow dependence on any subset of previous features.
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DAG Models

@ As in Markov chains, DAG models use the chain rule to write

p(z1,22,...,2q) = p(x1)p(z2 | T1)p(T3 | 1, 72) -+ - P(T4 | T1, T2, .+, Ta—1)-
@ We can alternately write this as:

d

plar, @2, xa) = [ [ p(z) | 215-1).
j=1

@ In Markov chains, we assumed x; only depends on previous x;_1 given past.

@ In DAGs, x; can depend on any subset of the past x1,x2,...,2;_1.
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DAG Models
@ We often write joint probability in DAG models as
d
p(l’l,l‘g, ) .’Ed) = Hp(xj | ‘Tpa(j))a
j=1

where pa(j) are the “parents” of feature j.

e For Markov chains the only “parent” of jis (7 — 1).
o If we have k parents we only need 2+ parameters (for binary states).

@ This corresponds to a set of conditional independence assumptions,

(| 21:5-1) = p(T5 | Tpa(s))s

that we're independent of previous non-parents given the parents.
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MNIST Dlgits with Markov Chains

@ Recall trying to model digits using an inhomogeneous Markov chain:

Only models dependence on pixel above, not on 2 pixels above nor across columns.
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MNIST Digits with DAG Model (Sparse Parents)

@ Samples from a DAG model with 8 parents per feature:

=

5 10 15 20 25 5 10 15 20 25

Ell

5 10 15 20 25 5 10 15 20 25

Parents of (i, j) are 8 other pixels in the neighbourhood (“up by 2, left by 2"):
{(7'_27.7_2)7 (2_17.7_2)7 (273_2)7 (Z_ij_l)v (1_17]_1% (Zvj_l)v (2_271)7 (7'_17.7)}
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Summary

Markov chain Monte Carlo (MCMC) approximates complicated expectations.

o Generate samples from a Markov chain that has p as stationary distribution.
o Use these samples within a Monte Carlo approximation.

Metropolis-Hastings: MCMC method allowing arbitrary “proposals”.

o By accepting/rejecting samples based on proposal and target probabilities.
Gibbs sampling: Samples each variable conditioned on all others.

e Special case of Metropolis-Hastings MCMC method.
DAG models factorize joint distribution into product of conditionals.

o Usually we assume conditionals depend on small number of “parents”.

Next time: conditional independence in DAGs.
(I am not going to pretend this is exciting, but its is useful.)
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Metropolis Algorithm Analysis
e Metropolis algorithm has gss > 0 (sufficient to guarantee stationary distribution is
unique and we reach it) and satisfies detailed balance with target distribution p,

p(S)QSs’ = p(sl)q$/5~

p(s)

@ We can show this by defining transition probabilities
~( !
¢ss' = min {17 p~(8 ) } )

and observing that
= p(s) min p
p(S)QSS/ —p( ) {L ]5(8)
= p(s) min p(s’) = min S s
— p(s)min {1,245 {p(s).pls")}
P S) = p(sl)QS’s-
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Advanced Monte Carlo Methods

“Adaptive MCMC": tries to update g as we go: needs to be done carefully.
“Particle MCMC": use particle filter to make proposal.

Auxiliary-variable sampling: introduce variables to sample bigger blocks:
e E.g., introduce z variables in mixture models.
o Also used in Bayesian logistic regression (beginning with Albert and Chib).

Trans-dimensional MCMC:
o Needed when dimensionality of problem can change on different iterations.
e Most important application is probably Bayesian feature selection.

Hamiltonian Monte Carlo:
o Faster-converging method based on Hamiltonian dynamics.

Population MCMC:

e Run multiple MCMC methods, each having different “move” size.
a | arce movee do evnlaration and cmall movee refine cond ectimatrec
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