
Laplace Approximation Regression with Neural Networks

CPSC 440: Advanced Machine Learning
End to End Learning

Mark Schmidt

University of British Columbia

Winter 2022



Laplace Approximation Regression with Neural Networks

Last Time: Bayesian Logistic Regression

We discussed Bayesian inference in L2-regulairzed logistic regression,

p(yi | xi, w) =
1

1 + exp(−yiwTxi)
, wj ∼ N

(
0,

1

λ

)
.

Prior is not conjugate so posterior does not have a nice form.
We could use Monte Carlo for inference, but difficult to sample from posterior.

We discussed rejection sampling to sample complicated distributions.

Samples from a simple distribution q and accepts/rejects samples to look like p.
But requires knowing a bound on q(x)/p(x) and may reject almost all samples.

We discussed importance sampling to approximate expectations.

Samples from q but reweights f(x) by q(x)/p(x) in Monte Carlo estimate.



Laplace Approximation Regression with Neural Networks

Importance Sampling

Importance sampling is only efficient if q is close to p.
Otherwise, weights will be huge for a small number of samples.

Even though unbiased, variance can be huge.

Can be problematic if q has lighter “tails” than p:
You rarely sample the tails, so those samples get huge weights.

As with rejection sampling, does not tend to work well in high dimensions.
Though there is room to cleverly design q.

Like “alternate between sampling two Gaussians with different variances”.



Laplace Approximation Regression with Neural Networks

Overview of Bayesian Inference Tasks

Bayesian inference requires computing expectations with respect to posterior,

E[f(θ)] =

∫
θ
f(θ)p(θ | x)dθ.

Examples:
If f(θ) = p(x̃ | θ), we get posterior predictive.
If f(θ) = I(θ ∈ S) we get probability of S (e.g., marginals or conditionals).
If f(θ) = 1 and we use p̃(θ | x), we get marginal likelihood.

But posterior often doesn’t have a closed-form expression.
We don’t just want to flip coins and multiply Gaussians.

Our two main tools for aproximate inference:
1 Monte Carlo methods.
2 Variational methods.

Classic ideas from statistical physics, that revolutionized Bayesian stats.



Laplace Approximation Regression with Neural Networks

Approximate Inference
Two main strategies for approximate inference:

1 Monte Carlo methods:

Approximate p with empirical distribution over samples,

p(x) ≈ 1

n

n∑
i=1

I[xi = x].

Turns inference into sampling.

2 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x).

E.g., Gaussian, product of Bernoulli, or other models with easy inference.

Turns inference into optimization.



Laplace Approximation Regression with Neural Networks

Variational Inference Illustration

Approximate non-Gaussian p by a Gaussian q:

Variational methods try to find simple distribution q that is closest to target p.
Unlike Monte Carlo, does not converge to solution.

A Gaussian may not be able to perfectly model posterior.

But variational methods quickly give approximation solution.

Which sometimes is all we need.



Laplace Approximation Regression with Neural Networks

Laplace Approximation

A classic variational method is the Laplace approximation.
1 Find an x that maximizes p(x),

x∗ ∈ argmin
x
{− log p(x)}.

2 Computer second-order Taylor expansion of f(x) = − log p(x) at x∗.

− log p(x) ≈ f(x∗) +∇f(x∗)︸ ︷︷ ︸
0

T
(x− x∗) +

1

2
(x− x∗)T∇2f(x∗)(x− x∗).

3 Find Gaussian distribution q where − log q(x) has same Taylor expansion at x∗.

− log q(x) = f(x∗) +
1

2
(x− x∗)∇2f(x∗)(x− x∗),

so q follows a N (x∗,∇2f(x∗)−1) distribution.

This is the same approximation used by Newton’s method in optimization.



Laplace Approximation Regression with Neural Networks

Laplace Approximation
So Laplace approximation replaces complicated p with Gaussian q.

Centered at mode and agreeing with 1st/2nd-derivatives of log-likelihood:

Now you only need to compute Gaussian integrals (linear algebra for many f).
Very fast: just solve an optimization (compared to super-slow Monte Carlo).
Bad approximation if posterior is heavy-tailed, multi-modal, skewed, and so on.

