CPSC 440: Advanced Machine Learning Message Passing

Mark Schmidt

University of British Columbia

Winter 2022

Last Time: Chapman-Kolmogorov Equations

- Chapman-Kolmogorov (CK) equations:
 - Recursive formula for computing $p(x_j = s)$ for all j and s in a Markov chain.

$$p(x_j) = \sum_{x_{j-1}=1}^k p(x_j \mid x_{j-1}) p(x_{j-1}),$$

- Allows us to compute all these marginal probabilities p(x_j = s) in O(dk²).
 For a length-d chain with k states.
- We also discussed stationary distributions of homogeneous Markov chains.

$$\pi(c) = \sum_{c'} p(x_j = c \mid x_{j-1} = c') \pi(c'),$$

which are sets of marginal probabilities π that don't change over time.

- You can think of this as the "long-run average probability of being in each state".
- Stationary distribution exists and is unique if all transitions are positive.

Message Passing

Application: Voice Photoshop

• Adobe VoCo uses decoding in a Markov chain as part of synthesizing voices:

Fig. 7. Dynamic triphone preselection. For each query triphone (top) we find a candidate set of good potential matches (columns below). Good paths through this set minimize differences from the query, number and severity of breaks, and contextual mismatches between neighboring triphones.

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

https://www.youtube.com/watch?v=I314XLZ59iw

Decoding: Maximizing Joint Probability

• Decoding in density models: finding x with highest joint probability:

 $\underset{x_1, x_2, \dots, x_d}{\operatorname{argmax}} p(x_1, x_2, \dots, x_d).$

- For CS grad student (d = 60) the decoding is "industry" for all years.
 - The decoding often doesn't look like a typical sample.
 - The decoding can change if you increase d.
- Decoding is easy for independent models:
 - Here, $p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2)p(x_3)p(x_4)$.
 - You can optimize $p(x_1, x_2, x_3, x_4)$ by optimizing each $p(x_j)$ independently.
- Can we also maximize the marginals to decode a Markov chain?

Example of Decoding vs. Maximizing Marginals

• Consider the "plane of doom" 2-variable Markov chain:

$$X = \begin{bmatrix} ``land'' & ``alive'' \\ ``land'' & ``alive'' \\ ``crash'' & ``dead'' \\ ``explode'' & ``dead'' \\ ``crash'' & ``dead'' \\ ``land'' & ``alive'' \\ \vdots & \vdots \end{bmatrix}.$$

- $\bullet~40\%$ of the time the plane lands and you live.
- $\bullet~30\%$ of the time the plane crashes and you die.
- 30% of the time the explodes and you die.

Example of Decoding vs. Maximizing Marginals

• Initial probabilities are given by

 $p(x_1 = \text{``land''}) = 0.4, \quad p(x_1 = \text{``crash''}) = 0.3, \quad p(x_1 = \text{``explode''}) = 0.3,$

and transition probabilites are:

$$\begin{split} p(x_2 = \text{``alive''} \mid x_1 = \text{``land''}) = 1, \quad p(x_2 = \text{``alive''} \mid x_1 = \text{``crash''}) = 0, \\ p(x_2 = \text{``alive''} \mid x_1 = \text{``explode''}) = 0. \end{split}$$

• If we apply the CK equations we get

$$p(x_2 = \text{``alive''}) = 0.4, \quad p(x_2 = \text{``dead''}) = 0.6,$$

so maximizing the marginals $p(x_j)$ independently gives ("land", "dead").

- This actually has probability 0, since $p(\text{``dead''} \mid \text{``land''}) = 0$.
- Decoding considers the joint assignment to x₁ and x₂ maximizing probability.
 In this case it's ("land", "alive"), which has probability 0.4.

Decoding with Dynamic Programming

- Note that decoding can't be done forward in time as in CK equations.
 - Even if $p(x_1 = 1) = 0.99$, the most likely sequence could have $x_1 = 2$.
 - So we need to optimize over all k^d assignments to all variables.
- Fortunately, we can solve this problem using dynamic programming.
- Ingredients of dynamic programming:
 - Optimal sub-structure.
 - We can divide the problem into sub-problems that can individual be solved.
 - Overlapping sub-problems.
 - The same sub-problems are reused several times.

