CPSC 440: Advanced Machine Learning Markov Chains

Mark Schmidt

University of British Columbia

Winter 2022

Example: Vancouver Rain Data

• Consider density estimation on the "Vancouver Rain" dataset:

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	
Month (0	0	0	1	1	0	0	1	1	
Month 2	1	0	0	0	0	0	1	0	0	
Month 3	1	1	1	1	1	1	1	1	1	
Murith 4	1	1	1	1	0	0	1	1	1	
Months	0	0	0	0	1	1	0	0	0	
Month 6	0	1	1	0	0	0	0	1	1	

- Variable $x_j^i = 1$ if it rained on day j in month i.
 - Each row is a month, each column is a day of the month.
 - Data ranges from 1896-2004.
- The strongest signals in the data:
 - It tends to rain more in the winter than the summer.
 - If it rained yesterday, it's likely to rain today ($\approx 70\%$ chance of $(x_j^i = x_{j-1}^i)$).

Rain Data with Product of Bernoullis

- With product of Bernoullis, we get $p(x_j^i = \text{"rain"}) \approx 0.41$ (sadly).
 - Samples from product of Bernoullis model (left) vs. real data (right):

• Making days independent misses seasons and misses correlations.

Markov Chains

- A better model for the between-day correlations is a Markov chain.
 - Models $p(x_j^i \mid x_{j-1}^i)$: probability of rain today given yesterday's value.
 - Captures dependency between adjacent days.

• It can perfectly capture the "position-independent" between-day correlation.

• With only a few parameters and a closed-form MLE.

Markov Chain for Rain

- Markov chain ingredients and MLE for rain data:
 - State space:
 - At time j, we can be in the "rain" state or the "not rain" state.
 - Initial probabilities:

c	$p(x_1 = c)$
Rain	0.37
Not Rain	0.63

• Transition probabilities (assumed to the same for all times *j*):

c'	c	$p(x_j = c \mid x_{j-1} = c')$
Rain	Rain	0.65
Rain	Not Rain	0.35
Not Rain	Rain	0.25
Not Rain	Not Rain	0.75

• Becuase of "sum to 1" constraints, there are only 3 parameters in this model.

Markov Chains

Markov Chain Ingredients

- Markov chain ingredients and MLE for rain data:
 - State space:
 - Set of possible states (indexed by c) we can be in at time j ("rain" or "not rain").
 - Initial probabilities:
 - $p(x_1 = c)$: probability that we start in state c at time j = 1 (p("rain") on day 1).
 - Transition probabilities:
 - $p(x_j = c \mid x_{j-1} = c')$: probability that we move from state c' to state c at time j.
 - Probability that it rains today, given what happened yesterday.
- We're assuming that the order of features is meaningful.
 - We're modeling dependency of each feature on the previous feature.

Chain Rule of Probability

• By using the product rule, $p(a,b) = p(a)p(b \mid a)$, we can write any density as

$$p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2, x_3, \dots, x_d \mid x_1)$$

= $p(x_1)p(x_2 \mid x_1)p(x_3, x_4, \dots, x_d \mid x_1, x_2)$
= $p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1)p(x_4, x_5, \dots, x_d \mid x_1, x_2, x_3),$

and so on until we get

 $p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2) \cdots p(x_d \mid x_1, x_2, \dots, x_{d-1}).$

- This factorization of a density is called the chain rule of probability.
 - It turns multivariate density estimation into estimating conditionals.
- But it leads to complicated conditionals:
 - For binary x_j , we need 2^d parameters for $p(x_d \mid x_1, x_2, \dots, x_{d-1})$ alone.
 - Or we could logistic regression, neural networks, and so on to estimate conditionals.

Markov Chains

• Markov chains we simplify the distribution by assuming the Markov property:

$$p(x_j \mid x_{j-1}, x_{j-2}, \dots, x_1) = p(x_j \mid x_{j-1}),$$

that x_j is independent of the past given x_{j-1} .

- "Don't care what happened 2 days ago if you know what happened yesterday".
- The probability for a sequence x_1, x_2, \cdots, x_d in a Markov chain simplifies to

$$p(x_1, x_2, \dots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1) \cdots p(x_d \mid x_{d-1}, x_{d-2}, \dots, x_1)$$

= $p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_d \mid x_{d-1})$

• Another way to write this joint probability is

$$p(x_1, x_2, \dots, x_d) = \underbrace{p(x_1)}_{\text{initial prob.}} \prod_{j=2}^d \underbrace{p(x_j \mid x_{j-1})}_{\text{transition prob.}}.$$

Example: Modeling DNA Sequences

- A nice demo of independent vs. Markov for DNA sequences:
 - http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

• Independent model for elements of sequence:

Example: Modeling DNA Sequences

• Transition probabilities in a Markov chain model for elements of sequence:

(visualizing transition probabilities based on previous symbol):

Markov Chains

- Markov chains are ubiquitous in sequence/time-series models:
 - 9 Applications
 - 9.1 Physics
 - 9.2 Chemistry
 - 9.3 Testing
 - 9.4 Speech Recognition
 - 9.5 Information sciences
 - 9.6 Queueing theory
 - 9.7 Internet applications
 - 9.8 Statistics
 - 9.9 Economics and finance
 - 9.10 Social sciences
 - 9.11 Mathematical biology
 - 9.12 Genetics
 - 9.13 Games
 - 9.14 Music
 - 9.15 Baseball
 - 9.16 Markov text generators

Summary

- Markov chains model dependencies between adjacent features.
 - Set of possible states.
 - Initial probabilities.
 - Transition probabilities.
- Chain rule of probability.
 - Writes joint probability in terms of conditionals over "earlier" variables.
- Markov assumption.
 - Conditional independence from "past" times given previous time.
- Next time: Monte Carlo for Markov chains (MC for MC, not MCMC).