CPSC 440: Advanced Machine Learning Markov Chain Monte Carlo

Mark Schmidt

University of British Columbia

Winter 2022

Metropolis-Hastings

Last Time: "Stupid MCMC"

- Consider finding the expected value of a fair di:
 - For a 6-sided di, the expected value is 3.5.
- Consider the following "stupid MCMC" algorithm:
 - Start with some initial value, like "4".
 - At each step, roll the di and generate a random number u:
 - If u < 0.5, "accept" the roll and take the roll as the next sample.
- Othewise, "reject" the roll and take the old value ("4") as the next sample. • Stationary distribution of is $\pi(c)=1/6,$ so

$$\pi(x) = p(x),$$

which is the key feature underlying MCMC methods.

• If you run it a really long time then stop, it will look like a sample from p.

Markov Chain Monte Carlo (MCMC)

- Markoc chain Monte Carlo (MCMC):
 - Design a Markov chain that has $\pi(x) = p(x)$.
 - For large enough k, a sample x^k from the chain will be distributed according to p(x).
 - Use the Markov chain samples within a Monte Carlo estimator,

$$\mathbb{E}[g(x)] \approx \frac{1}{n} \sum_{t=1}^{n} g(x^{i}).$$

- Law of large numbers can be generalized to show this converges as $n \to \infty$.
 - "Ergodic theroem".
 - But convergence is slower since we're generating dependent samples.
- A popular way to design the Markov chain is Metropolis-Hastings algorithm.
 - Oldest algorithm among the "10 Best Algorithms of the 20th Century".

Special Case of Metropolis Algorithm

- The Metropolis algorithm for sampling from a continuous target p(x):
 - Assumes we can evaluate p up to a normalizing constant, $p(x) = \tilde{p}(x)/Z.$
 - Start with some initial value x^0 .
 - On each iteration add zero-mean Gaussian noise to x^t to give proposal \hat{x}^t .
 - And generate a u uniformly between 0 and 1.
 - "Accept" the proposal and set $x^{t+1} = \hat{x}^t$ if

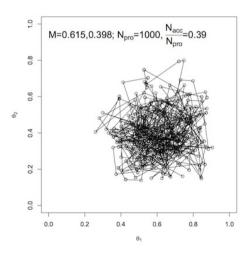
$$u \leq \frac{\tilde{p}(\hat{x}^t)}{\tilde{p}(x^t)}, \quad \frac{(\text{probability of proposed})}{(\text{probability of current})}$$

- Otherwise "reject" the sample and use x^t again as the next sample x^{t+1} .
 - Proposals that increase probability are always accepted.
 - Proposals that decrease probability might be accepted or rejected.
- A random walk, but sometimes rejecting steps that decrease probability:
 - A valid MCMC algorithm on continuous densities, but convergence may be slow.
 - You can implement this even if you don't know normalizing constant.

Metropolis-Hastings

Directed Acyclic Graphical Models

Metropolis Algorithm in Action



```
Pseudo-code:
eps = randn(d,1)
xhat = x + eps
u = rand()
if u < ( p(xhat) / p(x) )
set x = xhat
otherwise
keep x
```

Metropolis Algorithm Analysis

• Markov chain with transitions $q_{ss^\prime} = q(x^t = s^\prime \mid x^{t-1} = s)$ is reversible if

$$\pi(s)q_{ss'} = \pi(s')q_{s's},$$

for some distribution π (this condition is called detailed balance).

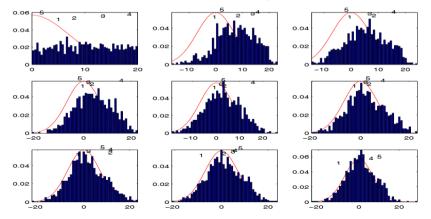
• Reversibility implies π is a stationary distribution,

- Metropolis is reversible with $\pi = p$ (bonus slide) so p is stationary distribution.
 - And positive transition probabilities mean π exsists, and is unique/reached.

Markov Chain Monte Carlo

MCMC sampling from a Gaussian:

From top left to bottom right: histograms of 1000 independent Markov chains with a normal distribution as target distribution.



http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

MCMC Implementation Issues

- In practice, we often don't take all samples in our Monte Carlo estimate:
 - Burn in: throw away the initial samples when we haven't converged to stationary.
 - Thinning: only keep every k samples, since they will be highly correlated.
- Two common ways that MCMC is applied:
 - Sample from a huge number of Markov chains for a long time, use final states.
 - Great for parallelization.
 - No need for thinning, since you throw all but last samples.
 - Need to worry about burn in.
 - **2** Sample from one Markov chain for a really long time, use states across time.
 - Less worry about burn in.
 - Need to worry about thinning.
- It can very hard to diagnose if we have reached stationary distribution.
 - It is P-space hard (not polynomial-time even if P=NP).
 - Various heuristics exist.