It might not even give you the “best” Gaussian approximation:

We will discuss more-fancy variational methods later.



Laplace Approximation Regression with Neural Networks

Outline

1 Laplace Approximation

2 Regression with Neural Networks



Laplace Approximation Regression with Neural Networks

Motivating Problem: Depth Estimation from Images

We want to predict “distance to car” for each pixel in an image.

https://paperswithcode.com/task/3d-depth-estimation

We might consider using fully-convolutional networks.
But we now have multiple continuous labels.

https://paperswithcode.com/task/3d-depth-estimation


Laplace Approximation Regression with Neural Networks

Neural Network with Continuos Outputs

Standard neural network with multiple continuous outputs (3 hidden layers):

ŷi = V h(W 3h(W 2h(W 1xi))), so ŷic = vTc h(W 3h(W 2h(W 1xi))).

Standard training objective is to minimize squared error,

f(W 1,W 2,W 3, V ) =
1

2

n∑
j=1

k∑
c=1

(yic − ŷic)2.

This corresponds to MLE in a network that outputs the mean of a Gaussian,

yi ∼ N (ŷi, I).

As usual, we only need to change the last layer to change output type.



Laplace Approximation Regression with Neural Networks

Neural Networks with Covariances

The neural network could also parameterize the variance,

yi ∼ N (ŷi, S(W 3h(W 2h(W 1xi)))),

where the function S transforms the hidden layer into a positive-definite matrix.
So inferences over multiple variables will capture the label’s pairwise correlations.

For depth estimation, neighbouring pixels are likely to have similar depths.

Common choices for S:

S parameterizes a diagonal matrix D (may output log(σc) values to make positive).
S parameterizes a square root matrix A, such that Σ = AAT .

We could also consider Bayesian neural networks.
Where you might use a Laplace approximation of the posterior.

Though the matrix ∇2f(W 3,W 2,W 1, V ) may be too large and will be singular.



Laplace Approximation Regression with Neural Networks

Object Localization
Object localization is task of finding locations of objects:

Input is an image.
Output is a bounding box for each object (among predefined classes).

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4


Laplace Approximation Regression with Neural Networks

Region Convolutional Neural Networks: “Pipeline” Approach
Early approach (region CNN) resemble classic computer vision “pipelines”:

1 Propose a bunch of potential boxes (based on segmenting image in various ways).
2 Compute features of each box using a CNN (after re-shaping box to standard size).
3 Classify boxes using SVMs (max pool among regions with high overlap).
4 Refine each box using linear regression on CNN features.

4 continuous outputs: center x-coordinate, center y-coordinate, log-width, log-height.

https://arxiv.org/pdf/1311.2524.pdf

Improved on state of the art, but slow and there are 4 parts to train.

https://arxiv.org/pdf/1311.2524.pdf


Laplace Approximation Regression with Neural Networks

Fast R-CNNs
R-CNN was quickly replaced by fast R-CNN:

Propose a bunch of potential bounding boxes (same as before).
Apply CNN to whole image, then get features of bounding boxes.

Faster than applying CNN to 2000 candidate regions.
Make softmax (over k + 1 classes) and bounding box regression part of network.

More accurate since are parts are trained together.

https://arxiv.org/pdf/1504.08083.pdf

Most parts trained together, but bounding box proposals do not use encoding.

https://arxiv.org/pdf/1504.08083.pdf


Laplace Approximation Regression with Neural Networks

Faster R-CNNs
Faster R-CNNs made generating bounding boxes part of the network.

Uses region-proposal network as part of network to predict potential bounding boxes.
Many implementation details required to get it working.

https://arxiv.org/pdf/1506.01497.pdf

With all steps being part of one network, this called an end-to-end model.

https://arxiv.org/pdf/1506.01497.pdf


Laplace Approximation Regression with Neural Networks

YOLO: You Only Look Once

A more-recent variant that further speeds things up is YOLO:

https://arxiv.org/pdf/1506.02640.pdf

Divides image into grid.
Directly predict properties for a fixed number of bounding boxes for grid box:

Probability that box is an object (for pruning set of possible boxes).
Box x-coordinate, y-coordinate, width, height.
Class of box (no separate phase of “proposing boxes” and “classifying boxes”).

