CPSC 440: Advanced Machine Learning End to End Learning

Mark Schmidt

University of British Columbia

Winter 2022

Last Time: Bayesian Logistic Regression

• We discussed Bayesian inference in L2-regulairzed logistic regression,

$$p(y^i \mid x^i, w) = \frac{1}{1 + \exp(-y^i w^T x^i)}, \quad w_j \sim \mathcal{N}\left(0, \frac{1}{\lambda}\right).$$

- Prior is not conjugate so posterior does not have a nice form.
- We could use Monte Carlo for inference, but difficult to sample from posterior.
- We discussed rejection sampling to sample complicated distributions.
 - Samples from a simple distribution q and accepts/rejects samples to look like p.
 - But requires knowing a bound on q(x)/p(x) and may reject almost all samples.
- We discussed importance sampling to approximate expectations.
 - Samples from q but reweights f(x) by q(x)/p(x) in Monte Carlo estimate.

Importance Sampling

- Importance sampling is only efficient if q is close to p.
- Otherwise, weights will be huge for a small number of samples.
 - Even though unbiased, variance can be huge.
- Can be problematic if q has lighter "tails" than p:
 - You rarely sample the tails, so those samples get huge weights.

- As with rejection sampling, does not tend to work well in high dimensions.
 - Though there is room to cleverly design q.
 - Like "alternate between sampling two Gaussians with different variances".

Overview of Bayesian Inference Tasks

• Bayesian inference requires computing expectations with respect to posterior,

$$E[f(\theta)] = \int_{\theta} f(\theta) p(\theta \mid x) d\theta.$$

• Examples:

- If $f(\theta) = p(\tilde{x} \mid \theta)$, we get posterior predictive.
- If $f(\theta) = \mathbb{I}(\theta \in S)$ we get probability of S (e.g., marginals or conditionals).
- If $f(\theta) = 1$ and we use $\tilde{p}(\theta \mid x)$, we get marginal likelihood.
- But posterior often doesn't have a closed-form expression.
 - We don't just want to flip coins and multiply Gaussians.
- Our two main tools for aproximate inference:
 - Monte Carlo methods.
 - 2 Variational methods.
- Classic ideas from statistical physics, that revolutionized Bayesian stats.

Approximate Inference

Two main strategies for approximate inference:

- Monte Carlo methods:
 - Approximate p with empirical distribution over samples,

$$p(x) \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{I}[x^i = x].$$

- Turns inference into sampling.
- **2** Variational methods:
 - Approximate p with "closest" distribution q from a tractable family,

$$p(x) \approx q(x).$$

• E.g., Gaussian, product of Bernoulli, or other models with easy inference.

• Turns inference into optimization.

Variational Inference Illustration

• Approximate non-Gaussian p by a Gaussian q:

• Variational methods try to find simple distribution q that is closest to target p.

- Unlike Monte Carlo, does not converge to solution.
 - A Gaussian may not be able to perfectly model posterior.
- But variational methods quickly give approximation solution.
 - Which sometimes is all we need.

Laplace Approximation

- A classic variational method is the Laplace approximation.
 - **①** Find an x that maximizes p(x),

$$x^* \in \underset{x}{\operatorname{argmin}} \{-\log p(x)\}.$$

2 Computer second-order Taylor expansion of $f(x) = -\log p(x)$ at x^* .

$$-\log p(x) \approx f(x^*) + \underbrace{\nabla f(x^*)}_{0}^T (x - x^*) + \frac{1}{2} (x - x^*)^T \nabla^2 f(x^*) (x - x^*).$$

③ Find Gaussian distribution q where $-\log q(x)$ has same Taylor expansion at x^* .

$$-\log q(x) = f(x^*) + \frac{1}{2}(x - x^*)\nabla^2 f(x^*)(x - x^*),$$

- so q follows a $\mathcal{N}(x^*,\nabla^2 f(x^*)^{-1})$ distribution.
 - This is the same approximation used by Newton's method in optimization.

