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Previously: Density Estimation with Categorical/Gaussian Distributions

@ We have discussed density estimation with categorical and Gaussian distribution.
e Binary is special case of categorical.

@ These distributions have a lot of nice properties for learning/inference.

o NLL is convex, and MLE has closed-form (statistics in training data).
e Exists conjugate prior, so posterior is prior with “updated hyper-parameters”.

@ But these distributions make restrictive assumptions:

o Categorical assumes categories are unordered, non-hierarchical, and finite.
e Gaussian assumes symmetry, full support, no outliers, uni-modal.

e Many alternatives to categorical/Gaussian exist (examples later).
o Whether or not they maintain nice properties is related to exponential family.



Exponential Family: Definition

General form of exponential family likelihood for data = with parameters 6 is

h(z) exp(n(0)”s(x))
Z(0) '

p(x]0) =

The value s(z) is called the sufficient statistics.
o s(x) tells us everything that is relevant to # about data x.

The parameter function 7 controls how parameters 6 interact with statistics.
o We focus a lot on n(6) = 6, which is called the cannonical form.

The support function h contains terms that do not depend on w.
e Also called the base measure.

The normalizing constant Z ensures it sums/integrates to 1 over z.
o Also called the partition function.



Bernoulli as Exponential Family
Is Bernoulli in the exponential family for some parameters w?
1o 2 h(x) exp(n(8)" F(x))
Z(0) '
To get an exponential, take log of exp (cancelling operations),

pla | 8) = 6%(1 — 0)'~* = exp(log(6”(1 — 0)~))
= exp(zlogb + (1 — z)log(1 —0))

— (1 - 0)(exp <x log <£0>) .

The sufficient statistic is s(z) = = and normalizing constant is Z(0) = 1/(1 — 6).
The parameter is n(0) = log(6/(1 — 0)) (the log odds).

o Not in canonical form. Canonical form would use log odds directly as the parameter.
For the support function, h(z) =1 if x =0 or x = 1 and h(x) = 0 otherwise.

e There are other ways to write Bernoulli as an exponential family.

p(x [ 0) = 6%(1 - 0)



Gaussian as Exponential Family

@ Writing univariate Gaussian as an exponential family:

] 1.0%) = = exp (~( = 10?/20%)
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o The sufficient statistics are o and 22, and parameters are /0% and —1/202
e The normalizing constant is o exp(u?/202), and support is 1//27.

@ Again, there is more than one way to represent as an exponential family.
o If 02 is not a parameter, then x/o? is the sufficient statistic and p is cannonical.



Learning with Exponential Families

@ With n |ID examples and cannonical paramaters, the likelihood can be written

- - exp(0T s(z*
(X1 6) = T et =272
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where the sufficient statistics of the data are s(X) = > s(a?).

@ The sufficient statistics of the data s(X) contain everything relevant for learning.
o For Gaussians, only knowledge of data we need is .-, ' and > . (z%)%.



Learning with Exponential Families
@ With n IID examples and cannonical paramaters, the NLL can be written
f(0) = —675(X) + nlog Z(6) + const,

where we see that once we know s(X), we can throw away data.
e No point in using SGD, you just compute s on each example once.
@ The gradient divided by n (average NLL) for a feature j has the form

5001 = L)+ S )

700) ——————5;(X) (use/for continuous x)

:——s] +Zpa:]93]

= —Egata [S](X)] + Emodel [S](X)]

@ The stationary points where V f(8) = 0 correspond to moment matching:
e Set parameters 6 so that expected sufficient statistics equal to statistics in data.
e This is the source of the simple/intuitive closed-form MLEs we have seen.



Convexity and Entropy in Exponential Families

@ If you take the second derivative of the NLL you get
V2f(6) = V[s(X)],

the covariance of the sufficient statistics.
o Covariances are positive semi-definite, V[s(X)] = 0, so NLL is convex.
e This is why “setting the gradient to zero and solve for 6" gives MLE.
o Higher-order derivatives give higher-order moments.
o We call log(Z) the cumulant function.

@ Can show MLE maximizes entropy over all distributions that match moments.

e Entropy is a measure of “how random” a distribution is.
e So Gaussian is “most random” distribution that fits means and covariance of data.

@ Or you can think of this as Gaussian makes “least assumptions”.

o Details for special case of h(z) =1 in bonus slides.



