# CPSC 440: Advanced Machine Learning Learning Markov Chains

Mark Schmidt

University of British Columbia

Winter 2022

#### Learning in Markov Chains

#### Last Time: Markov Chains

• We discussed the chain rule of probability

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2)p(x_4 \mid x_1, x_2, x_3)p(x_5 \mid x_1, x_2, x_3, x_4)$ 

• In Markov chains we assume Markov property that  $x_j \perp x_1, x_2, \ldots, x_{j-2} \mid x_{j-1}$ .

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2)p(x_4 \mid x_3)p(x_5 \mid x_4),$ 

which only models dependencies between consecutive features.

- 3 ingredients of Markov chains:
  - State space:

• Set of possible states (indexed by c) we can be in at time j ("rain" or "not rain").

• Initial probabilities:

•  $p(x_1 = c)$ : probability that we start in state c at time j = 1 (p("rain") on day 1).

- Transition probabilities:
  - $p(x_j = c \mid x_{j-1} = c')$ : probability that we move from state c' to state c at time j.
  - Probability that it rains today, given what happened yesterday.

### Homogenous Markov Chains

• For rain data it makes sense to use a homogeneous Markov chain:

- Transition probabilities  $p(x_j | x_{j-1})$  are the same for all times j.
- An example of parameter tieing:
  - You have more data available to estimate each parameter.
    - Don't need to independently learn  $p(x_j \mid x_{j-1})$  for days 3 and 24.
  - 2 You can have training examples of different sizes.
    - Same model can be used for any number of days.
    - We could even treat the rain data as one long Markov chain (n = 1).

#### Homogenous Markov Chains

• With discrete states, we could use tabular parameterization for transitions,

$$p(x_j = c \mid x_{j-1} = c') = \theta_{c,c'},$$

where  $\theta_{c,c'} \ge 0$  and  $\sum_{c=1}^{k} \theta_{c,c'} = 1$  (and we use the same  $\theta_{c,c'}$  for all j). • So we have a categorical distribution over c values for each c' value.

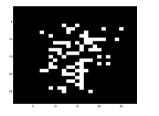
• MLE for homogeneous Markov chain with discrete  $x_j$  and tabular parameters:

$$\theta_{c,c'} = \frac{(\text{number of transitions from } c' \text{ to } c)}{(\text{number of times we went from } c' \text{ to anything})},$$

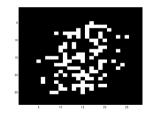
so learning is just counting.

# Density Estimation for MNIST Digits

- We've previously considered density estimation for MNIST images of digits.
- We saw that product of Bernoullis does terrible



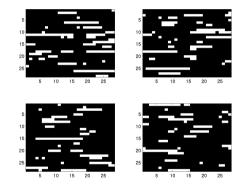




- This model misses correlation between adjacent pixels.
  - Could we capture this with a Markov chain?

## Density Estimation for MNIST Digits

• Samples from a homogeneous Markov chain (putting rows into one long vector):



• Captures correlations between adjacent pixels in the same row.

- But misses long-range dependencies in row and dependencies between rows.
- Also, "position independence" of homogeneity means it loses position information.

#### Inhomogeneous Markov Chains

- Markov chains could allow a different  $p(x_j | x_{j-1})$  for each j.
  - This makes sense for digits data, but probably not for the rain data.
- For discrete  $x_j$  we could use a tabular parameterization,

$$p(x_j = c \mid x_{j=1} = c') = \theta_{c,c'}^j.$$

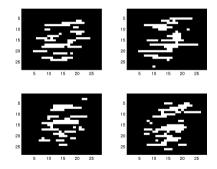
• MLE under this parameterization is given by

$$\theta_{c,c'}^{j} = \frac{(\text{number of transitions from } c' \text{ to } c \text{ starting at } (j-1))}{(\text{number of times we saw } c' \text{ at position } (j-1))},$$

Such inhomogeneous Markov chains include independent models as special case:
If we set p(x<sub>j</sub> | x<sub>j-1</sub>) = p(x<sub>j</sub>) for all j we get product of independent model.

# Density Estimation for MNIST Digits

• Samples from an inhomogeneous Markov chain fit to digits:



• We have correlations between adjacent pixels in rows and position information.

