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Message Passing MCMC Warm-Up

Last Time: Chapman-Kolmogorov Equations

e Chapman-Kolmogorov (CK) equations:
o Recursive formula for computing p(x; = s) for all j and s in a Markov chain.

k

p(z;) = Z p(xj [ zj-1)p(z;-1),

Tj—1=1

o Allows us to compute all these marginal probabilities p(x; = s) in O(dk?).
o For a length-d chain with k states.

@ We also discussed stationary distributions of homogeneous Markov chains.
w(e) =Y plxj=claj1=)n(d),
C/

which are sets of marginal probabilities 7 that don't change over time.
e You can think of this as the “long-run average probability of being in each state”.
e Stationary distribution exists and is unique if all transitions are positive.
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Application: Voice Photoshop

@ Adobe VoCo uses decoding in a Markov chain as part of synthesizing voices:
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splG
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PG including all Triphones
and Diphones
Triphone match SEOER Diphone match ‘ """ Consecttie

Fig. 7. Dynamic triphone preselection. For each query triphone (top) we
find a candidate set of good potential matches (columns below). Good paths
through this set minimize differences from the query, number and severity
of breaks, and contextual mismatches between neighboring triphones.

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

e https://www.youtube.com/watch?v=I314XLZ59iw


http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf
https://www.youtube.com/watch?v=I3l4XLZ59iw
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Decoding: Maximizing Joint Probability

Decoding in density models: finding = with highest joint probability:

argmax p(zy1,Ta,...,xq).
L1,X2,..-,Td

For CS grad student (d = 60) the decoding is “industry” for all years.

o The decoding often doesn’t look like a typical sample.
e The decoding can change if you increase d.

Decoding is easy for independent models:

o Here, p(x1, 22,23, 24) = p(x1)p(x2)p(23)p(T4).
e You can optimize p(x1, z2, 3, x4) by optimizing each p(z;) independently.

Can we also maximize the marginals to decode a Markov chain?
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Example of Decoding vs. Maximizing Marginals

@ Consider the “plane of doom” 2-variable Markov chain:

“land”
“land”
“crash”

“explode”

“crash”
“land”

@ 40% of the time the plane lands and you live.

“ H 1 ]
alive

“alive”
“dead”
“dead”
“dead”

“alive”

@ 30% of the time the plane crashes and you die.

@ 30% of the time the explodes and you die.

MCMC Warm-Up
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Example of Decoding vs. Maximizing Marginals
@ Initial probabilities are given by
p(z1 = “land”) = 0.4, p(x; = “crash”) =0.3, p(z1 = “explode”) = 0.3,
and transition probabilites are:
p(ze = “alive” | 1 = “land”) =1, p(xe = “alive” | x; = “crash”) =0,
p(zo = “alive” | 21 = “explode”) = 0.
o If we apply the CK equations we get
p(zg = "alive”) =04, p(ze = “dead”) = 0.6,
so maximizing the marginals p(z;) independently gives (“land”, “dead”).

e This actually has probability 0, since p(“dead” | “land”) = 0.

@ Decoding considers the joint assignment to x1 and x2 maximizing probaiblity.
o In this case it's ("land”, “alive”), which has probability 0.4.
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Decoding with Dynamic Programming

@ Note that decoding can’t be done forward in time as in CK equations.

e Even if p(z; = 1) = 0.99, the most likely sequence could have z; = 2.
e So we need to optimize over all k% assignments to all variables.

@ Fortunately, we can solve this problem using dynamic programming.

@ Ingredients of dynamic programming:
@ Optimal sub-structure.
@ We can divide the problem into sub-problems that can individual be solved.
@ Overlapping sub-problems.
@ The same sub-problems are reused several times.
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Decoding with Dynamic Programming

@ For decoding in Markov chains, we will use the following sub-problem:

e Compute the highest probability sequence of length j ending in state s.
o We'll use M, (s) as the probability of this sequence.

M;(s)= max p(x1,22,...,%j-1,2; = s).
L1,L2,--3T5—1
@ Optimal sub-structure:

o We can find the decoding by finding the s maximizing My(s) (then “backtracking”).
o We can compute other M;(s) recursively (derivation of this coming up),

M](S) = ma;lcp(xj =S ‘ £Ej,1) Mjfl(wjfl),
Tj

given recurse

with a base case of M;(s) = p(xz1 = s) (which is given by the initial probability).
@ Overlapping sub-problems:
o The same k values of M;_1(s) are used to compute the k values of M;(s).
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Digression: Recursive Joint Maximization
@ To derive the M; formula, it will be helpful to re-write joint maximizations as

max f(x1,x2) = max fi(z1),
1,22 1

where fi(x1) = max,, f(x1,x2) (this fi “maximizes out” over x3).

o This is similar to the marginalization rule in probability.

