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Example: Vancouver Rain Data

Consider density estimation on the “Vancouver Rain” dataset:

Variable xij = 1 if it rained on day j in month i.
Each row is a month, each column is a day of the month.
Data ranges from 1896-2004.

The strongest signals in the data:
It tends to rain more in the winter than the summer.
If it rained yesterday, it’s likely to rain today (≈ 70% chance of (xi

j == xi
j−1)).
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Rain Data with Product of Bernoullis

With product of Bernoullis, we get p(xij =“rain”) ≈ 0.41 (sadly).

Samples from product of Bernoullis model (left) vs. real data (right):

Making days independent misses seasons and misses correlations.
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Markov Chains

A better model for the between-day correlations is a Markov chain.
Models p(xi

j | xi
j−1): probability of rain today given yesterday’s value.

Captures dependency between adjacent days.

It can perfectly capture the “position-independent” between-day correlation.

With only a few parameters and a closed-form MLE.
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Markov Chain for Rain

Markov chain ingredients and MLE for rain data:
State space:

At time j, we can be in the “rain” state or the “not rain” state.

Initial probabilities:

c p(x1 = c)
Rain 0.37

Not Rain 0.63

Transition probabilities (assumed to the same for all times j):

c′ c p(xj = c | xj−1 = c′)
Rain Rain 0.65
Rain Not Rain 0.35

Not Rain Rain 0.25
Not Rain Not Rain 0.75

Becuase of “sum to 1” constraints, there are only 3 parameters in this model.
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Markov Chain Ingredients

Markov chain ingredients and MLE for rain data:
State space:

Set of possible states (indexed by c) we can be in at time j (“rain” or “not rain”).

Initial probabilities:

p(x1 = c): probability that we start in state c at time j = 1 (p(“rain”) on day 1).

Transition probabilities:

p(xj = c | xj−1 = c′): probability that we move from state c′ to state c at time j.
Probability that it rains today, given what happened yesterday.

We’re assuming that the order of features is meaningful.

We’re modeling dependency of each feature on the previous feature.
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Chain Rule of Probability

By using the product rule, p(a, b) = p(a)p(b | a), we can write any density as

p(x1, x2, . . . , xd) = p(x1)p(x2, x3, . . . , xd | x1)
= p(x1)p(x2 | x1)p(x3, x4, . . . , xd | x1, x2)
= p(x1)p(x2 | x1)p(x3 | x2, x1)p(x4, x5, . . . , xd | x1, x2, x3),

and so on until we get

p(x1, x2, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xd | x1, x2, . . . xd−1).

This factorization of a density is called the chain rule of probability.
It turns multivariate density estimation into estimating conditionals.

But it leads to complicated conditionals:
For binary xj , we need 2d parameters for p(xd | x1, x2, . . . , xd−1) alone.
Or we could logistic regression, neural networks, and so on to estimate conditionals.
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Markov Chains

Markov chains we simplify the distribution by assuming the Markov property:

p(xj | xj−1, xj−2, . . . , x1) = p(xj | xj−1),

that xj is independent of the past given xj−1.
“Don’t care what happened 2 days ago if you know what happened yesterday”.

The probability for a sequence x1, x2, · · · , xd in a Markov chain simplifies to

p(x1, x2, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x2, x1) · · · p(xd | xd−1, xd−2, . . . , x1)

= p(x1)p(x2 | x1)p(x3 | x2) · · · p(xd | xd−1)

Another way to write this joint probability is

p(x1, x2, . . . , xd) = p(x1)︸ ︷︷ ︸
initial prob.

d∏
j=2

p(xj | xj−1)︸ ︷︷ ︸
transition prob.

.
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Example: Modeling DNA Sequences

A nice demo of independent vs. Markov for DNA sequences:
http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

Independent model for elements of sequence:

http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html
https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
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Example: Modeling DNA Sequences
Transition probabilities in a Markov chain model for elements of sequence:

(visualizing transition probabilities based on previous symbol):
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Markov Chains

Markov chains are ubiquitous in sequence/time-series models:
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Summary

Markov chains model dependencies between adjacent features.

Set of possible states.
Initial probabilities.
Transition probabilities.

Chain rule of probability.

Writes joint probability in terms of conditionals over “earlier” variables.

Markov assumption.

Conditional independence from “past” times given previous time.

Next time: Monte Carlo for Markov chains (MC for MC, not MCMC).
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