Decoding with Dynamic Programming

• For decoding in Markov chains, we will use the following sub-problem:

- Compute the highest probability sequence of length j ending in state s.
- We'll use $M_j(s)$ as the probability of this sequence.

$$M_j(s) = \max_{x_1, x_2, \dots, x_{j-1}} p(x_1, x_2, \dots, x_{j-1}, x_j = s).$$

• Optimal sub-structure:

- We can find the decoding by finding the s maximizing $M_d(s)$ (then "backtracking").
- We can compute other $M_j(s)$ recursively (derivation of this coming up),

$$M_j(s) = \max_{x_{j-1}} \underbrace{p(x_j = s \mid x_{j-1})}_{\text{given}} \underbrace{M_{j-1}(x_{j-1})}_{\text{recurse}},$$

with a base case of $M_1(s) = p(x_1 = s)$ (which is given by the initial probability).

- Overlapping sub-problems:
 - The same k values of $M_{j-1}(s)$ are used to compute the k values of $M_j(s)$.

Digression: Recursive Joint Maximization

• To derive the M_j formula, it will be helpful to re-write joint maximizations as

$$\max_{x_1, x_2} f(x_1, x_2) = \max_{x_1} f_1(x_1),$$

where $f_1(x_1) = \max_{x_2} f(x_1, x_2)$ (this f_1 "maximizes out" over x_2). • This is similar to the marginalization rule in probability.

• Plugging in the definition of $f_1(x_1)$ we obtain:

$$\max_{x_1, x_2} f(x_1, x_2) = \max_{x_1} \underbrace{\max_{x_2} f(x_1, x_2)}_{f_1(x_1)}.$$

• You can do this trick repeatedly and/or with any number of variables.

Decoding with Dynamic Programming

• Derivation of recursive calculation $M_j(x_j)$ for decoding Markov chains:

$$\begin{split} M_{j}(x_{j}) &= \max_{x_{1}, x_{2}, \dots, x_{j-1}} p(x_{1}, x_{2}, \dots, x_{j}) & (\text{definition of } M_{j}(x_{j})) \\ &= \max_{x_{1}, x_{2}, \dots, x_{j-1}} p(x_{j} \mid x_{1}, x_{2}, \dots, x_{j-1}) p(x_{1}, x_{2}, \dots, x_{j-1}) & (\text{product rule}) \\ &= \max_{x_{1}, x_{2}, \dots, x_{j-1}} p(x_{j} \mid x_{j-1}) p(x_{1}, x_{2}, \dots, x_{j-1}) & (\text{Markov property}) \\ &= \max_{x_{j-1}} \left\{ \max_{x_{1}, x_{2}, \dots, x_{j-2}} p(x_{j} \mid x_{j-1}) p(x_{1}, x_{2}, x_{j-1}) \right\} & (\max_{a, b} f(a, b) = \max_{a} \{\max_{b} f(a, b)\}) \\ &= \max_{x_{j-1}} \left\{ p(x_{j} \mid x_{j-1}) \max_{x_{1}, x_{2}, \dots, x_{j-2}} p(x_{1}, x_{2}, x_{j-1}) \right\} & (\max_{i} \alpha a_{i} = \alpha \max_{i} a_{i} \text{ for } \alpha \ge 0) \\ &= \max_{x_{j-1}} \underbrace{p(x_{j} \mid x_{j-1}) \underbrace{M_{j-1}(x_{j-1})}_{\text{recurse}} p(x_{1}, x_{2}, x_{j-1})}_{\text{recurse}} \end{split}$$

- We also store the argmax over x_{j-1} for each (j, s) .
 - Once we have $M_j(x_j = s)$ for all j and s values, backtrack using these values to solve problem.

Example: Decoding the Plane of Doom

• We have $M_1(x_1) = p(x_1)$ so in "plane of doom" we have

 $M_1(\text{``land''}) = 0.4, \quad M_1(\text{``crash''}) = 0.3, \quad M_1(\text{``explode''}) = 0.3.$

• We have $M_2(x_2) = \max_{x_1} p(x_2 \mid x_1) M_1(x_1)$ so we get

$$M_2(\text{``alive''}) = 0.4, \quad M_2(\text{``dead''}) = 0.3.$$

M₂(2) ≠ p(x₂ = 2) because we needed to choose either "crash" or "explode".
And notice that ∑^k_{c=1} M₂(x_j = c) ≠ 1 (this is not a distribution over x₂).

