
Message Passing MCMC Warm-Up

CPSC 440: Advanced Machine Learning
Message Passing

Mark Schmidt

University of British Columbia

Winter 2022

Message Passing MCMC Warm-Up

Last Time: Chapman-Kolmogorov Equations
Chapman-Kolmogorov (CK) equations:

Recursive formula for computing p(xj = s) for all j and s in a Markov chain.

p(xj) =

k∑
xj−1=1

p(xj | xj−1)p(xj−1),

Allows us to compute all these marginal probabilities p(xj = s) in O(dk2).
For a length-d chain with k states.

We also discussed stationary distributions of homogeneous Markov chains.

π(c) =
∑
c′

p(xj = c | xj−1 = c′)π(c′),

which are sets of marginal probabilities π that don’t change over time.
You can think of this as the “long-run average probability of being in each state”.
Stationary distribution exists and is unique if all transitions are positive.

Message Passing MCMC Warm-Up

Application: Voice Photoshop

Adobe VoCo uses decoding in a Markov chain as part of synthesizing voices:

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

https://www.youtube.com/watch?v=I3l4XLZ59iw

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf
https://www.youtube.com/watch?v=I3l4XLZ59iw

Message Passing MCMC Warm-Up

Decoding: Maximizing Joint Probability

Decoding in density models: finding x with highest joint probability:

argmax
x1,x2,...,xd

p(x1, x2, . . . , xd).

For CS grad student (d = 60) the decoding is “industry” for all years.

The decoding often doesn’t look like a typical sample.
The decoding can change if you increase d.

Decoding is easy for independent models:

Here, p(x1, x2, x3, x4) = p(x1)p(x2)p(x3)p(x4).
You can optimize p(x1, x2, x3, x4) by optimizing each p(xj) independently.

Can we also maximize the marginals to decode a Markov chain?

Message Passing MCMC Warm-Up

Example of Decoding vs. Maximizing Marginals

Consider the “plane of doom” 2-variable Markov chain:

X =



“land” “alive”
“land” “alive”
“crash” “dead”

“explode” “dead”
“crash” “dead”
“land” “alive”

...
...


.

40% of the time the plane lands and you live.

30% of the time the plane crashes and you die.

30% of the time the explodes and you die.

Message Passing MCMC Warm-Up

Example of Decoding vs. Maximizing Marginals

Initial probabilities are given by

p(x1 = “land”) = 0.4, p(x1 = “crash”) = 0.3, p(x1 = “explode”) = 0.3,

and transition probabilites are:

p(x2 = “alive” | x1 = “land”) = 1, p(x2 = “alive” | x1 = “crash”) = 0,

p(x2 = “alive” | x1 = “explode”) = 0.

If we apply the CK equations we get

p(x2 = ‘’alive”) = 0.4, p(x2 = “dead”) = 0.6,

so maximizing the marginals p(xj) independently gives (“land”, “dead”).
This actually has probability 0, since p(“dead” | “land”) = 0.

Decoding considers the joint assignment to x1 and x2 maximizing probaiblity.
In this case it’s (“land”, “alive”), which has probability 0.4.

Message Passing MCMC Warm-Up

Decoding with Dynamic Programming

Note that decoding can’t be done forward in time as in CK equations.

Even if p(x1 = 1) = 0.99, the most likely sequence could have x1 = 2.
So we need to optimize over all kd assignments to all variables.

Fortunately, we can solve this problem using dynamic programming.

Ingredients of dynamic programming:
1 Optimal sub-structure.

We can divide the problem into sub-problems that can individual be solved.

2 Overlapping sub-problems.

The same sub-problems are reused several times.

Message Passing MCMC Warm-Up

Decoding with Dynamic Programming

For decoding in Markov chains, we will use the following sub-problem:
Compute the highest probability sequence of length j ending in state s.
We’ll use Mj(s) as the probability of this sequence.

Mj(s) = max
x1,x2,...,xj−1

p(x1, x2, . . . , xj−1, xj = s).