Metropolis-Hastings

- Metropolis algorithm is a special case of Metropolis-Hastings.
 - Uses a proposal distribution $q(\hat{x} \mid x)$, giving probability of proposing \hat{x} at x.
 - In Metropolis, q is a Gaussian with mean x.
- Metropolis-Hastings accepts a proposed \hat{x}^t if

$$u \le \frac{\tilde{p}(\hat{x}^t)q(x^t \mid \hat{x}^t)}{\tilde{p}(x^t)q(\hat{x}^t \mid x^t)},$$

where extra terms ensures reversibility for asymmetric q:

- E.g., if you are more likely to propose to go from x^t to \hat{x}^t than the reverse.
- This works under very weak conditions, such as $q(\hat{x}^t \mid x^t) > 0$.
 - But you can make performance much better/worse with an appropriate q.

Metropolis-Hastings Example: Rolling Dice with Coins

- Suppose we want to sample from a fair 6-sided di.
 - p(x=1) = p(x=2) = p(x=3) = p(x=4) = p(x=5) = p(x=6) = 1/6.
 - But don't have a di or a computer and can only flip coins.
- Consider the following random walk on the numbers 1-6:
 - If x = 1, always propose 2.
 - If x = 2, 50% of the time propose 1 and 50% of the time propose 3.
 - If x = 3, 50% of the time propose 2 and 50% of the time propose 4.
 - If x = 4, 50% of the time propose 3 and 50% of the time propose 5.
 - If x = 5, 50% of the time propose 4 and 50% of the time propose 6.
 - If x = 6, always propose 5.
- "Flip a coin: go up if it's heads and go down it it's tails".
 - The PageRank "random surfer" applied to this graph:

Metropolis-Hastings Example: Rolling Dice with Coins

- "Roll a di with a coin" by using random walk as transitions q in Metropolis-Hastings to:
 - $q(\hat{x}=2 \mid x=1) = 1$, $q(\hat{x}=1 \mid x=2) = \frac{1}{2}$, $q(\hat{x}=2 \mid x=3) = 1/2,...$
 - If x is in the "middle" (2-5), we'll always accept the random walk.
 - If x = 3 and we propose $\hat{x} = 2$, then:

$$u < \frac{p(\hat{x}=2)}{p(x=3)} \frac{q(x=3 \mid \hat{x}=2)}{q(\hat{x}=2 \mid x=3)} = \frac{1/6}{1/6} \frac{1/2}{1/2} = 1.$$

• If x = 2 and we propose $\hat{x} = 1$, then we test u < 2 which is also always true.

• If x is at the end (1 or 6), you accept with probability 1/2:

$$u < \frac{p(\hat{x}=2)}{p(x=1)} \frac{q(x=1 \mid \hat{x}=2)}{q(\hat{x}=2 \mid x=1)} = \frac{1/6}{1/6} \frac{1/2}{1} = \frac{1}{2}.$$

Metropolis-Hastings Example: Rolling Dice with Coins

- So Metropolis-Hastings modifies random walk probabilities:
 - If you're at the end (1 or 6), stay there half the time.
 - This accounts for the fact that 1 and 6 have only one neighbour.
 - Which means they aren't visited as often by the random walk.
- Could also be viewed as a random surfer in a different graph:

- You can think of Metropolis-Hastings as the modification that "makes the random walk have the right probabilities".
 - For any (reasonable) proposal distribution q.

Special Case of Gibbs Sampling

- An important special case of Metropolis-Hastings is Gibbs sampling.
 - Method to sample from a multi-dimensional distribution.
 - Probably the most common multi-dimensional sampler.
- Gibbs sampling starts with some x and then repeats:
 - **(**) Choose a variable j uniformly at random.
 - **2** Update x_j by sampling it from its conditional,

 $x_j \sim p(x_j \mid x_{-j}),$

where x_{-j} means "all variables except x_j ".

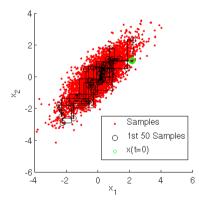
• A common variation is to cycle through the variables in order.