Conjugate Priors in Exponential Family

@ Exponential families in canonical form are guaranteed to have conjugate priors.
e For example, we could choose

exp(6Ta)

p(M“)“w,

where « represent “pseudo-counts” for the sufficient statistics.
e And k modifies stength of prior (Z above is normalizer for the likelihood).
e Posterior would have the same form,

exp(07 (s(X) + oz)).

p(f | X,a) x 7@y

@ Can use prior's normalizing constant for Bayesian inference.
e Ratio of normalizing constants gives posterior predicttive and marginal likelihood.



Discriminative Models and the Exponential Family

@ Going from an exponential family to a discriminative supervised learning:

e Set cannonical parameter to wTz?.
o Gives a convex NLL, where MLE tries to match dasta/model’s conditional statistics.

@ For example, consider Gaussian with fixed variance for 3.
o Cannonical parameter is i, and we know setting = w” 2’ gives least squares.

o If we start with Bernoulli for y?, we obtain logistic regression.

o Canonical parmaeter is log-odds. A
o Set wlz® =log(y'/(1 — y')) and solve for y to get sigmoid function.
@ This is my very-delayed answer to “why use the sigmoid function?"”.

@ You can obtain regression models for other settings using this appraoch.

o Set canonical parameters to v h(W?2h(W1'z?)) for neural networks.
e Use a different exponential family to handle a different type of data.



Examples of Exponential Families

Bernoulli: distribution on {0, 1}.

Categorical: distribution on {1,2,... k}.
Gaussian: distribution on R

Beta: distribution on [0, 1] (including uniform).
Dirichlet: distribution on discrete probabilities.
Wishart: distribution on positive-definite matrices.
Poisson: distribution on non-negative integers.
Gamma: distribution on positive real numbers.

Many others, see here:
e en.wikipedia.org/wiki/Exponential_ family#Table_of_distributions


en.wikipedia.org/wiki/Exponential_family#Table_of_distributions

Non-Examples of Exponential Families

@ Laplace and student t distribution are not exponential families.
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o “Heavy-tailed”: have larger probability that data is far from mean.
e More robust to outliers than Gaussian.

@ Ordinal logistic regression is not in exponential family.
o Can be used for categorical variables where ordering matters.
@ In these cases, we may not have nice properties:

e MLE may not be intuitive or closed-form, NLL may not be convex.
e May not have conjugate prior, so need Monte Carlo or variational methods.



Convex Conjugate and Entropy

@ The convex conjugate of a function A is given by

A*(p) = sup {"w — A(w)}.

o E.g., if we consider for logistic regression
A(w) = log(1 + exp(w)),

we have that A*(u) satisfies w = log(u)/log(1 — ).
e When 0 < i < 1 we have

A*(p) = plog(p) + (1 — p)log(1 — p)
= _H(pu)a

negative entropy of binary distribution with mean .
e If u does not satisfy boundary constraint, sup is occ.



Convex Conjugate and Entropy
@ More generally, if A(w) =log(Z(w)) for an exponential family then

A*(p) = —H (py),
subject to boundary constraints on x and constraint:
3= VAw) = E[s(X)].

@ Convex set satisfying these is called marginal polytope M.
e If Ais convex (and LSC), A** = A. So we have

A(w) = ilég{wTu — A* ()}
and when A(w) = log(Z(w)) we have
log(Z(w)) = sup {w’ pu+ H(p,)}
HeEM

@ This can be used to derive variational methods, since we have
written computing log(Z) as a convex optimization problem.



Maximum Likelihood and Maximum Entropy

maximum likelihood parameters w in exponential family satisfy:

min —w’ s(D) + log(Z(w))

@ The

weRd
= min —w’ s(D) + sup {w’ pu+ H(p,)} (convex conjugate)
weR4d HEM
= min sup {—w’s(D) +w’ pu+ H(p,)}
wERd HEM
= sup { min —w”s(D) +w’p+ H(p,)} (convex/concave)
MEM ’UJGR

which is —oo unless s(D) = p (e.g., maximum likelihood w), so we have

nfiy, "s(D) + log(Z(w))
—%%(H(Pu)

subject to s(D) = p.
@ Maximum likelihood = maximum entropy + moment constraints.