Optimal sub-structure:
We can find the decoding by finding the s maximizing Md(s) (then “backtracking”).
We can compute other Mj(s) recursively (derivation of this coming up),

Mj(s) = max
xj−1

p(xj = s | xj−1)︸ ︷︷ ︸
given

Mj−1(xj−1)︸ ︷︷ ︸
recurse

,

with a base case of M1(s) = p(x1 = s) (which is given by the initial probability).

Overlapping sub-problems:
The same k values of Mj−1(s) are used to compute the k values of Mj(s).

Message Passing MCMC Warm-Up

Digression: Recursive Joint Maximization

To derive the Mj formula, it will be helpful to re-write joint maximizations as

max
x1,x2

f(x1, x2) = max
x1

f1(x1),

where f1(x1) = maxx2 f(x1, x2) (this f1 “maximizes out” over x2).

This is similar to the marginalization rule in probability.

Plugging in the definition of f1(x1) we obtain:

max
x1,x2

f(x1, x2) = max
x1

max
x2

f(x1, x2)︸ ︷︷ ︸
f1(x1)

.

You can do this trick repeatedly and/or with any number of variables.

Message Passing MCMC Warm-Up

Decoding with Dynamic Programming
Derivation of recursive calculation Mj(xj) for decoding Markov chains:

Mj(xj) = max
x1,x2,...,xj−1

p(x1, x2, . . . , xj) (definition of Mj(xj))

= max
x1,x2,...xj−1

p(xj | x1, x2, . . . xj−1)p(x1, x2, . . . , xj−1) (product rule)

= max
x1,x2,...xj−1

p(xj | xj−1)p(x1, x2, . . . , xj−1) (Markov property)

= max
xj−1

{
max

x1,x2,...xj−2
p(xj | xj−1)p(x1, x2, xj−1)

}
(max
a,b

f(a, b) = max
a
{max

b
f(a, b)})

= max
xj−1

{
p(xj | xj−1) max

x1,x2,...xj−2
p(x1, x2, xj−1)

}
(max

i
αai = αmax

i
ai for α ≥ 0)

= max
xj−1

p(xj | xj−1)︸ ︷︷ ︸
given

Mj−1(xj−1)︸ ︷︷ ︸
recurse

(definition of Mj−1(xj−1))

We also store the argmax over xj−1 for each (j, s) .

Once we have Mj(xj = s) for all j and s values,
backtrack using these values to solve problem.

Message Passing MCMC Warm-Up

Example: Decoding the Plane of Doom

We have M1(x1) = p(x1) so in “plane of doom” we have

M1(“land”) = 0.4, M1(“crash”) = 0.3, M1(“explode”) = 0.3.

We have M2(x2) = maxx1 p(x2 | x1)M1(x1) so we get

M2(“alive”) = 0.4, M2(“dead”) = 0.3.

M2(2) 6= p(x2 = 2) because we needed to choose either “crash” or “explode”.

And notice that
∑k

c=1M2(xj = c) 6= 1 (this is not a distribution over x2).

We maximize M2(x2) to find that the optimal decoding ends with “alive”.

We now need to backtrack to find the state that lead to “alive”, giving “land”.

Message Passing MCMC Warm-Up

Viterbi Decoding

The Viterbi decoding dynamic programming algorithm:
1 Set M1(x1) = p(x1) for all x1.
2 Compute M2(x2) for all x2, store argmax of x1 leading to each x2.
3 Compute M3(x3) for all x3, store argmax of x2 leading to each x3.
4 . . .
5 Maximize Md(xd) to find value of xd in a decoding.
6 Bactrack to find the value of xd−1 that lead to this xd.
7 Backtrack to find the value of xd−2 that lead to this xd−1.
8 . . .
9 Backtrack to find the value of x1 that lead to this x2.

For a fixed j, computing all Mj(xj) given all Mj−1(xj−1) costs O(k2).

Total cost is only O(dk2) to search over all kd paths.
Has numerous applications like decoding digital TV.