- But isn't capturing long-range dependencies or dependency between rows.
- Later we'll discuss graphical models which address this.

#### Training Markov Chains

- Some common setups for fitting the parameters Markov chains:
  - **1** We have one long sequence, and fit parameters of a homogeneous Markov chain.
    - Here, we just focus on the transition probabilities.
  - **2** We have many sequences of different lengths, and fit a homogeneous chain.
    - And we can use it to model sequences of any length.
  - We have many sequences of same length, and fit an inhomgeneous Markov chain.
     This allows "position-specific" effects.
  - We use domain knowledge to guess the initial and transition probabilities.
    Here we would be interested in inference in the model.

#### Fun with Markov Chains

- Markov Chains "Explained Visually": http://setosa.io/ev/markov-chains
- Snakes and Ladders: http://datagenetics.com/blog/november12011/index.html
- Candyland:

http://www.datagenetics.com/blog/december12011/index.html

• Yahtzee:

http://www.datagenetics.com/blog/january42012/

 Chess pieces returning home and K-pop vs. ska: https://www.youtube.com/watch?v=63HHmjlh794 Learning in Markov Chains

Inference in Markov Chains

#### Outline



2 Inference in Markov Chains

#### Inference in Markov Chains

- Given a Markov chain model, these are the most common inference tasks:
   Sampling: generate sequences that follow the probability.
  - **2** Marginalization: compute probability of being in state c at time j.
  - **③** Stationary distribution: probability of being in state c as j goes to  $\infty$ .
    - Usually for homogeneous Markov chains.
  - **Object** Decoding: compute assignment to the  $x_j$  with highest joint probability.
    - Usually for inhomogeneous Markov chains (important for supervised learning).
  - Conditioning: do any of the above, assuming x<sub>j</sub> = c for some j and c.
     For example, "filling in" missing parts of the sequence.

# Ancestral Sampling

• To sample dependent random variables we can use the chain rule of probability,

 $p(x_1, x_2, x_3, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1) \cdots p(x_d \mid x_{d-1}, x_{d-2}, \dots, x_1).$ 

- The chain rule suggests the following sampling strategy:
  - Sample  $x_1$  from  $p(x_1)$ .
  - Given  $x_1$ , sample  $x_2$  from  $p(x_2 \mid x_1)$ .
  - Given  $x_1$  and  $x_2$ , sample  $x_3$  from  $p(x_3 \mid x_2, x_1)$ .
  - . . .
  - Given  $x_1$  through  $x_{d-1}$ , sample  $x_d$  from  $p(x_d \mid x_{d-1}, x_{d-2}, \dots, x_1)$ .
- This is called ancestral sampling.
  - It's easy if (conditional) probabilities are simple, since sampling in 1D is usually easy.
  - But may not be simple, binary conditional j has  $2^j$  values of  $\{x_1, x_2, \ldots, x_j\}$ .

# Ancestral Sampling Examples

#### • For Markov chains the chain rule simplifies to

$$p(x_1, x_2, x_3, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_d \mid x_{d-1}),$$

- So ancestral sampling simplifies too:
  - **③** Sample  $x_1$  from initial probabilities  $p(x_1)$ .
  - ② Given  $x_1$ , sample  $x_2$  from transition probabilities  $p(x_2 \mid x_1)$ .
  - **③** Given  $x_2$ , sample  $x_3$  from transition probabilities  $p(x_3 \mid x_2)$ .
  - 4 . . .
  - **5** Given  $x_{d-1}$ , sample  $x_d$  from transition probabilities  $p(x_d \mid x_{d-1})$ .