Gibbs Sampling in Action

- Start with some initial value: $x^0 = \begin{bmatrix} 2 & 2 & 3 & 1 \end{bmatrix}$.
- Select random j like j = 3.
- Sample variable $j: x^1 = \begin{bmatrix} 2 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 1.
- Sample variable $j: x^2 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 2.
- Sample variable $j: x^3 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.
- . . .
- Use the samples to form a Monte Carlo estimator.

Gibbs Sampling in Action: Multivariate Gaussian

- Gibbs sampling works for general distributions.
 - E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.



https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

• Video: https://www.youtube.com/watch?v=AEwY6QXWoUg

Sampling from Conditionals

• For discrete x_j the conditionals needed for Gibbs sampling have a simple form,

$$p(x_j = c \mid x_{-j}) = \frac{p(x_j = c, x_{-j})}{p(x_{-j})} = \frac{p(x_j = c, x_{-j})}{\sum_{x_j = c'} p(x_j = c', x_{-j})} = \frac{\tilde{p}(x_j = c, x_{-j})}{\sum_{x_j = c'} \tilde{p}(x_j = c', x_{-j})}$$

where we use unnormalized \tilde{p} since Z is the same in numerator/denominator.

- Note that this expression is easy to evaluate: just summing over values of x_j .
- For continuous x_j replace the sum by an integral.
 - May be able to figure out quantile function for inverse transform sampling.
 - May need to use rejection sampling, especially in non-conjugate cases.

Gibbs Sampling as a Markov Chain

- The "Gibbs sampling Markov chain" if p is over 4 binary variables:
 - The states are the possible configurations of the four variables:

•
$$s = [0 \ 0 \ 0 \ 0], s = [0 \ 0 \ 0 \ 1], s = [0 \ 0 \ 1 \ 0],$$
 etc.

- The initial probability q is set to 1 for the initial state, and 0 for the others:
 - If you start at $s = [1 \ 1 \ 0 \ 1]$, then $q(x^1 = [1 \ 1 \ 0 \ 1]) = 1$ and $q(x^1 = [0 \ 0 \ 0 \ 0]) = 0$.
- The transition probabilities q are based on variable we choose and target p:
 - If we are at $s = [1 \ 1 \ 0 \ 1]$ and choose coordinate randomly we have:

$$q(x^{t+1} = [0 \ 0 \ 1 \ 1] \mid x^t = [1 \ 1 \ 0 \ 1]) = 0 \quad \text{(Gibbs only updates on variable)}$$

$$q(x^{t+1} = [1 \ 0 \ 0 \ 1] \mid x^t = [1 \ 1 \ 0 \ 1]) = \underbrace{\frac{1}{d}}_{\text{uniform}} \underbrace{p(x_2 = 0 \mid x_1 = 1, x_3 = 0, x_4 = 1)}_{\text{from target distribution } p}.$$

- Not homogeneous if cycling, but homogeneous if add "last variable" to state.
- Can show Gibbs sampling is a special case of Metropolis-Hastings.
 - $\bullet\,$ In this case the acceptance rate is 1 so we never reject.

Metropolis-Hastings

- Common choices for proposal distribution q in Metropolis-Hastings:
 - Metropolis originally used random walks: $x^t = x^{t-1} + \epsilon$ for $\epsilon \sim \mathcal{N}(0, \Sigma)$.
 - Hastings originally used independent proposal: $q(x^t \mid x^{t-1}) = q(x^t)$.
 - Usually not a good choice in high dimensions.
 - Gibbs sampling updates single variable based on conditional.
 - Block Gibbs sampling:
 - If you can sample multiple variables at once Gibbs sampling tends to work better.
 - Collapsed Gibbs sampling (Rao-Blackwellization):
 - MCMC provably works better at sampling marginals of a joint distribution.
 - "Try to integrate over variables you do not care about."
 - Bonus slides survey some other advanced MCMC methods.
- Unlike rejection sampling, high acceptance rate is not always good:
 - High acceptance rate may mean we're not moving very much.
 - Low acceptance rate definitely means we're not moving very much.
 - Designing good proposals q is an "art".

Outline

Metropolis-Hastings

Higher-Order Markov Models

• Markov models use a density of the form

 $p(x) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2)p(x_4 \mid x_3) \cdots p(x_d \mid x_{d-1}).$

- They support efficient computation but Markov assumption is strong.
- A more flexible model would be a second-order Markov model,

 $p(x) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1)p(x_4 \mid x_3, x_2) \cdots p(x_d \mid x_{d-1}, x_{d-2}),$

or even a higher-order models.