Message Passing MCMC Warm-Up

Viterbi Decoding

What Viterbi decoding data structures might look like (d = 4, k = 3):

M =


0.25 0.25 0.50
0.35 0.15 0.05
0.10 0.05 0.05
0.02 0.03 0.05

 , B =


∅ ∅ ∅
1 1 3
2 1 1
2 2 1

 .
The d× k matrix M stores the values Mj(s), while B stores the argmax values.

From the last row of M and the backtracking matrix B,
the decoding is x1 = 1, x2 = 2, x3 = 1, x4 = 3.

Message Passing MCMC Warm-Up

Conditional Probabilities in Markov Chains: Easy Case

How do we compute conditionals like p(xj = c | xj′ = c′) in Markov chains?

Consider conditioning on an earlier time, like computing p(x10 | x3):
We are given the value of x3.
We obtain p(x4 | x3) by looking it up among transition probabilities.
We can compute p(x5 | x3) by adding conditioning to the CK equations,

p(x5 | x3) =
∑
x4

p(x5, x4 | x3) (marg rule)

=
∑
x4

p(x5 | x4, x3)p(x4 | x3) (product rule)

=
∑
x4

p(x5 | x4)︸ ︷︷ ︸
given

p(x4 | x3)︸ ︷︷ ︸
recurse

(Markov property).

Repeat this to find p(x6 | x3), then p(x7 | x3), up to p(x10 | x3).

Message Passing MCMC Warm-Up

Conditional Probabilities in Markov Chains with “Forward” Messages
How do we condition on a future time, like computing p(x3 | x6)?

Need to sum over “past” values x1 and x2, and “future” values x4 and x5.

p(x3 | x6) ∝ p(x3, x6) =
∑
x5

∑
x4

∑
x2

∑
x1

p(x1, x2, x3, x4, x5, x6) (cond. prob. and marg. rule)

=
∑
x5

∑
x4

∑
x2

∑
x1

p(x6 | x5)p(x5 | x4)p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x5

p(x6 | x5)
∑
x4

p(x5 | x4)p(x4 | x3)
∑
x2

p(x3 | x2)
∑
x1

p(x2 | x1)p(x1)

=
∑
x5

p(x6 | x5)
∑
x4

p(x5 | x4)p(x4 | x3)
∑
x2

p(x3 | x2)M2(x2)

=
∑
x5

p(x6 | x5)
∑
x4

p(x5 | x4)p(x4 | x3)M3(x3)

=
∑
x5

p(x6 | x5)M5(x5)

=M6(x6) (the values Mj are called “forward messages”)

Mj(xj) summarizes “everything you need to know up to time j for this xj value”.
Different x3 will give different M6 values, normalize these to get final result.

Message Passing MCMC Warm-Up

Conditional Probabilities in Markov Chains with “Backward” Messages

We could exchange order of sums to do computation “backwards” in time:

p(x3 | x6) =
∑
x1

∑
x2

∑
x4

∑
x5

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)p(x6 | x5)

=
∑
x1

p(x1)
∑
x2

p(x2 | x1)p(x3 | x2)
∑
x4

p(x4 | x3)
∑
x5

p(x5 | x4)p(x6 | x5)

=
∑
x1

p(x1)
∑
x2

p(x2 | x1)p(x3 | x2)
∑
x4

p(x4 | x3)V4(x4)

=
∑
x1

p(x1)
∑
x2

p(x2 | x1)p(x3 | x2)V3(x3)

=
∑
x1

p(x1)V1(x1) (the values Vj are called “backward messages”)

The Vj summarize “everything you need to know after time j for this xj value”.

Sometimes called “cost to go” function, as in “what is the cost for going to xj”.
Sometimes called a value function, as in “what is the future value of being in xj”.

Message Passing MCMC Warm-Up

Motivation for Forward-Backward Algorithm

Why do care about being able to solve this “forward” or “backward” in time?

Cost is O(dk2) in both directions to compute conditionals in Markov chains.

Consider computing p(x1 | A), p(x2 | A),. . . , p(xd | A) for some event A.

Need all these conditionals to add features or neural networks, and in HMMs.

We could solve this in O(dk2) for each time, giving a total cost of O(d2k2).

Using forward messages Mj(xj) at each time, or backwards messages Vj(xj).

