
Learning in Markov Chains Inference in Markov Chains

CPSC 440: Advanced Machine Learning
Learning Markov Chains

Mark Schmidt

University of British Columbia

Winter 2022



Learning in Markov Chains Inference in Markov Chains

Last Time: Markov Chains

We discussed the chain rule of probability

p(x1, x2, x3, x4, x5) = p(x1)p(x2 | x1)p(x3 | x1, x2)p(x4 | x1, x2, x3)p(x5 | x1, x2, x3, x4).

In Markov chains we assume Markov property that xj ⊥ x1, x2, . . . , xj−2 | xj−1.

p(x1, x2, x3, x4, x5) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4),

which only models dependencies between consecutive features.

3 ingredients of Markov chains:
State space:

Set of possible states (indexed by c) we can be in at time j (“rain” or “not rain”).

Initial probabilities:
p(x1 = c): probability that we start in state c at time j = 1 (p(“rain”) on day 1).

Transition probabilities:
p(xj = c | xj−1 = c′): probability that we move from state c′ to state c at time j.
Probability that it rains today, given what happened yesterday.
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Homogenous Markov Chains

For rain data it makes sense to use a homogeneous Markov chain:

Transition probabilities p(xj | xj−1) are the same for all times j.

An example of parameter tieing:
1 You have more data available to estimate each parameter.

Don’t need to independently learn p(xj | xj−1) for days 3 and 24.

2 You can have training examples of different sizes.

Same model can be used for any number of days.
We could even treat the rain data as one long Markov chain (n = 1).
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Homogenous Markov Chains

With discrete states, we could use tabular parameterization for transitions,

p(xj = c | xj−1 = c′) = θc,c′ ,

where θc,c′ ≥ 0 and
∑k

c=1 θc,c′ = 1 (and we use the same θc,c′ for all j).

So we have a categorical distribution over c values for each c′ value.

MLE for homogeneous Markov chain with discrete xj and tabular parameters:

θc,c′ =
(number of transitions from c′ to c)

(number of times we went from c′ to anything)
,

so learning is just counting.
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Density Estimation for MNIST Digits

We’ve previously considered density estimation for MNIST images of digits.

We saw that product of Bernoullis does terrible

This model misses correlation between adjacent pixels.

Could we capture this with a Markov chain?
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Density Estimation for MNIST Digits
Samples from a homogeneous Markov chain (putting rows into one long vector):

Captures correlations between adjacent pixels in the same row.
But misses long-range dependencies in row and dependencies between rows.
Also, “position independence” of homogeneity means it loses position information.
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Inhomogeneous Markov Chains

Markov chains could allow a different p(xj | xj−1) for each j.

This makes sense for digits data, but probably not for the rain data.

For discrete xj we could use a tabular parameterization,

p(xj = c | xj=1 = c′) = θjc,c′ .

MLE under this parameterization is given by

θjc,c′ =
(number of transitions from c′ to c starting at (j − 1))

(number of times we saw c′ at position (j − 1))
,

Such inhomogeneous Markov chains include independent models as special case:

If we set p(xj | xj−1) = p(xj) for all j we get product of independent model.
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Density Estimation for MNIST Digits

Samples from an inhomogeneous Markov chain fit to digits:

We have correlations between adjacent pixels in rows and position information.

But isn’t capturing long-range dependencies or dependency between rows.
Later we’ll discuss graphical models which address this.
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Training Markov Chains

Some common setups for fitting the parameters Markov chains:
1 We have one long sequence, and fit parameters of a homogeneous Markov chain.

Here, we just focus on the transition probabilities.

2 We have many sequences of different lengths, and fit a homogeneous chain.

And we can use it to model sequences of any length.

3 We have many sequences of same length, and fit an inhomgeneous Markov chain.

This allows “position-specific” effects.

4 We use domain knowledge to guess the initial and transition probabilities.

Here we would be interested in inference in the model.
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Fun with Markov Chains

Markov Chains “Explained Visually”:
http://setosa.io/ev/markov-chains

Snakes and Ladders:
http://datagenetics.com/blog/november12011/index.html

Candyland:
http://www.datagenetics.com/blog/december12011/index.html

Yahtzee:
http://www.datagenetics.com/blog/january42012/

Chess pieces returning home and K-pop vs. ska:
https://www.youtube.com/watch?v=63HHmjlh794

http://setosa.io/ev/markov-chains
http://datagenetics.com/blog/november12011/index.html
http://www.datagenetics.com/blog/december12011/index.html
http://www.datagenetics.com/blog/january42012/
https://www.youtube.com/watch?v=63HHmjlh794
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Inference in Markov Chains

Given a Markov chain model, these are the most common inference tasks:
1 Sampling: generate sequences that follow the probability.