## Markov Chain Toy Example: CS Grad Career

- "Computer science grad career" Markov chain:
  - Initial probabilities:

| State       | Probability | Description                                       |
|-------------|-------------|---------------------------------------------------|
| Industry    | 0.60        | They work for a company or own their own company. |
| Grad School | 0.30        | They are trying to get a Masters or PhD degree.   |
| Video Games | 0.10        | They mostly play video games.                     |

• Transition probabilities (from row to column):

| From\to                | Video Games | Industry | Grad School | Video Games (with PhD) | Industry (with PhD) | Academia | Deceased |
|------------------------|-------------|----------|-------------|------------------------|---------------------|----------|----------|
| Video Games            | 0.08        | 0.90     | 0.01        | 0                      | 0                   | 0        | 0.01     |
| Industry               | 0.03        | 0.95     | 0.01        | 0                      | 0                   | 0        | 0.01     |
| Grad School            | 0.06        | 0.06     | 0.75        | 0.05                   | 0.05                | 0.02     | 0.01     |
| Video Games (with PhD) | 0           | 0        | 0           | 0.30                   | 0.60                | 0.09     | 0.01     |
| Industry (with PhD)    | 0           | 0        | 0           | 0.02                   | 0.95                | 0.02     | 0.01     |
| Academia               | 0           | 0        | 0           | 0.01                   | 0.01                | 0.97     | 0.01     |
| Deceased               | 0           | 0        | 0           | 0                      | 0                   | 0        | 1        |

• So 
$$p(x_t = \text{``Grad School''} \mid x_{t-1} = \text{``Industry''}) = 0.01.$$

# Example of Sampling $x_1$

- Initial probabilities are:
  - 0.1 (Video Games)
  - 0.6 (Industry)
  - 0.3 (Grad School)
  - 0 (Video Games with PhD)
  - 0 (Academia)
  - 0 (Deceased)

- So initial CDF is:
  - 0.1 (Video Games)
  - 0.7 (Industry)
  - 1 (Grad School)
  - 1 (Video Games with PhD)
  - 1 (Academia)
  - 1 (Deceased)

- To sample the initial state  $x_1$ :
  - First generate a uniform number u, for example u = 0.724.
  - Now find the first CDF value bigger than u, which in this case is "Grad School".

#### Example of Sampling $x_2$ , Given $x_1 =$ "Grad School"

• So we sampled  $x_1 =$  "Grad School".

• To sample  $x_2$ , we'll use the "Grad School" row in transition probabilities:

| From\to                | Video Games | Industry | Grad School | Video Games (with PhD) | Industry (with PhD) | Academia | Deceased |   |
|------------------------|-------------|----------|-------------|------------------------|---------------------|----------|----------|---|
| Video Games            | 0.08        | 0.90     | 0.01        | 0                      | 0                   | 0        | 0.01     |   |
| Industry               | 0.03        | 0.95     | 0.01        | 0                      | 0                   | 0        | 0.01     |   |
| Grad School            | 0.06        | 0.06     | 0.75        | 0.05                   | 0.05                | 0.02     | 0.01     | > |
| Video Games (with PhD) | 0           | 0        | 0           | 0.30                   | 0.60                | 0.09     | 0.01     |   |
| Industry (with PhD)    | 0           | 0        | 0           | 0.02                   | 0.95                | 0.02     | 0.01     |   |
| Academia               | 0           | 0        | 0           | 0.01                   | 0.01                | 0.97     | 0.01     |   |
| Deceased               | 0           | 0        | 0           | 0                      | 0                   | 0        | 1        |   |

# Example of Sampling $x_2$ , Given $x_1 =$ "Grad School"

#### • Transition probabilities:

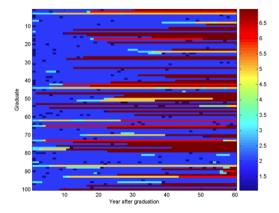
- 0.06 (Video Games)
- 0.06 (Industry)
- 0.75 (Grad School)
- 0.05 (Video Games with PhD)
- 0.02 (Academia)
- 0.01 (Deceased)

- So transition CDF is:
  - 0.06 (Video Games)
  - 0.12 (Industry)
  - 0.87 (Grad School)
  - 0.97 (Video Games with PhD)
  - 0.99 (Academia)
  - 1 (Deceased)

- To sample the second state  $x_2$ :
  - First generate a uniform number u, for example u = 0.113.
  - Now find the first CDF value bigger than u, which in this case is "Industry".

#### Markov Chain Toy Example: CS Grad Career

• Samples from "computer science grad career" Markov chain:



• State 7 ("deceased") is called an absorbing state (no probability of leaving).

• Samples often give you an idea of what model knows (and what should be fixed).