Alternately, the forward-backward algorithm computes all conditionals in O(dk2).

By doing one “forward” pass and one “backward” pass with appropriate messages.

Message Passing MCMC Warm-Up

Potential Function Representation of Markov Chains
Forward-backward algorithm considers probabilities written in the form

p(x1, x2, . . . , xd) =
1

Z

 d∏
j=1

φj(xj)

 d∏
j=2

ψj(xj , xj−1)

 .

The φj and ψj functions are called potential functions.
They can map from a state (φ) or two states (ψ) to a non-negative function.
And normalizing constant Z ensures we sum/integrate to 1 (over all x1, x2,. . . ,xd).

We can write Markov chains in this form by using (in this case Z = 1):
φ1(x1) = p(x1) and φj(xj) = 1 when j 6= 1.
ψj(xj−1, xj) = p(xj | xj−1).

Why do we need the φj functions?
To condition on xj = c, set φj(c) = 1 and φj(c

′) = 0 for c′ 6= c.
For “hidden Markov models”, (HMMs) the φj will be the “emission probabilities”.
For neural networks, φj will be exp(neural network output) (generalizes softmax).

Message Passing MCMC Warm-Up

Forward-Backward Algorithm

Forward pass in forward-backward algorithm (generalizes CK equations):
Set each M1(x1) = φ1(x1).
For j = 2 to j = d, set each Mj(xj) =

∑
xj−1

φj(xj)ψj(xj , xj−1)Mj−1(xj−1).

“Multiply by new terms at time j, summing up over xj−1 values.”

Backward pass in forward-backward algorithm:
Set each Vd(xd) = φd(xd).
For (d− 1) to j = 1, set each Vj(xj) =

∑
xj+1

φj(xj)ψj+1(xj+1, xj)Vj+1(xj+1).

We then have that p(xj) ∝ Mj(xj)Vj(xj)
φj(xj)

.

Not obvious, see bonus for how it gives conditional in Markov chain.
We divide by φj(xj) since it is included in both the forward and backward messages.

You can alternately shift φj to earlier/later message to remove division.

We can also get the normalizing constant as Z =
∑k

c=1Md(c).

Message Passing MCMC Warm-Up

Forward-Bacwkard for Decoding and Sampling

Viterbi decoding can be generalized to use potentials φ and ψ:

Compute forward messages, but with summation replaced by maximization:

Mj(xj) ∝ maxxj−1φj(xj)ψj(xj , xj−1)Mj−1(xj−1).

Find the largest value of Md(xd), then backtrack to find decoding.

Forward-filter backward-sample is a potentials (φ and ψ) variant for sampling.

Forward pass is the same.
Backward pass generates samples (ancestral sampling backwards in time):

Sample xd from Md(xd) = p(xd).
Sample xd−1 using Md−1(xd−1) and sampled xd.
Sample xd−2 using Md−2(xd−2) and sampled xd−1.
(continue until you have sampled x1)

Message Passing MCMC Warm-Up

Outline

1 Message Passing

2 MCMC Warm-Up

Message Passing MCMC Warm-Up

Markov Chains for Monte Carlo Estimation

We have been discussing inference in Markov chains.

Sampling, marginals, stationary distribution, decoding, conditionals.

We can also use Markov chains for inference in other models.

Most common way to do this is Markov chain Monte Carlo (MCMC).
Widely-used for approximate inference, including in Bayesian logistic regression.

High-level ideas behind MCMC:
We want to use Monte Carlo estimates with a distribution p.

But we do not know how to generate IID samples from p.

Design a homoeneous Markov chain whose stationary distribution is p.

This is usually surprisingly-easy to do.

Use ancestral sampling to sample from a long version of this Markov chain.
Use the Markov chain samples within the Monte Carlo approximation.

Message Passing MCMC Warm-Up

Degenerate Example: “Stupid MCMC”
Consider finding the expected value of a fair di:

For a 6-sided di, the expected value is 3.5.

Consider the following “stupid MCMC” algorithm:
Start with some initial value, like “4”.