2 Marginalization: compute probability of being in state c at time j.

3 Stationary distribution: probability of being in state c as j goes to ∞.

Usually for homogeneous Markov chains.

4 Decoding: compute assignment to the xj with highest joint probability.

Usually for inhomogeneous Markov chains (important for supervised learning).

5 Conditioning: do any of the above, assuming xj = c for some j and c.

For example, “filling in” missing parts of the sequence.
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Ancestral Sampling

To sample dependent random variables we can use the chain rule of probability,

p(x1, x2, x3, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x2, x1) · · · p(xd | xd−1, xd−2, . . . , x1).

The chain rule suggests the following sampling strategy:

Sample x1 from p(x1).
Given x1, sample x2 from p(x2 | x1).
Given x1 and x2, sample x3 from p(x3 | x2, x1).
. . .
Given x1 through xd−1, sample xd from p(xd | xd−1, xd−2, . . . x1).

This is called ancestral sampling.

It’s easy if (conditional) probabilities are simple, since sampling in 1D is usually easy.
But may not be simple, binary conditional j has 2j values of {x1, x2, . . . , xj}.
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Ancestral Sampling Examples

For Markov chains the chain rule simplifies to

p(x1, x2, x3, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x2) · · · p(xd | xd−1),

So ancestral sampling simplifies too:
1 Sample x1 from initial probabilities p(x1).
2 Given x1, sample x2 from transition probabilities p(x2 | x1).
3 Given x2, sample x3 from transition probabilities p(x3 | x2).
4 . . .
5 Given xd−1, sample xd from transition probabilities p(xd | xd−1).
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Markov Chain Toy Example: CS Grad Career
“Computer science grad career” Markov chain:

Initial probabilities:

Transition probabilities (from row to column):

So p(xt = “Grad School” | xt−1 = “Industry”) = 0.01.
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Example of Sampling x1

Initial probabilities are:

0.1 (Video Games)
0.6 (Industry)
0.3 (Grad School)
0 (Video Games with PhD)
0 (Academia)
0 (Deceased)

So initial CDF is:

0.1 (Video Games)
0.7 (Industry)
1 (Grad School)
1 (Video Games with PhD)
1 (Academia)
1 (Deceased)

To sample the initial state x1:

First generate a uniform number u, for example u = 0.724.
Now find the first CDF value bigger than u, which in this case is “Grad School”.
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Example of Sampling x2, Given x1 = “Grad School”

So we sampled x1 = “Grad School”.

To sample x2, we’ll use the “Grad School” row in transition probabilities:
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Example of Sampling x2, Given x1 = “Grad School”

Transition probabilities:

0.06 (Video Games)
0.06 (Industry)
0.75 (Grad School)
0.05 (Video Games with PhD)
0.02 (Academia)
0.01 (Deceased)

So transition CDF is:

0.06 (Video Games)
0.12 (Industry)
0.87 (Grad School)
0.97 (Video Games with PhD)
0.99 (Academia)
1 (Deceased)

To sample the second state x2:

First generate a uniform number u, for example u = 0.113.
Now find the first CDF value bigger than u, which in this case is “Industry”.
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Markov Chain Toy Example: CS Grad Career

Samples from “computer science grad career” Markov chain:

State 7 (“deceased”) is called an absorbing state (no probability of leaving).

Samples often give you an idea of what model knows (and what should be fixed).
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Ancestral Sampling with Blocks of Variables

We sometimes factorize variables in terms of blocks of variables, as in

p(x1, x2, x3, x4, x5, x6) = p(x1, x2)p(x3, x4 | x1, x2)p(x5, x6 | x1, x2, x3, x4).

With this factorization ancestral sampling takes the form
1 Sample x1 and x2 from p(x1, x2).
2 Given x1 and x2, sample x3 and x4 from p(x3, x4 | x2, x1).
3 Given x1:4, sample x5 and x6 from p(x5, x6 | x1, x2, x3, x4).

For example, in Gaussian discriminant analysis we write

p(xi, yi) = p(yi)p(xi | yi).

Sampling from Gaussian discriminant analysis:
1 Sample yi from the categorical distribution p(yi).
2 Sample xi from the multivariate Gaussian p(xi | yi).
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Marginalization and Conditioning

Given density estimator, we often want to make probabilistic inferences:
Marginals: what is the probability that xj = c?