#### Ancestral Sampling with Blocks of Variables

• We sometimes factorize variables in terms of blocks of variables, as in

 $p(x_1, x_2, x_3, x_4, x_5, x_6) = p(x_1, x_2)p(x_3, x_4 \mid x_1, x_2)p(x_5, x_6 \mid x_1, x_2, x_3, x_4).$ 

- With this factorization ancestral sampling takes the form
  - **1** Sample  $x_1$  and  $x_2$  from  $p(x_1, x_2)$ .
  - 2 Given  $x_1$  and  $x_2$ , sample  $x_3$  and  $x_4$  from  $p(x_3, x_4 \mid x_2, x_1)$ .
  - **③** Given  $x_{1:4}$ , sample  $x_5$  and  $x_6$  from  $p(x_5, x_6 | x_1, x_2, x_3, x_4)$ .
- For example, in Gaussian discriminant analysis we write

$$p(x^i, y^i) = p(y^i)p(x^i \mid y^i).$$

- Sampling from Gaussian discriminant analysis:
  - **(**) Sample  $y^i$  from the categorical distribution  $p(y^i)$ .
  - 2 Sample  $x^i$  from the multivariate Gaussian  $p(x^i \mid y^i)$ .

#### Marginalization and Conditioning

• Given density estimator, we often want to make probabilistic inferences:

- Marginals: what is the probability that  $x_j = c$ ?
  - What is the probability we're in industry 10 years after graduation?
- Conditionals: what is the probability that  $x_j = c$  given  $x_{j'} = c'$ ?
  - What is the probability of industry after 10 years, if we immediately go to grad school?
- This is easy for simple independent models:
  - We directly model marginals  $p(x_j)$ , and conditional are marginals:  $p(x_j \mid x_{j'}) = p(x_j)$ .
- For Markov chains, it is more complicated.
  - Because  $p(x_4)$  depends on the values of  $x_1$ ,  $x_2$  and  $x_3$ .
  - And  $p(x_4 \mid x_8)$  additionally depends on the values  $x_5$ ,  $x_6$ ,  $x_7$ ,  $x_8$ .

#### Monte Carlo Methods for Markov Chains

- We could use Monte Carlo approximations for inference in Markov chains:
  - Marginal  $p(x_j = c)$  is the number of chains that were in state c at time j.
  - Average value at time j,  $E[x_j]$ , is approximated by average of  $x_j$  in the samples.
  - p(5 ≤ x<sub>j</sub> ≤ 10) is approximate by frequency of x<sub>j</sub> being between 5 and 10.
    This makes more sense for continuous states than evaluating equalities.
  - $p(x_j \le 10, x_{j+1} \ge 10)$  is approximated by number of chains where both happen.
- Monte Carlo works for continuous states too (for inequalities and expectations).

## Exact Marginal Calculation

• In typical settings Monte Carlo has slow convergence like stochastic gradient.

- O(1/t) convergence rate where constant is variance of samples.
  - If all samples look the same, it converges quickly.
  - If samples look very different, it can be painfully slow.
- For discrete-state Markov chains, we can actually compute marginals directly:
  - We're given initial probabilities  $p(x_1 = s)$  for all s as part of the definition.
  - We can use transition probabilities to compute  $p(x_2 = s)$  for all s:

$$p(x_2) = \underbrace{\sum_{x_1=1}^k p(x_2, x_1)}_{\text{marginalization rule}} = \sum_{x_1=1}^k \underbrace{p(x_2 \mid x_1) p(x_1)}_{\text{product rule}}$$

#### Exact Marginal Calculation

• We can do a similar calculation to compute  $p(x_3)$ :

$$p(x_3) = \underbrace{\sum_{x_2=1}^k p(x_3, x_2)}_{\text{marginalization rule}} = \underbrace{\sum_{x_2=1}^k \underbrace{p(x_3 \mid x_2) p(x_2)}_{\text{product rule}}.$$

- So we define  $p(x_3)$  in terms of  $p(x_2)$ .
  - And we defined  $p(x_2)$  in terms of  $p(x_1)$ ,

$$p(x_2) = \sum_{x_1}^k p(x_2 \mid x_1) p(x_1),$$

so you could compute all values of  $p(x_2)$  and then compute  $p(x_3)$ .

