CPSC 440: Advanced Machine Learning Learning Markov Chains

Mark Schmidt

University of British Columbia

Winter 2022

Learning in Markov Chains

Last Time: Markov Chains

• We discussed the chain rule of probability

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2)p(x_4 \mid x_1, x_2, x_3)p(x_5 \mid x_1, x_2, x_3, x_4)$

• In Markov chains we assume Markov property that $x_j \perp x_1, x_2, \ldots, x_{j-2} \mid x_{j-1}$.

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2)p(x_4 \mid x_3)p(x_5 \mid x_4),$

which only models dependencies between consecutive features.

- 3 ingredients of Markov chains:
 - State space:

• Set of possible states (indexed by c) we can be in at time j ("rain" or "not rain").

• Initial probabilities:

• $p(x_1 = c)$: probability that we start in state c at time j = 1 (p("rain") on day 1).

- Transition probabilities:
 - $p(x_j = c \mid x_{j-1} = c')$: probability that we move from state c' to state c at time j.
 - Probability that it rains today, given what happened yesterday.

Homogenous Markov Chains

• For rain data it makes sense to use a homogeneous Markov chain:

- Transition probabilities $p(x_j | x_{j-1})$ are the same for all times j.
- An example of parameter tieing:
 - You have more data available to estimate each parameter.
 - Don't need to independently learn $p(x_j \mid x_{j-1})$ for days 3 and 24.
 - 2 You can have training examples of different sizes.
 - Same model can be used for any number of days.
 - We could even treat the rain data as one long Markov chain (n = 1).

Homogenous Markov Chains

• With discrete states, we could use tabular parameterization for transitions,

$$p(x_j = c \mid x_{j-1} = c') = \theta_{c,c'},$$

where $\theta_{c,c'} \ge 0$ and $\sum_{c=1}^{k} \theta_{c,c'} = 1$ (and we use the same $\theta_{c,c'}$ for all j). • So we have a categorical distribution over c values for each c' value.

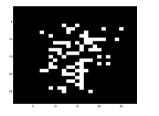
• MLE for homogeneous Markov chain with discrete x_j and tabular parameters:

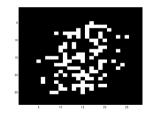
$$\theta_{c,c'} = \frac{(\text{number of transitions from } c' \text{ to } c)}{(\text{number of times we went from } c' \text{ to anything})},$$

so learning is just counting.

Density Estimation for MNIST Digits

- We've previously considered density estimation for MNIST images of digits.
- We saw that product of Bernoullis does terrible

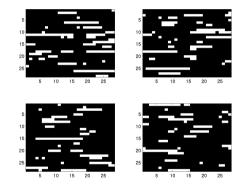




- This model misses correlation between adjacent pixels.
 - Could we capture this with a Markov chain?

Density Estimation for MNIST Digits

• Samples from a homogeneous Markov chain (putting rows into one long vector):



• Captures correlations between adjacent pixels in the same row.

- But misses long-range dependencies in row and dependencies between rows.
- Also, "position independence" of homogeneity means it loses position information.

Inhomogeneous Markov Chains

- Markov chains could allow a different $p(x_j | x_{j-1})$ for each j.
 - This makes sense for digits data, but probably not for the rain data.
- For discrete x_j we could use a tabular parameterization,

$$p(x_j = c \mid x_{j=1} = c') = \theta_{c,c'}^j.$$

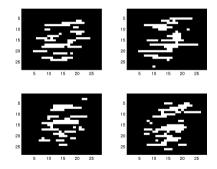
• MLE under this parameterization is given by

$$\theta_{c,c'}^{j} = \frac{(\text{number of transitions from } c' \text{ to } c \text{ starting at } (j-1))}{(\text{number of times we saw } c' \text{ at position } (j-1))},$$

Such inhomogeneous Markov chains include independent models as special case:
If we set p(x_j | x_{j-1}) = p(x_j) for all j we get product of independent model.