@ Plugging in the definition of f1(x1) we obtain:
max f(x1,x2) = maxmax f(x1,x2) .
1,2 1 z2
| ——
Ji(z1)

@ You can do this trick repeatedly and/or with any number of variables.
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Decoding with Dynamic Programming

@ Derivation of recursive calculation M;(x;) for decoding Markov chains:

Mj(z;) = o m;ggxxjil p(z1,x2,...,2;5) (definition of Mj(x;))

= max p(x; | 1, 22,...xj-1)p(z1, T2, ..., Tj_1) (product rule)
T1,T2,-.Tj 1

= max  p(z; | zj—1)p(x1,®2,...,2T5-1) (Markov property)
T1,T2,..T5j_1

= max { max  p(z; | x]-_l)p(az1,a:2,:e]-_1)} (max f(a,b) = max{max f(a,b)})
Tj—1 | T1,T2,---T5j_2 a,b a b

= max {p(xj | z5_1) max p(xl,xg,a:jfl)} (max aa; = amaxa; for a > 0)
Tj_1 1,2, T2 i i

=maxp(z; | xj_1) Mj_1(xj_1) (definition of M;_1(x;j_1))
Tj_1

given recurse

e We also store the argmax over x;_; for each (j,s) .

o Once we have M;(z; = s) for all j and s values,
backtrack using these values to solve problem.
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Example: Decoding the Plane of Doom

@ We have M;(x1) = p(x1) so in “plane of doom” we have
M;i("land") = 0.4, M;("crash”)=0.3, M;("explode”)=0.3.
e We have Ms(x2) = max,, p(xs | x1)M;p(x1) so we get
My (“alive”) = 0.4, M, ("dead”) = 0.3.

@ My(2) # p(z2 = 2) because we needed to choose either “crash” or “explode”.
o And notice that Ele Ms(xzj; = c¢) # 1 (this is not a distribution over x3).

e We maximize Ms(z2) to find that the optimal decoding ends with “alive”.
o We now need to backtrack to find the state that lead to “alive”, giving “land”.
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Viterbi Decoding

@ The Viterbi decoding dynamic programming algorithm:
e Set M1(£E1) = p(xl) for all xIy.
@ Compute Ma(x2) for all zo, store argmax of x; leading to each z5.
© Compute Ms(x3) for all x5, store argmax of z2 leading to each zs.
Q ...
© Maximize My(x4) to find value of 4 in a decoding.
@ Bactrack to find the value of x4_; that lead to this x.
@ Backtrack to find the value of xz4_o that lead to this z4_1.
Q ...
© Backtrack to find the value of x; that lead to this 5.

e For a fixed j, computing all M;(z;) given all M;_1(zj_1) costs O(k?).
o Total cost is only O(dk?) to search over all k¢ paths.
e Has numerous applications like decoding digital TV.
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Viterbi Decoding

e What Viterbi decoding data structures might look like (d = 4,k = 3):

0.25 0.25 0.50 000
0.35 0.15 0.05 113
M=1010 005 005]° BT {2 11
0.02 0.03 0.05 2 21

@ The d x k matrix M stores the values M;(s), while B stores the argmax values.

@ From the last row of M and the backtracking matrix B,
the decoding is z1 = 1,20 = 2,23 = 1,24 = 3.
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Conditional Probabilities in Markov Chains: Easy Case

e How do we compute conditionals like p(z; = ¢ | z;; = ¢’) in Markov chains?

e Consider conditioning on an earlier time, like computing p(z1o | x3):
o We are given the value of z3.
o We obtain p(x4 | x3) by looking it up among transition probabilities.
o We can compute p(x5 | x3) by adding conditioning to the CK equations,

p(xs | x3) Zp X5, T4 | X3) (marg rule)
= Zp (x5 | T4, 23)p(as | T3) (product rule)
= Zp (x5 | z4) p(x4 | x3) (Markov property).
\‘,_./
glven recurse

o Repeat this to find p(x¢ | z3), then p(x7 | x3), up to p(x1g | z3).
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Conditional Probabilities in Markov Chains with “Forward” Messages

e How do we condition on a future time, like computing p(x3 | 26)?
o Need to sum over “past” values x; and x2, and “future” values x4 and xs.

p(xs | we) o p(x3, z6) ZZZZP(wl,zz,xg,x4,x5,x6) (cond. prob. and marg. rule)

5 T4 T2 ]

=> > 3> e | 25)p(ws | xa)p(xa | x3)p(xs | x2)p(a2 | @1)p(e:)