We maximize M₂(x₂) to find that the optimal decoding ends with "alive".
We now need to backtrack to find the state that lead to "alive", giving "land".

Message Passing

Viterbi Decoding

• The Viterbi decoding dynamic programming algorithm:

• Set
$$M_1(x_1) = p(x_1)$$
 for all x_1 .

2 Compute $M_2(x_2)$ for all x_2 , store argmax of x_1 leading to each x_2 .

③ Compute $M_3(x_3)$ for all x_3 , store argmax of x_2 leading to each x_3 .

🎱 . . .

- **(**) Maximize $M_d(x_d)$ to find value of x_d in a decoding.
- **(**) Bactrack to find the value of x_{d-1} that lead to this x_d .
- **O** Backtrack to find the value of x_{d-2} that lead to this x_{d-1} .

8 . . .

- **(9)** Backtrack to find the value of x_1 that lead to this x_2 .
- For a fixed j, computing all $M_j(x_j)$ given all $M_{j-1}(x_{j-1})$ costs $O(k^2)$.
 - $\bullet\,$ Total cost is only $O(dk^2)$ to search over all k^d paths.
 - Has numerous applications like decoding digital TV.

.

Viterbi Decoding

• What Viterbi decoding data structures might look like (d = 4, k = 3):

$$M = \begin{bmatrix} 0.25 & 0.25 & 0.50 \\ 0.35 & 0.15 & 0.05 \\ 0.10 & 0.05 & 0.05 \\ 0.02 & 0.03 & 0.05 \end{bmatrix}, \quad B = \begin{bmatrix} \emptyset & \emptyset & \emptyset \\ 1 & 1 & 3 \\ 2 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$$

- The $d \times k$ matrix M stores the values $M_j(s)$, while B stores the argmax values.
- From the last row of M and the backtracking matrix B, the decoding is $x_1 = 1, x_2 = 2, x_3 = 1, x_4 = 3$.

Conditional Probabilities in Markov Chains: Easy Case

- How do we compute conditionals like $p(x_j = c \mid x_{j'} = c')$ in Markov chains?
- Consider conditioning on an earlier time, like computing $p(x_{10} | x_3)$:
 - We are given the value of x_3 .
 - We obtain $p(x_4 \mid x_3)$ by looking it up among transition probabilities.
 - We can compute $p(x_5 \mid x_3)$ by adding conditioning to the CK equations,

$$p(x_5 \mid x_3) = \sum_{x_4} p(x_5, x_4 \mid x_3)$$
(marg rule)
$$= \sum_{x_4} p(x_5 \mid x_4, x_3) p(x_4 \mid x_3)$$
(product rule)
$$= \sum_{x_4} \underbrace{p(x_5 \mid x_4)}_{\text{given}} \underbrace{p(x_4 \mid x_3)}_{\text{recurse}}$$
(Markov property).

• Repeat this to find $p(x_6 \mid x_3)$, then $p(x_7 \mid x_3)$, up to $p(x_{10} \mid x_3)$.

Message Passing

Conditional Probabilities in Markov Chains with "Forward" Messages

- How do we condition on a future time, like computing $p(x_3 | x_6)$?
 - Need to sum over "past" values x_1 and x_2 , and "future" values x_4 and x_5 .