Density Estimation for MNIST Digits

• Samples from an inhomogeneous Markov chain fit to digits:



• We have correlations between adjacent pixels in rows and position information.

- But isn't capturing long-range dependencies or dependency between rows.
- Later we'll discuss graphical models which address this.

Training Markov Chains

- Some common setups for fitting the parameters Markov chains:
 - **1** We have one long sequence, and fit parameters of a homogeneous Markov chain.
 - Here, we just focus on the transition probabilities.
 - **2** We have many sequences of different lengths, and fit a homogeneous chain.
 - And we can use it to model sequences of any length.
 - We have many sequences of same length, and fit an inhomgeneous Markov chain.
 This allows "position-specific" effects.
 - We use domain knowledge to guess the initial and transition probabilities.
 Here we would be interested in inference in the model.

Fun with Markov Chains

- Markov Chains "Explained Visually": http://setosa.io/ev/markov-chains
- Snakes and Ladders: http://datagenetics.com/blog/november12011/index.html
- Candyland:

http://www.datagenetics.com/blog/december12011/index.html

• Yahtzee:

http://www.datagenetics.com/blog/january42012/

 Chess pieces returning home and K-pop vs. ska: https://www.youtube.com/watch?v=63HHmjlh794 Learning in Markov Chains

Inference in Markov Chains

Outline

2 Inference in Markov Chains

Inference in Markov Chains

- Given a Markov chain model, these are the most common inference tasks:
 Sampling: generate sequences that follow the probability.
 - **2** Marginalization: compute probability of being in state c at time j.
 - **③** Stationary distribution: probability of being in state c as j goes to ∞ .
 - Usually for homogeneous Markov chains.
 - **Object** Decoding: compute assignment to the x_j with highest joint probability.
 - Usually for inhomogeneous Markov chains (important for supervised learning).
 - Conditioning: do any of the above, assuming x_j = c for some j and c.
 For example, "filling in" missing parts of the sequence.

Ancestral Sampling

• To sample dependent random variables we can use the chain rule of probability,

 $p(x_1, x_2, x_3, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1) \cdots p(x_d \mid x_{d-1}, x_{d-2}, \dots, x_1).$

- The chain rule suggests the following sampling strategy:
 - Sample x_1 from $p(x_1)$.
 - Given x_1 , sample x_2 from $p(x_2 \mid x_1)$.
 - Given x_1 and x_2 , sample x_3 from $p(x_3 \mid x_2, x_1)$.
 - . . .
 - Given x_1 through x_{d-1} , sample x_d from $p(x_d \mid x_{d-1}, x_{d-2}, \dots, x_1)$.
- This is called ancestral sampling.
 - It's easy if (conditional) probabilities are simple, since sampling in 1D is usually easy.
 - But may not be simple, binary conditional j has 2^j values of $\{x_1, x_2, \ldots, x_j\}$.

Ancestral Sampling Examples

• For Markov chains the chain rule simplifies to

$$p(x_1, x_2, x_3, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_d \mid x_{d-1}),$$

- So ancestral sampling simplifies too:
 - **③** Sample x_1 from initial probabilities $p(x_1)$.
 - ② Given x_1 , sample x_2 from transition probabilities $p(x_2 \mid x_1)$.
 - **③** Given x_2 , sample x_3 from transition probabilities $p(x_3 \mid x_2)$.
 - 4 . . .
 - **5** Given x_{d-1} , sample x_d from transition probabilities $p(x_d \mid x_{d-1})$.

Markov Chain Toy Example: CS Grad Career

- "Computer science grad career" Markov chain:
 - Initial probabilities:

State	Probability	Description
Industry	0.60	They work for a company or own their own company.
Grad School	0.30	They are trying to get a Masters or PhD degree.
Video Games	0.10	They mostly play video games.