- General case is called directed acyclic graphical (DAG) models:
 - They allow dependence on any subset of previous features.

DAG Models

• As in Markov chains, DAG models use the chain rule to write

 $p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \cdots p(x_d \mid x_1, x_2, \dots, x_{d-1}).$

• We can alternately write this as:

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j \mid x_{1:j-1}).$$

- In Markov chains, we assumed x_j only depends on previous x_{j-1} given past.
- In DAGs, x_j can depend on any subset of the past $x_1, x_2, \ldots, x_{j-1}$.

DAG Models

• We often write joint probability in DAG models as

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j \mid x_{\mathsf{pa}(j)}),$$

where pa(j) are the "parents" of feature j.

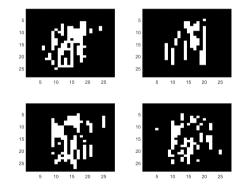
- For Markov chains the only "parent" of j is (j-1).
- If we have k parents we only need 2^{k+1} parameters (for binary states).
- This corresponds to a set of conditional independence assumptions,

$$p(x_j \mid x_{1:j-1}) = p(x_j \mid x_{\mathsf{pa}(j)}),$$

that we're independent of previous non-parents given the parents.

MNIST DIgits with Markov Chains

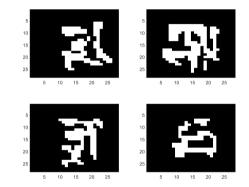
• Recall trying to model digits using an inhomogeneous Markov chain:



Only models dependence on pixel above, not on 2 pixels above nor across columns.

MNIST Digits with DAG Model (Sparse Parents)

• Samples from a DAG model with 8 parents per feature:



Parents of (i, j) are 8 other pixels in the neighbourhood ("up by 2, left by 2"): $\{(i-2, j-2), (i-1, j-2), (i, j-2), (i-2, j-1), (i-1, j-1), (i, j-1), (i-2, j), (i-1, j)\}$.

Summary

- Markov chain Monte Carlo (MCMC) approximates complicated expectations.
 - Generate samples from a Markov chain that has p as stationary distribution.
 - Use these samples within a Monte Carlo approximation.
- Metropolis-Hastings: MCMC method allowing arbitrary "proposals".
 - By accepting/rejecting samples based on proposal and target probabilities.
- Gibbs sampling: Samples each variable conditioned on all others.
 - Special case of Metropolis-Hastings MCMC method.
- DAG models factorize joint distribution into product of conditionals.
 - Usually we assume conditionals depend on small number of "parents".
- Next time: conditional independence in DAGs.
 (I am not going to pretend this is exciting, but its is useful.)

Metropolis Algorithm Analysis

• Metropolis algorithm has $q_{ss'} > 0$ (sufficient to guarantee stationary distribution is unique and we reach it) and satisfies detailed balance with target distribution p,

$$p(s)q_{ss'} = p(s')q_{s's}.$$

• We can show this by defining transition probabilities

$$q_{ss'} = \min\left\{1, \frac{\tilde{p}(s')}{\tilde{p}(s)}\right\},$$

and observing that

$$p(s)q_{ss'} = p(s)\min\left\{1, \frac{\tilde{p}(s')}{\tilde{p}(s)}\right\} = p(s)\min\left\{1, \frac{\frac{1}{Z}\tilde{p}(s')}{\frac{1}{Z}\tilde{p}(s)}\right\}$$
$$= p(s)\min\left\{1, \frac{p(s')}{p(s)}\right\} = \min\left\{p(s), p(s')\right\}$$
$$= p(s')\min\left\{1, \frac{p(s)}{p(s')}\right\} = p(s')q_{s's}.$$

Advanced Monte Carlo Methods

- "Adaptive MCMC": tries to update q as we go: needs to be done carefully.
- "Particle MCMC": use particle filter to make proposal.
- Auxiliary-variable sampling: introduce variables to sample bigger blocks:
 - E.g., introduce z variables in mixture models.
 - Also used in Bayesian logistic regression (beginning with Albert and Chib).
- Trans-dimensional MCMC:
 - Needed when dimensionality of problem can change on different iterations.
 - Most important application is probably Bayesian feature selection.
- Hamiltonian Monte Carlo:
 - Faster-converging method based on Hamiltonian dynamics.
- Population MCMC:
 - Run multiple MCMC methods, each having different "move" size.
 - Large moves do exploration and small moves refine good estimates.