What is the probability we’re in industry 10 years after graduation?

Conditionals: what is the probability that xj = c given xj′ = c′?

What is the probability of industry after 10 years, if we immediately go to grad school?

This is easy for simple independent models:

We directly model marginals p(xj), and conditional are marginals:
p(xj | xj′) = p(xj).

For Markov chains, it is more complicated.

Because p(x4) depends on the values of x1, x2 and x3.
And p(x4 | x8) additionally depends on the values x5, x6, x7, x8.
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Monte Carlo Methods for Markov Chains

We could use Monte Carlo approximations for inference in Markov chains:

Marginal p(xj = c) is the number of chains that were in state c at time j.

Average value at time j, E[xj ], is approximated by average of xj in the samples.

p(5 ≤ xj ≤ 10) is approximate by frequency of xj being between 5 and 10.

This makes more sense for continuous states than evaluating equalities.

p(xj ≤ 10, xj+1 ≥ 10) is approximated by number of chains where both happen.

Monte Carlo works for continuous states too (for inequalities and expectations).
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Exact Marginal Calculation

In typical settings Monte Carlo has slow convergence like stochastic gradient.
O(1/t) convergence rate where constant is variance of samples.

If all samples look the same, it converges quickly.
If samples look very different, it can be painfully slow.

For discrete-state Markov chains, we can actually compute marginals directly:

We’re given initial probabilities p(x1 = s) for all s as part of the definition.
We can use transition probabilities to compute p(x2 = s) for all s:

p(x2) =

k∑
x1=1

p(x2, x1)︸ ︷︷ ︸
marginalization rule

=

k∑
x1=1

p(x2 | x1)p(x1)︸ ︷︷ ︸
product rule

.



Learning in Markov Chains Inference in Markov Chains

Exact Marginal Calculation

We can do a similar calculation to compute p(x3):

p(x3) =

k∑
x2=1

p(x3, x2)︸ ︷︷ ︸
marginalization rule

=

k∑
x2=1

p(x3 | x2)p(x2)︸ ︷︷ ︸
product rule

.

So we define p(x3) in terms of p(x2).

And we defined p(x2) in terms of p(x1),

p(x2) =

k∑
x1

p(x2 | x1)p(x1),

so you could compute all values of p(x2) and then compute p(x3).
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Exact Marginal Calculation

Recursive formula for maginals at time j:

p(xj) =

k∑
xj−1=1

p(xj | xj−1)p(xj−1),

called the Chapman-Kolmogorov (CK) equations.

The CK equations can be implemented as matrix-vector multiplication:

Define πj as a vector containing the marginals at time t:

πj
c = p(xj = c).

Define T j as a matrix cotaining the transition probabilities:

T j
cc′ = p(xj = c | xj−1 = c′).
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Exact Marginal Calculation
Implementing the CK equations as a matrix multiplications:

T
j
π
j−1

=

p(xj = 1|xj−1 = 1) p(xj = 1|xj−1 = 2) . . . p(xj = 1|xj−1 = k)
p(xj = 2|xj−1 = 1) p(xj = 2|xj−1 = 2) . . . p(xj = 2|xj−1 = k)
p(xj = k|xj−1 = 1) p(xj = k|xj−1 = 2) . . . p(xj = k|xj−1 = k)



p(xj−1 = 1)
p(xj−1 = 2)

.

.

.
p(xj−1 = k)



=



∑k
c=1 p(xj = 1 | xj−1 = c)p(xj−1 = c)∑k
c=1 p(xj = 2 | xj−1 = c)p(xj−1 = c)

.

.

.∑k
c=1 p(xj = k | xj−1 = c)p(xj−1 = c)

 =


p(xj = 1)
p(xj = 2)

.

.

.
p(xj = k)

 = π
j
.

Cost of multiplying a vector by a k × k matrix is O(k2).

So cost to compute marginals up to time d is O(dk2).
This is fast considering that last step sums over all kd possible sequences.

p(xd) =
k∑

x1=1

k∑
x2=1

· · ·
k∑

xj−1=1

k∑
xj+1=1

· · ·
k∑

xd−1=1

p(x1, x2, . . . , xd).
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Marginals in CS Grad Career

CK equations can give all marginals p(xj = c) from CS grad Markov chain:

Each row j is a state and each column c is a year.
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Continuous-State Markov Chains

The CK equations also apply if we have continuous states:

p(xj) =

∫
xj−1

p(xj | xj−1)p(xj−1)dxj−1,

but this integral may not have a closed-form solution.