• Transition probabilities (from row to column):

From\to	Video Games	Industry	Grad School	Video Games (with PhD)	Industry (with PhD)	Academia	Deceased
Video Games	0.08	0.90	0.01	0	0	0	0.01
Industry	0.03	0.95	0.01	0	0	0	0.01
Grad School	0.06	0.06	0.75	0.05	0.05	0.02	0.01
Video Games (with PhD)	0	0	0	0.30	0.60	0.09	0.01
Industry (with PhD)	0	0	0	0.02	0.95	0.02	0.01
Academia	0	0	0	0.01	0.01	0.97	0.01
Deceased	0	0	0	0	0	0	1

• So
$$p(x_t = \text{``Grad School''} \mid x_{t-1} = \text{``Industry''}) = 0.01.$$

Example of Sampling x_1

- Initial probabilities are:
 - 0.1 (Video Games)
 - 0.6 (Industry)
 - 0.3 (Grad School)
 - 0 (Video Games with PhD)
 - 0 (Academia)
 - 0 (Deceased)

- So initial CDF is:
 - 0.1 (Video Games)
 - 0.7 (Industry)
 - 1 (Grad School)
 - 1 (Video Games with PhD)
 - 1 (Academia)
 - 1 (Deceased)

- To sample the initial state x_1 :
 - First generate a uniform number u, for example u = 0.724.
 - Now find the first CDF value bigger than u, which in this case is "Grad School".

Example of Sampling x_2 , Given $x_1 =$ "Grad School"

• So we sampled $x_1 =$ "Grad School".

• To sample x_2 , we'll use the "Grad School" row in transition probabilities:

From\to	Video Games	Industry	Grad School	Video Games (with PhD)	Industry (with PhD)	Academia	Deceased	
Video Games	0.08	0.90	0.01	0	0	0	0.01	
Industry	0.03	0.95	0.01	0	0	0	0.01	
Grad School	0.06	0.06	0.75	0.05	0.05	0.02	0.01	>
Video Games (with PhD)	0	0	0	0.30	0.60	0.09	0.01	
Industry (with PhD)	0	0	0	0.02	0.95	0.02	0.01	
Academia	0	0	0	0.01	0.01	0.97	0.01	
Deceased	0	0	0	0	0	0	1	

Example of Sampling x_2 , Given $x_1 =$ "Grad School"

• Transition probabilities:

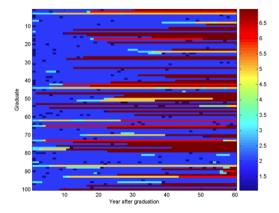
- 0.06 (Video Games)
- 0.06 (Industry)
- 0.75 (Grad School)
- 0.05 (Video Games with PhD)
- 0.02 (Academia)
- 0.01 (Deceased)

- So transition CDF is:
 - 0.06 (Video Games)
 - 0.12 (Industry)
 - 0.87 (Grad School)
 - 0.97 (Video Games with PhD)
 - 0.99 (Academia)
 - 1 (Deceased)

- To sample the second state x_2 :
 - First generate a uniform number u, for example u = 0.113.
 - Now find the first CDF value bigger than u, which in this case is "Industry".

Markov Chain Toy Example: CS Grad Career

• Samples from "computer science grad career" Markov chain:



• State 7 ("deceased") is called an absorbing state (no probability of leaving).

• Samples often give you an idea of what model knows (and what should be fixed).