$$\begin{split} p(x_3 \mid x_6) &\propto p(x_3, x_6) = \sum_{x_5} \sum_{x_4} \sum_{x_2} \sum_{x_1} p(x_1, x_2, x_3, x_4, x_5, x_6) \quad (\text{cond. prob. and marg. rule}) \\ &= \sum_{x_5} \sum_{x_4} \sum_{x_2} \sum_{x_1} p(x_6 \mid x_5) p(x_5 \mid x_4) p(x_4 \mid x_3) p(x_3 \mid x_2) p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_5} p(x_6 \mid x_5) \sum_{x_4} p(x_5 \mid x_4) p(x_4 \mid x_3) \sum_{x_2} p(x_3 \mid x_2) \sum_{x_1} p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_5} p(x_6 \mid x_5) \sum_{x_4} p(x_5 \mid x_4) p(x_4 \mid x_3) \sum_{x_2} p(x_3 \mid x_2) M_2(x_2) \\ &= \sum_{x_5} p(x_6 \mid x_5) \sum_{x_4} p(x_5 \mid x_4) p(x_4 \mid x_3) M_3(x_3) \\ &= \sum_{x_5} p(x_6 \mid x_5) M_5(x_5) \\ &= M_6(x_6) \quad (\text{the values } M_j \text{ are called "forward messages"}) \end{split}$$

M_j(x_j) summarizes "everything you need to know up to time j for this x_j value".
Different x₃ will give different M₆ values, normalize these to get final result.

Message Passing

Conditional Probabilities in Markov Chains with "Backward" Messages

• We could exchange order of sums to do computation "backwards" in time:

$$\begin{split} p(x_3 \mid x_6) &= \sum_{x_1} \sum_{x_2} \sum_{x_4} \sum_{x_5} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3) p(x_5 \mid x_4) p(x_6 \mid x_5) \\ &= \sum_{x_1} p(x_1) \sum_{x_2} p(x_2 \mid x_1) p(x_3 \mid x_2) \sum_{x_4} p(x_4 \mid x_3) \sum_{x_5} p(x_5 \mid x_4) p(x_6 \mid x_5) \\ &= \sum_{x_1} p(x_1) \sum_{x_2} p(x_2 \mid x_1) p(x_3 \mid x_2) \sum_{x_4} p(x_4 \mid x_3) V_4(x_4) \\ &= \sum_{x_1} p(x_1) \sum_{x_2} p(x_2 \mid x_1) p(x_3 \mid x_2) V_3(x_3) \\ &= \sum_{x_1} p(x_1) V_1(x_1) \quad \text{(the values } V_j \text{ are called "backward messages")} \end{split}$$

- The V_j summarize "everything you need to know after time j for this x_j value".
 Sometimes called "cost to go" function, as in "what is the cost for going to x_j".
 - Sometimes called a value function, as in "what is the future value of being in x_j ".

Motivation for Forward-Backward Algorithm

- Why do care about being able to solve this "forward" or "backward" in time?
 Cost is O(dk²) in both directions to compute conditionals in Markov chains.
- Consider computing $p(x_1 \mid A)$, $p(x_2 \mid A)$,..., $p(x_d \mid A)$ for some event A.
 - Need all these conditionals to add features or neural networks, and in HMMs.
- We could solve this in O(dk²) for each time, giving a total cost of O(d²k²).
 Using forward messages M_i(x_i) at each time, or backwards messages V_i(x_i).
- Alternately, the forward-backward algorithm computes all conditionals in O(dk²).
 By doing one "forward" pass and one "backward" pass with appropriate messages.

Potential Function Representation of Markov Chains

• Forward-backward algorithm considers probabilities written in the form

$$p(x_1, x_2, \dots, x_d) = \frac{1}{Z} \left(\prod_{j=1}^d \phi_j(x_j) \right) \left(\prod_{j=2}^d \psi_j(x_j, x_{j-1}) \right).$$

- The ϕ_j and ψ_j functions are called potential functions.
 - They can map from a state (ϕ) or two states (ψ) to a non-negative function.
 - And normalizing constant Z ensures we sum/integrate to 1 (over all x_1, x_2, \ldots, x_d).
- We can write Markov chains in this form by using (in this case Z = 1):
 - $\phi_1(x_1) = p(x_1)$ and $\phi_j(x_j) = 1$ when $j \neq 1$.
 - $\psi_j(x_{j-1}, x_j) = p(x_j \mid x_{j-1}).$
- Why do we need the ϕ_j functions?
 - To condition on $x_j = c$, set $\phi_j(c) = 1$ and $\phi_j(c') = 0$ for $c' \neq c$.
 - For "hidden Markov models", (HMMs) the ϕ_j will be the "emission probabilities".
 - For neural networks, ϕ_j will be exp(neural network output) (generalizes softmax).