Laplace Approximation

- So Laplace approximation replaces complicated p with Gaussian q.
 - Centered at mode and agreeing with 1st/2nd-derivatives of log-likelihood:

- Now you only need to compute Gaussian integrals (linear algebra for many f).
 - Very fast: just solve an optimization (compared to super-slow Monte Carlo).
 - Bad approximation if posterior is heavy-tailed, multi-modal, skewed, and so on.
- It might not even give you the "best" Gaussian approximation:

• We will discuss more-fancy variational methods later.

Outline

1 Laplace Approximation

Motivating Problem: Depth Estimation from Images

• We want to predict "distance to car" for each pixel in an image.

https://paperswithcode.com/task/3d-depth-estimation

- We might consider using fully-convolutional networks.
 - But we now have multiple continuous labels.

Neural Network with Continuos Outputs

• Standard neural network with multiple continuous outputs (3 hidden layers):

$$\hat{y}^i = Vh(W^3h(W^2h(W^1x^i))), \quad \text{so} \quad \hat{y}^i_c = v^T_ch(W^3h(W^2h(W^1x^i))).$$

• Standard training objective is to minimize squared error,

$$f(W^1, W^2, W^3, V) = \frac{1}{2} \sum_{j=1}^n \sum_{c=1}^k (y_c^i - \hat{y}_c^i)^2.$$

• This corresponds to MLE in a network that outputs the mean of a Gaussian,

$$y^i \sim \mathcal{N}(\hat{y}^i, I).$$

• As usual, we only need to change the last layer to change output type.

Neural Networks with Covariances

• The neural network could also parameterize the variance,

 $y^i \sim \mathcal{N}(\hat{y}^i, S(W^3h(W^2h(W^1x^i)))),$

where the function S transforms the hidden layer into a positive-definite matrix.

- So inferences over multiple variables will capture the label's pairwise correlations.
 - For depth estimation, neighbouring pixels are likely to have similar depths.
- Common choices for S:
 - S parameterizes a diagonal matrix D (may output $\log(\sigma_c)$ values to make positive).
 - S parameterizes a square root matrix A, such that $\Sigma = AA^T$.
- We could also consider Bayesian neural networks.
 - Where you might use a Laplace approximation of the posterior.
 - Though the matrix $\nabla^2 f(W^3,W^2,W^1,V)$ may be too large and will be singular.

Object Localization

- Object localization is task of finding locations of objects:
 - Input is an image.
 - Output is a bounding box for each object (among predefined classes).

Region Convolutional Neural Networks: "Pipeline" Approach

- Early approach (region CNN) resemble classic computer vision "pipelines":
 - **O** Propose a bunch of potential boxes (based on segmenting image in various ways).
 - **②** Compute features of each box using a CNN (after re-shaping box to standard size).
 - Olassify boxes using SVMs (max pool among regions with high overlap).
 - 9 Refine each box using linear regression on CNN features.
 - 4 continuous outputs: center x-coordinate, center y-coordinate, log-width, log-height.

R-CNN: Regions with CNN features

• Improved on state of the art, but slow and there are 4 parts to train.

https://arxiv.org/pdf/1311.2524.pdf

Fast R-CNNs

- R-CNN was quickly replaced by fast R-CNN:
 - Propose a bunch of potential bounding boxes (same as before).
 - Apply CNN to whole image, then get features of bounding boxes.
 - Faster than applying CNN to 2000 candidate regions.
 - Make softmax (over k + 1 classes) and bounding box regression part of network.
 - More accurate since are parts are trained together.

https://arxiv.org/pdf/1504.08083.pdf

• Most parts trained together, but bounding box proposals do not use encoding.

Faster R-CNNs

- Faster R-CNNs made generating bounding boxes part of the network.
 - Uses region-proposal network as part of network to predict potential bounding boxes.
 - Many implementation details required to get it working.

https://arxiv.org/pdf/1506.01497.pdf

• With all steps being part of one network, this called an end-to-end model.