Ancestral Sampling with Blocks of Variables

• We sometimes factorize variables in terms of blocks of variables, as in

 $p(x_1, x_2, x_3, x_4, x_5, x_6) = p(x_1, x_2)p(x_3, x_4 \mid x_1, x_2)p(x_5, x_6 \mid x_1, x_2, x_3, x_4).$

- With this factorization ancestral sampling takes the form
 - **1** Sample x_1 and x_2 from $p(x_1, x_2)$.
 - 2 Given x_1 and x_2 , sample x_3 and x_4 from $p(x_3, x_4 \mid x_2, x_1)$.
 - **③** Given $x_{1:4}$, sample x_5 and x_6 from $p(x_5, x_6 | x_1, x_2, x_3, x_4)$.
- For example, in Gaussian discriminant analysis we write

$$p(x^i, y^i) = p(y^i)p(x^i \mid y^i).$$

- Sampling from Gaussian discriminant analysis:
 - **(**) Sample y^i from the categorical distribution $p(y^i)$.
 - 2 Sample x^i from the multivariate Gaussian $p(x^i \mid y^i)$.

Marginalization and Conditioning

• Given density estimator, we often want to make probabilistic inferences:

- Marginals: what is the probability that $x_j = c$?
 - What is the probability we're in industry 10 years after graduation?
- Conditionals: what is the probability that $x_j = c$ given $x_{j'} = c'$?
 - What is the probability of industry after 10 years, if we immediately go to grad school?
- This is easy for simple independent models:
 - We directly model marginals $p(x_j)$, and conditional are marginals: $p(x_j \mid x_{j'}) = p(x_j)$.
- For Markov chains, it is more complicated.
 - Because $p(x_4)$ depends on the values of x_1 , x_2 and x_3 .
 - And $p(x_4 \mid x_8)$ additionally depends on the values x_5 , x_6 , x_7 , x_8 .

Monte Carlo Methods for Markov Chains

- We could use Monte Carlo approximations for inference in Markov chains:
 - Marginal $p(x_j = c)$ is the number of chains that were in state c at time j.
 - Average value at time j, $E[x_j]$, is approximated by average of x_j in the samples.
 - p(5 ≤ x_j ≤ 10) is approximate by frequency of x_j being between 5 and 10.
 This makes more sense for continuous states than evaluating equalities.
 - $p(x_j \le 10, x_{j+1} \ge 10)$ is approximated by number of chains where both happen.
- Monte Carlo works for continuous states too (for inequalities and expectations).

Exact Marginal Calculation

• In typical settings Monte Carlo has slow convergence like stochastic gradient.

- O(1/t) convergence rate where constant is variance of samples.
 - If all samples look the same, it converges quickly.
 - If samples look very different, it can be painfully slow.
- For discrete-state Markov chains, we can actually compute marginals directly:
 - We're given initial probabilities $p(x_1 = s)$ for all s as part of the definition.
 - We can use transition probabilities to compute $p(x_2 = s)$ for all s:

$$p(x_2) = \underbrace{\sum_{x_1=1}^k p(x_2, x_1)}_{\text{marginalization rule}} = \sum_{x_1=1}^k \underbrace{p(x_2 \mid x_1) p(x_1)}_{\text{product rule}}$$

Exact Marginal Calculation

• We can do a similar calculation to compute $p(x_3)$:

$$p(x_3) = \underbrace{\sum_{x_2=1}^k p(x_3, x_2)}_{\text{marginalization rule}} = \underbrace{\sum_{x_2=1}^k \underbrace{p(x_3 \mid x_2) p(x_2)}_{\text{product rule}}.$$

- So we define $p(x_3)$ in terms of $p(x_2)$.
 - And we defined $p(x_2)$ in terms of $p(x_1)$,

$$p(x_2) = \sum_{x_1}^k p(x_2 \mid x_1) p(x_1),$$

so you could compute all values of $p(x_2)$ and then compute $p(x_3)$.

Exact Marginal Calculation

• Recursive formula for maginals at time *j*:

$$p(x_j) = \sum_{x_{j-1}=1}^k p(x_j \mid x_{j-1}) p(x_{j-1}),$$

called the Chapman-Kolmogorov (CK) equations.