Gaussian probabilities are an important special case:
If p(xj−1) and p(xj | xj−1) are Gaussian, then p(xj) is Gaussian.

Marginal of product of Gaussians.

So we can write p(xj) in closed-form in terms of a mean and variance.
Also works states are vectors, with initial/transition following multivariate Gaussian.

If the probabilities are non-Gaussian, usually can’t represent p(xj) distribution.
Gaussian has the special property that it is its own conjugate prior.
With other distributions you are stuck using Monte Carlo or other approximations.
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Stationary Distribution

A stationary distribution of a homogeneous Markov chain is a vector π satisfying

π(c) =
∑
c′

p(xj = c | xj−1 = c′)π(c′).

“Marginal probabilities don’t change across time” (forgot about initial state).
A stationary distribution is called an “invariant” distribution.
Not this does not imply the states converge, just their distribution.

Under certain conditions, marginals converge to a stationary distribution.
p(xj = c)→ π(c) as j goes to ∞.
If we fit a Markov chain to the rain example, we have π(“rain”) = 0.41.
In the CS grad student example, we have π(“dead”) = 1.

Stationary distribution is basis for Google’s PageRank algorithm.
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Application: PageRank

Web search before Google:

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

It was also easy to fool search engines by copying popular websites.

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
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State Transition Diagram

State transition diagrams are common for visualizing homogenous Markov chains:

P =


0 0 0.2 0.8
0 0 0 1
0.2 0 0 0.8
0 0.45 0.45 0.1


Each node is a state, each edge is a non-zero transition probability.

For web-search, each node will be a webpage.

Cost of CK equations is only O(z) instead of O(k2) if you have only z edges.
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Application: PageRank
Wikipedia’s cartoon illustration of Google’s PageRank:

Large face means higher rank.

https://en.wikipedia.org/wiki/PageRank

“Important webpages are linked from other important webpages”.

“Link is more meaningful if a webpage has few links”.

https://en.wikipedia.org/wiki/PageRank
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Application: PageRank

Google’s PageRank algorithm for measuring the importance of a website:
Stationary probability in “random surfer” Markov chain:

With probability α, surfer clicks on a random link on the current webpage.
Otherwise, surfer goes to a completely random webpage.

To compute the stationary distribution, they use the power method:

Repeatedly apply the CK equations.
Iterations are faster than O(k2) due to sparsity of links.

Transition matrix is “sparse plus rank-1” which allows fast multiplication.

Can be easily parallelized.
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Application: Game of Thrones

PageRank can be used in other applications.

“Who is the main character in the Game of Thrones books?”

http://qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character

http://qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character
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Existence/Uniqueness of Stationary Distribution

Does a stationary distribution π exist and is it unique?

A sufficient condition for existence/uniqueness is that all p(xj = c | xj′ = c′) > 0.

PageRank satisfies this by adding probability (1− α) of jumping to a random page.

Weaker sufficient conditions for existence and uniqueness is ergodicity:
1 “Irreducible” (doesn’t get stuck in part of the graph).
2 “Aperiodic” (probability of returning to state isn’t on fixed intervals).
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Summary

Homogeneous Markov chains: same transition probabilities across time.

Allows sequences of different lengths.
Have more data to estimate transition parameters.

Inhomogeneous Markov chains: transition probabilities can vary.

Allows modeling time-specific probabilities.

Ancestral sampling generates samples from multivariate distributions.

Use chain rule of probability, sequentially sample variables from conditionals.

Chapman-Kolmogorov equations compute exact univariate marginals.

For discrete or Gaussian Markov chains.

Stationary distribution of homogenous Markov chain.

Marginals as time goes to ∞.
Basis of Google’s PageRank method.

Next time: voice Photoshop.
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Label Propagation as a Markov Chain Problem

Semi-supervised label propagation method has a Markov chain interpretation.

We have n+ t states, one for each [un]labeled example.

Monte Carlo approach to label propagation (“adsorption”):

At time t = 0, set the state to the node you want to label.
At time t > 0 and on a labeled node, output the label.

Labeled nodes are absorbing states.

At time t > 0 and on an unlabeled node i:

Move to neighbour j with probability proportional wij (or w̄ij).

Final predictions are probabilities of outputting each label.

Nice if you only need to label one example at a time (slow if labels are rare).
Common hack is to limit random walk time to bound runtime.
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