5 T4 T2 T1

= e |25) Y p(es | wa)p(ea | 23) > plas | 22) Y p(xa | 21)p(e1)
= plas | 25) Y ples | za)p(ea | x3) Y p(xs | z2) Ma(2)
= plas |25) Y plas | za)p(za | w3)Ms(ws)

= plws | z5)Ms(as)

s
= Mg (xs) (the values M are called “forward messages”)

e M;j(x;) summarizes “everything you need to know up to time j for this x; value”.
o Different 3 will give different Mg values, normalize these to get final result.
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Conditional Probabilities in Markov Chains with “Backward” Messages

@ We could exchange order of sums to do computation “backwards” in time:

plas | z6) = ;;;;p(ml)p(wz | 1)p(xs | @2)p(ea | w3)p(es | za)p(zs | 25)
= ;p(wl);p(m | 1)p(zs | 962);10(964 | 3) ;p(»’vs | 24)p(z6 | z5)
= ;p(wl);p(l‘z | z1)p(zs | xz);p(m | z3)Va(za)
= z210(961) IZP(M | z1)p(es | x2)Vs(x3)
= le(zl)vlz(ml) (the values V; are called “backward messages” )

@ The V; summarize “everything you need to know after time j for this x; value”.

o Sometimes called “cost to go” function, as in “what is the cost for going to x;".
o Sometimes called a value function, as in “what is the future value of being in z;".
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Motivation for Forward-Backward Algorithm

@ Why do care about being able to solve this “forward” or “backward” in time?
o Cost is O(dk?) in both directions to compute conditionals in Markov chains.

e Consider computing p(x1 | A), p(za | A),..., p(xzq | A) for some event A.
o Need all these conditionals to add features or neural networks, and in HMMs.

@ We could solve this in O(dk?) for each time, giving a total cost of O(d?k?).
o Using forward messages M;(x;) at each time, or backwards messages V;(z;).

o Alternately, the forward-backward algorithm computes all conditionals in O(dk?).
e By doing one “forward” pass and one “backward” pass with appropriate messages.
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Potential Function Representation of Markov Chains

@ Forward-backward algorithm considers probabilities written in the form

1 d d
p(rn, w2, wa) = — [T o5 | | TT ¢itzsozi)
j=1 j=2

@ The ¢; and v; functions are called potential functions.
e They can map from a state (¢) or two states (¢) to a non-negative function.
e And normalizing constant Z ensures we sum/integrate to 1 (over all 1, z,...,24).

@ We can write Markov chains in this form by using (in this case Z = 1):
o ¢1(z1) =p(x1) and ¢;(x;) =1 when j # 1.
o ¥j(xj—1,x;) = pla; | z;-1).

@ Why do we need the ¢; functions?
e To condition on z; = ¢, set ¢;(c) =1 and ¢;(¢/) =0 for ¢’ # c.
o For "hidden Markov models”, (HMMs) the ¢; will be the “emission probabilities”.
e For neural networks, ¢, will be exp(neural network output) (generalizes softmax).



Message Passing MCMC Warm-Up

Forward-Backward Algorithm

e Forward pass in forward-backward algorithm (generalizes CK equations):
o Set each M (1) = ¢1(x1).
e For j =2 to j =d, set each Z\Jj(xj) = ij71 ¢j(xj)1/)j(33j,mj_l)]\lj_l(xj_l).

e “Multiply by new terms at time j, summing up over x;_; values.”

@ Backward pass in forward-backward algorithm:
e Set each Vd(.’Ed) = ¢d($d).
o For (d — 1) tOj = 1, set each ‘/J(l’j) = ij-H d)j(xj)ijrl (xj+1,ajj)‘/vj+l ($j+1).

M;(z)Vj ()
¢j(z;)
e Not obvious, see bonus for how it gives conditional in Markov chain.
o We divide by ¢;(z;) since it is included in both the forward and backward messages.

@ You can alternately shift ¢; to earlier/later message to remove division.

e We then have that p(z;)

@ We can also get the normalizing constant as Z = Zle My(c).
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Forward-Bacwkard for Decoding and Sampling

@ Viterbi decoding can be generalized to use potentials ¢ and 1):
e Compute forward messages, but with summation replaced by maximization:

M;(z5) o< maxg;_, ¢j(w;); (x5, 25-1)M;_1(x;-1)-

o Find the largest value of My(x4), then backtrack to find decoding.

o Forward-filter backward-sample is a potentials (¢ and v) variant for sampling.

e Forward pass is the same.

o Backward pass generates samples (ancestral sampling backwards in time):
e Sample x4 from My(zq) = p(zq).

Sample z4—1 using My_1(z4—1) and sampled z4.

Sample z4—2 using My—2(x4—2) and sampled zq—1.

(continue until you have sampled )



Outline
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Markov Chains for Monte Carlo Estimation

@ We have been discussing inference in Markov chains.
e Sampling, marginals, stationary distribution, decoding, conditionals.