- The CK equations can be implemented as matrix-vector multiplication:
 - Define π^j as a vector containing the marginals at time t:

$$\pi_c^j = p(x_j = c).$$

• Define T^j as a matrix cotaining the transition probabilities:

$$T_{cc'}^{j} = p(x_j = c \mid x_{j-1} = c').$$

- > -

- /

Exact Marginal Calculation

• Implementing the CK equations as a matrix multiplications:

$$T^{j}\pi^{j-1} = \begin{bmatrix} p(x_{j} = 1|x_{j-1} = 1) & p(x_{j} = 1|x_{j-1} = 2) & \dots & p(x_{j} = 1|x_{j-1} = k) \\ p(x_{j} = 2|x_{j-1} = 1) & p(x_{j} = 2|x_{j-1} = 2) & \dots & p(x_{j} = 2|x_{j-1} = k) \\ p(x_{j} = k|x_{j-1} = 1) & p(x_{j} = k|x_{j-1} = 2) & \dots & p(x_{j} = k|x_{j-1} = k) \end{bmatrix} \begin{bmatrix} p(x_{j-1} = 1) \\ p(x_{j-1} = 2) \\ \vdots \\ p(x_{j-1} = k) \end{bmatrix}$$

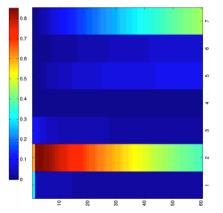
$$= \begin{bmatrix} \sum_{k=1}^{k} p(x_j = 1 \mid x_{j-1} = c) p(x_{j-1} = c) \\ \sum_{c=1}^{k} p(x_j = 2 \mid x_{j-1} = c) p(x_{j-1} = c) \\ \vdots \\ \sum_{c=1}^{k} p(x_j = k \mid x_{j-1} = c) p(x_{j-1} = c) \end{bmatrix} = \begin{bmatrix} p(x_j = 1) \\ p(x_j = 2) \\ \vdots \\ p(x_j = k) \end{bmatrix} = \pi^j.$$

- Cost of multiplying a vector by a $k \times k$ matrix is $O(k^2)$.
- So cost to compute marginals up to time d is $O(dk^2)$.
 - This is fast considering that last step sums over all k^d possible sequences.

$$p(x_d) = \sum_{x_1=1}^k \sum_{x_2=1}^k \cdots \sum_{x_{j-1}=1}^k \sum_{x_{j+1}=1}^k \cdots \sum_{x_{d-1}=1}^k p(x_1, x_2, \dots, x_d).$$

Marginals in CS Grad Career

• CK equations can give all marginals $p(x_j = c)$ from CS grad Markov chain:



• Each row j is a state and each column c is a year.

Continuous-State Markov Chains

• The CK equations also apply if we have continuous states:

$$p(x_j) = \int_{x_{j-1}} p(x_j \mid x_{j-1}) p(x_{j-1}) dx_{j-1},$$

but this integral may not have a closed-form solution.

- Gaussian probabilities are an important special case:
 - If $p(x_{j-1})$ and $p(x_j \mid x_{j-1})$ are Gaussian, then $p(x_j)$ is Gaussian.
 - Marginal of product of Gaussians.
 - So we can write $p(x_j)$ in closed-form in terms of a mean and variance.
 - Also works states are vectors, with initial/transition following multivariate Gaussian.
- If the probabilities are non-Gaussian, usually can't represent $p(x_j)$ distribution.
 - Gaussian has the special property that it is its own conjugate prior.
 - With other distributions you are stuck using Monte Carlo or other approximations.

Stationary Distribution

• A stationary distribution of a homogeneous Markov chain is a vector π satisfying

$$\pi(c) = \sum_{c'} p(x_j = c \mid x_{j-1} = c') \pi(c').$$

- "Marginal probabilities don't change across time" (forgot about initial state).
 - A stationary distribution is called an "invariant" distribution.
 - Not this does not imply the states converge, just their distribution.
- Under certain conditions, marginals converge to a stationary distribution.
 - $p(x_j = c) \to \pi(c)$ as j goes to ∞ .
 - If we fit a Markov chain to the rain example, we have $\pi("rain") = 0.41$.
 - In the CS grad student example, we have $\pi(\text{``dead''}) = 1$.
- Stationary distribution is basis for Google's PageRank algorithm.