#### Exact Marginal Calculation

• Recursive formula for maginals at time *j*:

$$p(x_j) = \sum_{x_{j-1}=1}^k p(x_j \mid x_{j-1}) p(x_{j-1}),$$

called the Chapman-Kolmogorov (CK) equations.

- The CK equations can be implemented as matrix-vector multiplication:
  - Define  $\pi^j$  as a vector containing the marginals at time t:

$$\pi_c^j = p(x_j = c).$$

• Define  $T^j$  as a matrix cotaining the transition probabilities:

$$T_{cc'}^{j} = p(x_j = c \mid x_{j-1} = c').$$

- > -

- /

#### Exact Marginal Calculation

• Implementing the CK equations as a matrix multiplications:

$$T^{j}\pi^{j-1} = \begin{bmatrix} p(x_{j} = 1|x_{j-1} = 1) & p(x_{j} = 1|x_{j-1} = 2) & \dots & p(x_{j} = 1|x_{j-1} = k) \\ p(x_{j} = 2|x_{j-1} = 1) & p(x_{j} = 2|x_{j-1} = 2) & \dots & p(x_{j} = 2|x_{j-1} = k) \\ p(x_{j} = k|x_{j-1} = 1) & p(x_{j} = k|x_{j-1} = 2) & \dots & p(x_{j} = k|x_{j-1} = k) \end{bmatrix} \begin{bmatrix} p(x_{j-1} = 1) \\ p(x_{j-1} = 2) \\ \vdots \\ p(x_{j-1} = k) \end{bmatrix}$$

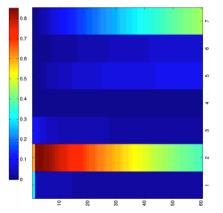
$$= \begin{bmatrix} \sum_{k=1}^{k} p(x_j = 1 \mid x_{j-1} = c) p(x_{j-1} = c) \\ \sum_{c=1}^{k} p(x_j = 2 \mid x_{j-1} = c) p(x_{j-1} = c) \\ \vdots \\ \sum_{c=1}^{k} p(x_j = k \mid x_{j-1} = c) p(x_{j-1} = c) \end{bmatrix} = \begin{bmatrix} p(x_j = 1) \\ p(x_j = 2) \\ \vdots \\ p(x_j = k) \end{bmatrix} = \pi^j.$$

- Cost of multiplying a vector by a  $k \times k$  matrix is  $O(k^2)$ .
- So cost to compute marginals up to time d is  $O(dk^2)$ .
  - This is fast considering that last step sums over all  $k^d$  possible sequences.

$$p(x_d) = \sum_{x_1=1}^k \sum_{x_2=1}^k \cdots \sum_{x_{j-1}=1}^k \sum_{x_{j+1}=1}^k \cdots \sum_{x_{d-1}=1}^k p(x_1, x_2, \dots, x_d).$$

#### Marginals in CS Grad Career

• CK equations can give all marginals  $p(x_j = c)$  from CS grad Markov chain:



• Each row j is a state and each column c is a year.

#### Continuous-State Markov Chains

• The CK equations also apply if we have continuous states:

$$p(x_j) = \int_{x_{j-1}} p(x_j \mid x_{j-1}) p(x_{j-1}) dx_{j-1},$$

but this integral may not have a closed-form solution.

- Gaussian probabilities are an important special case:
  - If  $p(x_{j-1})$  and  $p(x_j \mid x_{j-1})$  are Gaussian, then  $p(x_j)$  is Gaussian.
    - Marginal of product of Gaussians.
  - So we can write  $p(x_j)$  in closed-form in terms of a mean and variance.
    - Also works states are vectors, with initial/transition following multivariate Gaussian.
- If the probabilities are non-Gaussian, usually can't represent  $p(x_j)$  distribution.
  - Gaussian has the special property that it is its own conjugate prior.
  - With other distributions you are stuck using Monte Carlo or other approximations.