Forward-Backward Algorithm

- Forward pass in forward-backward algorithm (generalizes CK equations):
 - Set each $M_1(x_1) = \phi_1(x_1)$.
 - For j = 2 to j = d, set each $M_j(x_j) = \sum_{x_{j-1}} \phi_j(x_j) \psi_j(x_j, x_{j-1}) M_{j-1}(x_{j-1})$.
 - "Multiply by new terms at time j, summing up over x_{j-1} values."
- Backward pass in forward-backward algorithm:
 - Set each $V_d(x_d) = \phi_d(x_d)$.
 - For (d-1) to j = 1, set each $V_j(x_j) = \sum_{x_{j+1}} \phi_j(x_j) \psi_{j+1}(x_{j+1}, x_j) V_{j+1}(x_{j+1})$.
- We then have that $p(x_j) \propto \frac{M_j(x_j)V_j(x_j)}{\phi_j(x_j)}$.
 - Not obvious, see bonus for how it gives conditional in Markov chain.
 - We divide by $\phi_j(x_j)$ since it is included in both the forward and backward messages.
 - You can alternately shift ϕ_j to earlier/later message to remove division.
- We can also get the normalizing constant as $Z = \sum_{c=1}^{k} M_d(c)$.

Forward-Bacwkard for Decoding and Sampling

- Viterbi decoding can be generalized to use potentials ϕ and ψ :
 - Compute forward messages, but with summation replaced by maximization:

 $M_j(x_j) \propto \max_{x_{j-1}} \phi_j(x_j) \psi_j(x_j, x_{j-1}) M_{j-1}(x_{j-1}).$

- Find the largest value of $M_d(x_d)$, then backtrack to find decoding.
- Forward-filter backward-sample is a potentials (ϕ and ψ) variant for sampling.
 - Forward pass is the same.
 - Backward pass generates samples (ancestral sampling backwards in time):
 - Sample x_d from $M_d(x_d) = p(x_d)$.
 - Sample x_{d-1} using $M_{d-1}(x_{d-1})$ and sampled x_d .
 - Sample x_{d-2} using $M_{d-2}(x_{d-2})$ and sampled x_{d-1} .
 - (continue until you have sampled x_1)

Message Passing

MCMC Warm-Up

Outline

2 MCMC Warm-Up

Markov Chains for Monte Carlo Estimation

- We have been discussing inference in Markov chains.
 - Sampling, marginals, stationary distribution, decoding, conditionals.
- We can also use Markov chains for inference in other models.
 - Most common way to do this is Markov chain Monte Carlo (MCMC).
 - Widely-used for approximate inference, including in Bayesian logistic regression.
- High-level ideas behind MCMC:
 - We want to use Monte Carlo estimates with a distribution p.
 - But we do not know how to generate IID samples from p.
 - Design a homoeneous Markov chain whose stationary distribution is p.
 - This is usually surprisingly-easy to do.
 - Use ancestral sampling to sample from a long version of this Markov chain.
 - Use the Markov chain samples within the Monte Carlo approximation.

Degenerate Example: "Stupid MCMC"

- Consider finding the expected value of a fair di:
 - For a 6-sided di, the expected value is 3.5.
- Consider the following "stupid MCMC" algorithm:
 - Start with some initial value, like "4".
 - At each step, roll the di and generate a random number u:
 - If u < 0.5, "accept" the roll and take the roll as the next sample.

Othewise, "reject" the roll and take the old value ("4") as the next sample.
Generates samples from a Markov chain with this transition probability:

$$q(x_t \mid x_{t-1}) = \begin{cases} 7/12 & x_t = x_{t-1} \\ 1/12 & x_t \neq x_{t-1} \end{cases}$$

 $\bullet\,$ I am using q so we do not confuse with the probability p we want to sample.