At each step, roll the di and generate a random number u:

If u < 0.5, “accept” the roll and take the roll as the next sample.

Othewise, “reject” the roll and take the old value (“4”) as the next sample.

Generates samples from a Markov chain with this transition probability:

q(xt | xt−1) =

{
7/12 xt = xt−1

1/12 xt 6= xt−1
.

I am using q so we do not confuse with the probability p we want to sample.

Message Passing MCMC Warm-Up

Degenerate Example: “Stupid MCMC”
Stupid MCMC in action:

Start with “4”, so record “4”.
Roll a “6” and generate 0.234, so record “6”.
Roll a “3” and generate 0.612, so record “6”.
Roll a “2” and generate 0.523, so record “6”.
Roll a “3” and generate 0.125, so record “3”.
Roll a “2” and generate 0.433, so record “2”.

So our samples are 4,6,6,6,3,2. . .
If you run this long enough, you will spend 1/6 of the time on each number.

Stationary distribution of stupid MCMC is π(c) = 1/6, so

π(x) = p(x),

which is the key feature underlying MCMC methods.

This property lets us use the dependent samples within Monte Carlo.

It is “stupid” since it assumes we can generate IID samples from p.
If you can do that, you do not need MCMC.

Message Passing MCMC Warm-Up

Summary

Viterbi decoding allow efficient decoding with Markov chains.

A special case of dynamic programming.

Potential representation of Markov chains.

Non-negative potential φ at each time and ψ for each transition.
Useful for representing various conditional Markov chains.

Forward-backward generalizes CK equations for potentials.

Allows computing all marginals in O(dk2).

Markov chain Monte Carlo (MCMC) approximates complicated expectations.

Generate samples from a Markov chain that has p as stationary distribution.
Use these samples within a Monte Carlo approximation.

Next time: the “number one algorithm” of the 20th century.

Message Passing MCMC Warm-Up

Computing Markov Chain Conditional using Forward-Backward

p(x3 | x6) ∝
∑
x4

∑
x5

∑
x2

∑
x1

p(x1, x2, x3, x4, x5, x6) (set up both sums to work “outside in”)

=
∑
x4

∑
x5

∑
x2

∑
x1

p(x4 | x3)p(x5 | x4)p(x6 | x5)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x4

p(x4 | x3)
∑
x5

p(x5 | x4)p(x6 | x5)
∑
x2

p(x3 | x2)
∑
x1

p(x2 | x1)p(x1)

=
∑
x4

p(x4 | x3)
∑
x5

p(x5 | x4)p(x6 | x5)
∑
x2

p(x3 | x2)
∑
x1

p(x2 | x1)M1(x1)

=
∑
x4

p(x4 | x3)
∑
x5

p(x5 | x4)p(x6 | x5)
∑
x2

p(x3 | x2)M2(x2)

=
∑
x4

p(x4 | x3)
∑
x5

p(x5 | x4)p(x6 | x5)M3(x3)

= M3(x3)
∑
x4

p(x4 | x3)
∑
x5

p(x5 | x4)p(x6 | x5) (take M3(x3) outside sums)

= M3(x3)
∑
x4

p(x4 | x3)
∑
x5

p(x5 | x4)p(x6 | x5)V6(x6) (V6(x6) = 1)

= M3(x3)
∑
x4

p(x4 | x3)
∑
x5

p(x5 | x4)V5(x5)

= M3(x3)
∑
x4

p(x4 | x3)V4(x4)

= M3(x3)V3(x3) (φ3(x3) = 1 so no division, normalize over x3 values to get final answer)

Message Passing MCMC Warm-Up

Sequential Monte Carlo (Particle Filters)

For continuous non-Gaussian Markov chains, we usually need approximate
inference.

A popular strategy in this setting is sequential Monte Carlo (SMC).

Importance sampling where proposal qt changes over time from simple to posterior.
AKA sequential importance sampling, annealed importance sampling, particle filter.

And can be viewed as a special case of genetic algorithms.

“Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBa1zMKv4

https://www.youtube.com/watch?v=aUkBa1zMKv4

	Message Passing
	MCMC Warm-Up