Application: PageRank

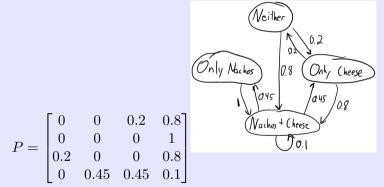
• Web search before Google:

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

• It was also easy to fool search engines by copying popular websites.

State Transition Diagram

• State transition diagrams are common for visualizing homogenous Markov chains:



- Each node is a state, each edge is a non-zero transition probability.
 - For web-search, each node will be a webpage.
- Cost of CK equations is only O(z) instead of $O(k^2)$ if you have only z edges.

Application: PageRank

- Wikipedia's cartoon illustration of Google's PageRank:
 - Large face means higher rank.

https://en.wikipedia.org/wiki/PageRank

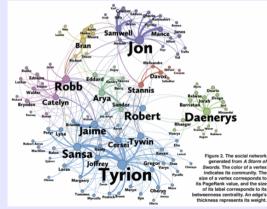
- "Important webpages are linked from other important webpages".
- "Link is more meaningful if a webpage has few links".

Application: PageRank

- Google's PageRank algorithm for measuring the importance of a website:
 - Stationary probability in "random surfer" Markov chain:
 - With probability α , surfer clicks on a random link on the current webpage.
 - Otherwise, surfer goes to a completely random webpage.
- To compute the stationary distribution, they use the power method:
 - Repeatedly apply the CK equations.
 - Iterations are faster than $O(k^2)$ due to sparsity of links.
 - Transition matrix is "sparse plus rank-1" which allows fast multiplication.
 - Can be easily parallelized.

Application: Game of Thrones

- PageRank can be used in other applications.
- "Who is the main character in the Game of Thrones books?"



Existence/Uniqueness of Stationary Distribution

- Does a stationary distribution π exist and is it unique?
- A sufficient condition for existence/uniqueness is that all p(x_j = c | x_{j'} = c') > 0.
 PageRank satisfies this by adding probability (1 α) of jumping to a random page.
- Weaker sufficient conditions for existence and uniqueness is ergodicity:
 - "Irreducible" (doesn't get stuck in part of the graph).
 - 2 "Aperiodic" (probability of returning to state isn't on fixed intervals).

Summary

- Homogeneous Markov chains: same transition probabilities across time.
 - Allows sequences of different lengths.
 - Have more data to estimate transition parameters.
- Inhomogeneous Markov chains: transition probabilities can vary.
 - Allows modeling time-specific probabilities.
- Ancestral sampling generates samples from multivariate distributions.
 - Use chain rule of probability, sequentially sample variables from conditionals.
- Chapman-Kolmogorov equations compute exact univariate marginals.
 - For discrete or Gaussian Markov chains.
- Stationary distribution of homogenous Markov chain.
 - Marginals as time goes to ∞ .
 - Basis of Google's PageRank method.
- Next time: voice Photoshop.

Label Propagation as a Markov Chain Problem

• Semi-supervised label propagation method has a Markov chain interpretation.

- We have n+t states, one for each [un]labeled example.
- Monte Carlo approach to label propagation ("adsorption"):
 - At time t = 0, set the state to the node you want to label.
 - At time t > 0 and on a labeled node, output the label.
 - Labeled nodes are absorbing states.
 - At time t > 0 and on an unlabeled node i:
 - Move to neighbour j with probability proportional w_{ij} (or \bar{w}_{ij}).
- Final predictions are probabilities of outputting each label.
 - Nice if you only need to label one example at a time (slow if labels are rare).
 - Common hack is to limit random walk time to bound runtime.