
CPSC 440: Advanced Machine Learning
Exponential Families

Mark Schmidt

University of British Columbia

Winter 2022



Previously: Density Estimation with Categorical/Gaussian Distributions

We have discussed density estimation with categorical and Gaussian distribution.

Binary is special case of categorical.

These distributions have a lot of nice properties for learning/inference.

NLL is convex, and MLE has closed-form (statistics in training data).
Exists conjugate prior, so posterior is prior with “updated hyper-parameters”.

But these distributions make restrictive assumptions:

Categorical assumes categories are unordered, non-hierarchical, and finite.
Gaussian assumes symmetry, full support, no outliers, uni-modal.

Many alternatives to categorical/Gaussian exist (examples later).

Whether or not they maintain nice properties is related to exponential family.



Exponential Family: Definition

General form of exponential family likelihood for data x with parameters θ is

p(x | θ) = h(x) exp(η(θ)T s(x))

Z(θ)
.

The value s(x) is called the sufficient statistics.
s(x) tells us everything that is relevant to θ about data x.

The parameter function η controls how parameters θ interact with statistics.
We focus a lot on η(θ) = θ, which is called the cannonical form.

The support function h contains terms that do not depend on w.
Also called the base measure.

The normalizing constant Z ensures it sums/integrates to 1 over x.
Also called the partition function.



Bernoulli as Exponential Family

Is Bernoulli in the exponential family for some parameters w?

p(x | θ) = θx(1− θ)1−x ?
=
h(x) exp(η(θ)TF (x))

Z(θ)
.

To get an exponential, take log of exp (cancelling operations),

p(x | θ) = θx(1− θ)1−x = exp(log(θx(1− θ)1−x))
= exp(x log θ + (1− x) log(1− θ))

= (1− θ)(exp
(
x log

(
θ

1− θ

))
.

The sufficient statistic is s(x) = x and normalizing constant is Z(θ) = 1/(1− θ).
The parameter is η(θ) = log(θ/(1− θ)) (the log odds).

Not in canonical form. Canonical form would use log odds directly as the parameter.

For the support function, h(x) = 1 if x = 0 or x = 1 and h(x) = 0 otherwise.
There are other ways to write Bernoulli as an exponential family.



Gaussian as Exponential Family

Writing univariate Gaussian as an exponential family:

p(x | µ, σ2) = 1√
2πσ

exp
(
−(x− µ)2/2σ2

)
=

1√
2πσ

exp
(
−x2/2σ2 + µx/σ2 − µ2/2σ2

)
=

1√
2π

exp
(
−µ2/2σ2

)
σ

exp

([
µ/σ2

−1/2σ2
]T [

x
x2

])
.

The sufficient statistics are x and x2, and parameters are µ/σ2 and −1/2σ2

The normalizing constant is σ exp(µ2/2σ2), and support is 1/
√
2π.

Again, there is more than one way to represent as an exponential family.

If σ2 is not a parameter, then x/σ2 is the sufficient statistic and µ is cannonical.



Learning with Exponential Families

With n IID examples and cannonical paramaters, the likelihood can be written

p(X | θ) =
n∏
i=1

h(xi)
exp(θT s(xi))

Z(θ)

=
1

Z(θ)n
exp

(
θT

n∑
i=1

s(xi)

)
n∏
j=1

h(xi)

=
exp(θT s(X))

Z(θ)n

n∏
j=1

h(xi),

where the sufficient statistics of the data are s(X) =
∑n

i=1 s(x
i).

The sufficient statistics of the data s(X) contain everything relevant for learning.

For Gaussians, only knowledge of data we need is
∑n
i=1 x

i and
∑n
i=1(x

i)2.



Learning with Exponential Families

With n IID examples and cannonical paramaters, the NLL can be written

f(θ) = −θT s(X) + n logZ(θ) + const,

where we see that once we know s(X), we can throw away data.
No point in using SGD, you just compute s on each example once.

The gradient divided by n (average NLL) for a feature j has the form

1

n
∇θjf(θ) = −

1

n
sj(X) +

∑
x

h(x)
exp(θT s(X))

Z(θ)
sj(X) (use

∫
for continuous x)

= − 1

n
sj(X) +

∑
x

p(x | θ)sj(X)

= −Edata[sj(X)] + Emodel[sj(X)].

The stationary points where ∇f(θ) = 0 correspond to moment matching:
Set parameters θ so that expected sufficient statistics equal to statistics in data.
This is the source of the simple/intuitive closed-form MLEs we have seen.



Convexity and Entropy in Exponential Families

If you take the second derivative of the NLL you get

∇2f(θ) = V[s(X)],

the covariance of the sufficient statistics.

Covariances are positive semi-definite, V[s(X)] � 0, so NLL is convex.
This is why “setting the gradient to zero and solve for θ” gives MLE.