# Stationary Distribution

• A stationary distribution of a homogeneous Markov chain is a vector  $\pi$  satisfying

$$\pi(c) = \sum_{c'} p(x_j = c \mid x_{j-1} = c') \pi(c').$$

- "Marginal probabilities don't change across time" (forgot about initial state).
  - A stationary distribution is called an "invariant" distribution.
  - Not this does not imply the states converge, just their distribution.
- Under certain conditions, marginals converge to a stationary distribution.
  - $p(x_j = c) \to \pi(c)$  as j goes to  $\infty$ .
  - If we fit a Markov chain to the rain example, we have  $\pi("rain") = 0.41$ .
  - In the CS grad student example, we have  $\pi(\text{``dead''}) = 1$ .
- Stationary distribution is basis for Google's PageRank algorithm.

# Application: PageRank

• Web search before Google:

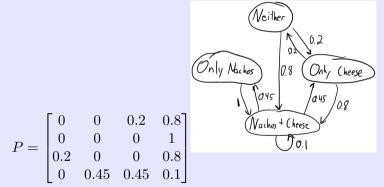


http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

• It was also easy to fool search engines by copying popular websites.

### State Transition Diagram

• State transition diagrams are common for visualizing homogenous Markov chains:



- Each node is a state, each edge is a non-zero transition probability.
  - For web-search, each node will be a webpage.
- Cost of CK equations is only O(z) instead of  $O(k^2)$  if you have only z edges.

#### Application: PageRank

- Wikipedia's cartoon illustration of Google's PageRank:
  - Large face means higher rank.



https://en.wikipedia.org/wiki/PageRank

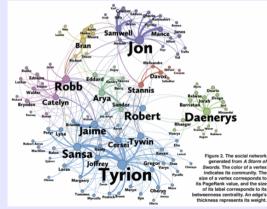
- "Important webpages are linked from other important webpages".
- "Link is more meaningful if a webpage has few links".

# Application: PageRank

- Google's PageRank algorithm for measuring the importance of a website:
  - Stationary probability in "random surfer" Markov chain:
    - With probability  $\alpha$ , surfer clicks on a random link on the current webpage.
    - Otherwise, surfer goes to a completely random webpage.
- To compute the stationary distribution, they use the power method:
  - Repeatedly apply the CK equations.
  - Iterations are faster than  $O(k^2)$  due to sparsity of links.
    - Transition matrix is "sparse plus rank-1" which allows fast multiplication.
  - Can be easily parallelized.

#### Application: Game of Thrones

- PageRank can be used in other applications.
- "Who is the main character in the Game of Thrones books?"



# Existence/Uniqueness of Stationary Distribution

- Does a stationary distribution  $\pi$  exist and is it unique?
- A sufficient condition for existence/uniqueness is that all p(x<sub>j</sub> = c | x<sub>j'</sub> = c') > 0.
  PageRank satisfies this by adding probability (1 α) of jumping to a random page.
- Weaker sufficient conditions for existence and uniqueness is ergodicity:
  - "Irreducible" (doesn't get stuck in part of the graph).
  - 2 "Aperiodic" (probability of returning to state isn't on fixed intervals).

# Summary

- Homogeneous Markov chains: same transition probabilities across time.
  - Allows sequences of different lengths.
  - Have more data to estimate transition parameters.
- Inhomogeneous Markov chains: transition probabilities can vary.
  - Allows modeling time-specific probabilities.
- Ancestral sampling generates samples from multivariate distributions.
  - Use chain rule of probability, sequentially sample variables from conditionals.
- Chapman-Kolmogorov equations compute exact univariate marginals.
  - For discrete or Gaussian Markov chains.
- Stationary distribution of homogenous Markov chain.
  - Marginals as time goes to  $\infty$ .
  - Basis of Google's PageRank method.
- Next time: voice Photoshop.

#### Label Propagation as a Markov Chain Problem

• Semi-supervised label propagation method has a Markov chain interpretation.

- We have n+t states, one for each [un]labeled example.
- Monte Carlo approach to label propagation ("adsorption"):
  - At time t = 0, set the state to the node you want to label.
  - At time t > 0 and on a labeled node, output the label.
    - Labeled nodes are absorbing states.
  - At time t > 0 and on an unlabeled node i:
    - Move to neighbour j with probability proportional  $w_{ij}$  (or  $\bar{w}_{ij}$ ).
- Final predictions are probabilities of outputting each label.
  - Nice if you only need to label one example at a time (slow if labels are rare).
  - Common hack is to limit random walk time to bound runtime.