@ We can also use Markov chains for inference in other models.

e Most common way to do this is Markov chain Monte Carlo (MCMC).
o Widely-used for approximate inference, including in Bayesian logistic regression.

@ High-level ideas behind MCMC:
e We want to use Monte Carlo estimates with a distribution p.
@ But we do not know how to generate IID samples from p.
e Design a homoeneous Markov chain whose stationary distribution is p.
@ This is usually surprisingly-easy to do.
e Use ancestral sampling to sample from a long version of this Markov chain.
o Use the Markov chain samples within the Monte Carlo approximation.
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Degenerate Example: “Stupid MCMC"

o Consider finding the expected value of a fair di:
o For a 6-sided di, the expected value is 3.5.

@ Consider the following “stupid MCMC" algorithm:
e Start with some initial value, like “4".

o At each step, roll the di and generate a random number u:

o If u < 0.5, “accept” the roll and take the roll as the next sample.

o Othewise, “reject” the roll and take the old value (“4") as the next sample.
@ Generates samples from a Markov chain with this transition probability:

7/12 Tt = Tt—1
q(zt | w-1) = .
1/12 T 7é Tt—1

e | am using g so we do not confuse with the probability p we want to sample.

MCMC Warm-Up
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Degenerate Example: “Stupid MCMC"

@ Stupid MCMC in action:

Start with “4”, so record “4".

Roll a “6" and generate 0.234, so record “6".
Roll a “3" and generate 0.612, so record “6".
Roll a “2" and generate 0.523, so record “6".
Roll a “3" and generate 0.125, so record “3".
Roll a “2" and generate 0.433, so record “2".

@ So our samples are 4,6,6,6,3,2. ..

o If you run this long enough, you will spend 1/6 of the time on each number.

e Stationary distribution of stupid MCMC is 7(c) = 1/6, so
m(z) = p(),

which is the key feature underlying MCMC methods.
e This property lets us use the dependent samples within Monte Carlo.

@ It is “stupid” since it assumes we can generate |ID samples from p.
e If you can do that, you do not need MCMC.

MCMC Warm-Up
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Summary

Viterbi decoding allow efficient decoding with Markov chains.
o A special case of dynamic programming.
Potential representation of Markov chains.

o Non-negative potential ¢ at each time and v for each transition.
o Useful for representing various conditional Markov chains.

Forward-backward generalizes CK equations for potentials.
o Allows computing all marginals in O(dk?).
Markov chain Monte Carlo (MCMC) approximates complicated expectations.

o Generate samples from a Markov chain that has p as stationary distribution.
o Use these samples within a Monte Carlo approximation.

Next time: the “number one algorithm” of the 20th century.
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Computing Markov Chain Conditional using Forward-Backward

p(z3 | z6) o Z Z Z Z p(x1,x2, 23, ®a, x5, xe) (set up both sums to work “outside in”)

=333 > p(za | x3)p(zs | za)p(z6 | 25)p(23 | 2)p(z2 | 21)P(Z1)

73 ©5 T3 o1

= p(@a|z3) ) p(as | wa)p(ze | @5) Y plas | x2) > p(z2 | z1)p(w1)
T4 5 2 £

=> p(za | 23) > _ p(ws | 24)p(x6 | 25) > p(zs | 22) > p(w2 | 21) My (1)
2 =5 E) 1

=> p(za | 23) > p(ws | 24)p(z6 | 25) D p(xs | 22)Ma(z2)
S x5

=2

= p(za | 23) Y p(@5 | wa)p(z6 | 25)Ma(z3)
e zg5

M3 (x3) Zp(au | z3) Zp(:v5 | za)p(xz6 | ©5) (take M3 (x3) outside sums)
T4 £

Ms(x3) Y p(za | 23) > p(zs | Ta)p(a6 | ©5)Ve(zs) (Vo(ze) =1)
xg =5

= Mz (23) Y _p(za | 23) > p(es | 24)Vs(2s)
x4 5

= Mz(23) Y p(24 | ©3)Va(za)
x4

= M3(z3)V3(x3) (¢p3(x3) = 1 so no division, normalize over x3 values to get final answer)
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Sequential Monte Carlo (Particle Filters)

@ For continuous non-Gaussian Markov chains, we usually need approximate
inference.

@ A popular strategy in this setting is sequential Monte Carlo (SMC).

e Importance sampling where proposal ¢; changes over time from simple to posterior.
o AKA sequential importance sampling, annealed importance sampling, particle filter.

@ And can be viewed as a special case of genetic algorithms.
e "“Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBalzMKv4


https://www.youtube.com/watch?v=aUkBa1zMKv4
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