Higher-order derivatives give higher-order moments.

We call log(Z) the cumulant function.

Can show MLE maximizes entropy over all distributions that match moments.

Entropy is a measure of “how random” a distribution is.
So Gaussian is “most random” distribution that fits means and covariance of data.

Or you can think of this as Gaussian makes “least assumptions”.

Details for special case of h(x) = 1 in bonus slides.



Conjugate Priors in Exponential Family

Exponential families in canonical form are guaranteed to have conjugate priors.

For example, we could choose

p(θ | α) ∝ exp(θTα)

Z(θ)k
,

where α represent “pseudo-counts” for the sufficient statistics.

And k modifies stength of prior (Z above is normalizer for the likelihood).

Posterior would have the same form,

p(θ | X,α) ∝ exp(θT (s(X) + α))

Z(θ)n+k
.

Can use prior’s normalizing constant for Bayesian inference.

Ratio of normalizing constants gives posterior predicttive and marginal likelihood.



Discriminative Models and the Exponential Family

Going from an exponential family to a discriminative supervised learning:
Set cannonical parameter to wTxi.
Gives a convex NLL, where MLE tries to match dasta/model’s conditional statistics.

For example, consider Gaussian with fixed variance for yi.
Cannonical parameter is µ, and we know setting µ = wTxi gives least squares.

If we start with Bernoulli for yi, we obtain logistic regression.
Canonical parmaeter is log-odds.
Set wTxi = log(yi/(1− yi)) and solve for yi to get sigmoid function.

This is my very-delayed answer to “why use the sigmoid function?”.

You can obtain regression models for other settings using this appraoch.
Set canonical parameters to vTh(W 2h(W 1xi)) for neural networks.
Use a different exponential family to handle a different type of data.



Examples of Exponential Families

Bernoulli: distribution on {0, 1}.
Categorical: distribution on {1, 2, . . . , k}.
Gaussian: distribution on Rd.

Beta: distribution on [0, 1] (including uniform).

Dirichlet: distribution on discrete probabilities.

Wishart: distribution on positive-definite matrices.

Poisson: distribution on non-negative integers.

Gamma: distribution on positive real numbers.

Many others, see here:

en.wikipedia.org/wiki/Exponential_family#Table_of_distributions

en.wikipedia.org/wiki/Exponential_family#Table_of_distributions


Non-Examples of Exponential Families

Laplace and student t distribution are not exponential families.

“Heavy-tailed”: have larger probability that data is far from mean.
More robust to outliers than Gaussian.

Ordinal logistic regression is not in exponential family.

Can be used for categorical variables where ordering matters.

In these cases, we may not have nice properties:

MLE may not be intuitive or closed-form, NLL may not be convex.
May not have conjugate prior, so need Monte Carlo or variational methods.



Convex Conjugate and Entropy

The convex conjugate of a function A is given by

A∗(µ) = sup
w∈W
{µTw −A(w)}.

E.g., if we consider for logistic regression

A(w) = log(1 + exp(w)),

we have that A∗(µ) satisfies w = log(µ)/ log(1− µ).
When 0 < µ < 1 we have

A∗(µ) = µ log(µ) + (1− µ) log(1− µ)
= −H(pµ),

negative entropy of binary distribution with mean µ.
If µ does not satisfy boundary constraint, sup is ∞.



Convex Conjugate and Entropy
More generally, if A(w) = log(Z(w)) for an exponential family then

A∗(µ) = −H(pµ),

subject to boundary constraints on µ and constraint:

µ = ∇A(w) = E[s(X)].

Convex set satisfying these is called marginal polytope M.

If A is convex (and LSC), A∗∗ = A. So we have

A(w) = sup
µ∈U
{wTµ−A∗(µ)}.

and when A(w) = log(Z(w)) we have

log(Z(w)) = sup
µ∈M
{wTµ+H(pµ)}.

This can be used to derive variational methods, since we have
written computing log(Z) as a convex optimization problem.



Maximum Likelihood and Maximum Entropy
The maximum likelihood parameters w in exponential family satisfy:

min
w∈Rd

−wT s(D) + log(Z(w))

= min
w∈Rd

−wT s(D) + sup
µ∈M
{wTµ+H(pµ)} (convex conjugate)

= min
w∈Rd

sup
µ∈M
{−wT s(D) + wTµ+H(pµ)}

= sup
µ∈M
{min
w∈Rd

−wT s(D) + wTµ+H(pµ)} (convex/concave)

which is −∞ unless s(D) = µ (e.g., maximum likelihood w), so we have

min
w∈Rd

−wT s(D) + log(Z(w))

= max
µ∈M

H(pµ),

subject to s(D) = µ.
Maximum likelihood ⇒ maximum entropy + moment constraints.
Converse: MaxEnt + fit feature frequencies ⇒ ML(log-linear).