Degenerate Example: "Stupid MCMC"

- Stupid MCMC in action:
 - Start with "4", so record "4".
 - Roll a "6" and generate 0.234, so record "6".
 - Roll a "3" and generate 0.612, so record "6".
 - Roll a "2" and generate 0.523, so record "6".
 - Roll a "3" and generate 0.125, so record "3".
 - Roll a "2" and generate 0.433, so record "2".
- So our samples are 4,6,6,6,3,2...
 - If you run this long enough, you will spend 1/6 of the time on each number.
 - Stationary distribution of stupid MCMC is $\pi(c)=1/6,$ so

 $\pi(x) = p(x),$

which is the key feature underlying MCMC methods.

- This property lets us use the dependent samples within Monte Carlo.
- It is "stupid" since it assumes we can generate IID samples from p.
 - If you can do that, you do not need MCMC.

Summary

- Viterbi decoding allow efficient decoding with Markov chains.
 - A special case of dynamic programming.
- Potential representation of Markov chains.
 - $\bullet\,$ Non-negative potential ϕ at each time and ψ for each transition.
 - Useful for representing various conditional Markov chains.
- Forward-backward generalizes CK equations for potentials.
 - Allows computing all marginals in $O(dk^2)$.
- Markov chain Monte Carlo (MCMC) approximates complicated expectations.
 - $\bullet\,$ Generate samples from a Markov chain that has p as stationary distribution.
 - Use these samples within a Monte Carlo approximation.
- Next time: the "number one algorithm" of the 20th century.

p(

Computing Markov Chain Conditional using Forward-Backward

$$\begin{aligned} x_3 \mid x_6 \end{pmatrix} &\propto \sum_{x_4} \sum_{x_5} \sum_{x_2} \sum_{x_1} p(x_1, x_2, x_3, x_4, x_5, x_6) \quad (\text{set up both sums to work "outside in"}) \\ &= \sum_{x_4} \sum_{x_5} \sum_{x_2} \sum_{x_1} p(x_4 \mid x_3) p(x_5 \mid x_4) p(x_6 \mid x_5) p(x_3 \mid x_2) p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_4} p(x_4 \mid x_3) \sum_{x_5} p(x_5 \mid x_4) p(x_6 \mid x_5) \sum_{x_2} p(x_3 \mid x_2) \sum_{x_1} p(x_2 \mid x_1) p(x_1) \\ &= \sum_{x_4} p(x_4 \mid x_3) \sum_{x_5} p(x_5 \mid x_4) p(x_6 \mid x_5) \sum_{x_2} p(x_3 \mid x_2) \sum_{x_1} p(x_2 \mid x_1) M_1(x_1) \\ &= \sum_{x_4} p(x_4 \mid x_3) \sum_{x_5} p(x_5 \mid x_4) p(x_6 \mid x_5) \sum_{x_2} p(x_3 \mid x_2) M_2(x_2) \\ &= \sum_{x_4} p(x_4 \mid x_3) \sum_{x_5} p(x_5 \mid x_4) p(x_6 \mid x_5) M_3(x_3) \\ &= M_3(x_3) \sum_{x_4} p(x_4 \mid x_3) \sum_{x_5} p(x_5 \mid x_4) p(x_6 \mid x_5) \quad (\text{take } M_3(x_3) \text{ outside sums}) \\ &= M_3(x_3) \sum_{x_4} p(x_4 \mid x_3) \sum_{x_5} p(x_5 \mid x_4) P(x_6 \mid x_5) V_6(x_6) \quad (V_6(x_6) = 1) \\ &= M_3(x_3) \sum_{x_4} p(x_4 \mid x_3) \sum_{x_5} p(x_5 \mid x_4) V_5(x_5) \\ &= M_3(x_3) \sum_{x_4} p(x_4 \mid x_3) V_4(x_4) \end{aligned}$$

 $= M_3(x_3)V_3(x_3)$ ($\phi_3(x_3) = 1$ so no division, normalize over x_3 values to get final answer)

Sequential Monte Carlo (Particle Filters)

- For continuous non-Gaussian Markov chains, we usually need approximate inference.
- A popular strategy in this setting is sequential Monte Carlo (SMC).
 - $\bullet\,$ Importance sampling where proposal q_t changes over time from simple to posterior.
 - AKA sequential importance sampling, annealed importance sampling, particle filter.
 - And can be viewed as a special case of genetic algorithms.
 - "Particle Filter Explained without Equations": https://www.youtube.com/watch?v=aUkBa1zMKv4