Max pooling (“non-max suprresion”).

Reasonably-accurate real-time object detection (with fancy-enough hardware).

https://arxiv.org/pdf/1506.02640.pdf


Laplace Approximation Regression with Neural Networks

Instance Segmentation and Pose Estimation
Can add extra predictions to these networks.
For example, mask R-CNNs add instance segmentation and/or pose estimation:

https://arxiv.org/pdf/1703.06870.pdf

Instance segmentation applies binary mask to bounding boxes (pixel labels).
Pose estimation predicts continuous joint keypoint locations.

https://arxiv.org/pdf/1703.06870.pdf


Laplace Approximation Regression with Neural Networks

End-to-End Computer Vision Models

Key ideas behind end-to-end systems:
1 Write each step as a differentiable operator.
2 Train all steps using backpropagation and stochastic gradient.

Has been called differentiable programming.

There now exist end-to-end models for all the standard vision tasks.
Depth estimation, pose estimation, optical flow, tracking, 3D geometry, and so on.
A bit hard to track the progress at the moment.
A survey of ≈ 200 papers from 2016:

http://www.themtank.org/a-year-in-computer-vision

Pose estimation video: https://www.youtube.com/watch?v=pW6nZXeWlGM

Making 60-fps high-resolution colour version of videos from 120 year ago:
https://www.youtube.com/watch?v=YZuP41ALx_Q

http://www.themtank.org/a-year-in-computer-vision
https://www.youtube.com/watch?v=pW6nZXeWlGM
https://www.youtube.com/watch?v=YZuP41ALx_Q


Laplace Approximation Regression with Neural Networks

End of Part 3 (“Gaussian Variables”): Key Concepts

We discussed continuous density estimation with multivariate Gaussians.

Parameterized by mean vector and positive definite covariance matrix.
Assumes distribution is uni-modal, no outliers, untruncated.

And symmetric around principle axes.

“Gaussianity” is preserved under many operations.

Addition, marginalization, conditionining, product of densities.

We discussed conditional independence in Gaussians.
Models correlations between variables where Σij 6= 0.

Diagonal covariance corresponds to assuming variables all variables are independent.

We define a graph based on the Θij values.

If variables are blocked in graph, implies conditional independence.



Laplace Approximation Regression with Neural Networks

End of Part 3 (“Gaussian Variables”): Key Concepts

We discussed several methods for sampling and/or Monte Carlo:

Inverse transform method uses inverse of CDF to sample continuos densities.
Rejection sampling rejects samples from a simpler distribution.
Importance sampling reweights samples from a simpler distribution.

We discussed learning in Gaussians.

Closed-form MLE given by data’s mean and variance.
Conjugate prior for mean in Gaussian.
Adding a scaled identity matrix to MLE gives positive-definite estimate.
Graphical Lasso allows learning sparse conditional independence graph.

Gaussian discriminant analysis is generative classifer with Gaussian classes.

Does not need naive Bayes assumption.



Laplace Approximation Regression with Neural Networks

End of Part 3 (“Gaussian Variables”): Key Concepts

We discussed regression.
Supervised learning with continuous outputs.
Least squares with L2-regularization assumes Gaussian likelihood and prior.

We discussed Bayesian linear regression.
Gives confidence in predictions.
Empirical Bayes can be used to set many hyper-parameters.

Automatic relevance determination: prefers simpler models that fit data well.

Laplace approximation can be used in non-conjugate settings.

Special case of a variational inference method (approximate with simpler distribution).

We discussed end-to-end learning.
Try to write each step as a differentiable operation.
Train entire network with backprop and SGD.

We illustrated this with evolution of object localization in vision.



Laplace Approximation Regression with Neural Networks

Summary

Variational methods approximate p with a simpler distribution q.

You then do inference with q as an approximation to using p.

Laplace approximation simple variationl inference method.

Use Gaussian centered at MAP that agrees with first two derivatives of NLL.

Neural networks with continous output:

Typically trained using squared error, corresponding to Gaussian likelihood.

End to end models: use a neural network to do all steps.

Write each step in a vision “pipeline” as a differentiable operator.
Train entire network using SGD.

Next time: the exponential family.


	Laplace Approximation
	Regression with Neural Networks