YOLO: You Only Look Once

• A more-recent variant that further speeds things up is YOLO:

https://arxiv.org/pdf/1506.02640.pdf

- Divides image into grid.
- Directly predict properties for a fixed number of bounding boxes for grid box:
 - Probability that box is an object (for pruning set of possible boxes).
 - Box x-coordinate, y-coordinate, width, height.
 - Class of box (no separate phase of "proposing boxes" and "classifying boxes").
- Max pooling ("non-max suprresion").
- Reasonably-accurate real-time object detection (with fancy-enough hardware).

Instance Segmentation and Pose Estimation

- Can add extra predictions to these networks.
- For example, mask R-CNNs add instance segmentation and/or pose estimation:

https://arxiv.org/pdf/1703.06870.pdf

- Instance segmentation applies binary mask to bounding boxes (pixel labels).
- Pose estimation predicts continuous joint keypoint locations.

End-to-End Computer Vision Models

- Key ideas behind end-to-end systems:
 - Write each step as a differentiable operator.
 - Irain all steps using backpropagation and stochastic gradient.
- Has been called differentiable programming.
- There now exist end-to-end models for all the standard vision tasks.
 - Depth estimation, pose estimation, optical flow, tracking, 3D geometry, and so on.
 - A bit hard to track the progress at the moment.
 - A survey of ≈ 200 papers from 2016:
 - http://www.themtank.org/a-year-in-computer-vision
- Pose estimation video: https://www.youtube.com/watch?v=pW6nZXeWlGM
- Making 60-fps high-resolution colour version of videos from 120 year ago:
 - https://www.youtube.com/watch?v=YZuP41ALx_Q

End of Part 3 ("Gaussian Variables"): Key Concepts

- We discussed continuous density estimation with multivariate Gaussians.
 - Parameterized by mean vector and positive definite covariance matrix.
 - Assumes distribution is uni-modal, no outliers, untruncated.
 - And symmetric around principle axes.
 - "Gaussianity" is preserved under many operations.
 - Addition, marginalization, conditionining, product of densities.
- We discussed conditional independence in Gaussians.
 - Models correlations between variables where $\Sigma_{ij} \neq 0$.
 - Diagonal covariance corresponds to assuming variables all variables are independent.
 - We define a graph based on the Θ_{ij} values.
 - If variables are blocked in graph, implies conditional independence.

End of Part 3 ("Gaussian Variables"): Key Concepts

- We discussed several methods for sampling and/or Monte Carlo:
 - Inverse transform method uses inverse of CDF to sample continuos densities.
 - Rejection sampling rejects samples from a simpler distribution.
 - Importance sampling reweights samples from a simpler distribution.
- We discussed learning in Gaussians.
 - Closed-form MLE given by data's mean and variance.
 - Conjugate prior for mean in Gaussian.
 - Adding a scaled identity matrix to MLE gives positive-definite estimate.
 - Graphical Lasso allows learning sparse conditional independence graph.
- Gaussian discriminant analysis is generative classifer with Gaussian classes.
 - Does not need naive Bayes assumption.

End of Part 3 ("Gaussian Variables"): Key Concepts

- We discussed regression.
 - Supervised learning with continuous outputs.
 - Least squares with L2-regularization assumes Gaussian likelihood and prior.
- We discussed Bayesian linear regression.
 - Gives confidence in predictions.
 - Empirical Bayes can be used to set many hyper-parameters.
 - Automatic relevance determination: prefers simpler models that fit data well.
 - Laplace approximation can be used in non-conjugate settings.
 - Special case of a variational inference method (approximate with simpler distribution).
- We discussed end-to-end learning.
 - Try to write each step as a differentiable operation.
 - Train entire network with backprop and SGD.
 - We illustrated this with evolution of object localization in vision.

Summary

- Variational methods approximate p with a simpler distribution q.
 - You then do inference with q as an approximation to using p.
- Laplace approximation simple variationl inference method.
 - Use Gaussian centered at MAP that agrees with first two derivatives of NLL.
- Neural networks with continous output:
 - Typically trained using squared error, corresponding to Gaussian likelihood.
- End to end models: use a neural network to do all steps.
 - Write each step in a vision "pipeline" as a differentiable operator.
 - Train entire network using SGD.
- Next time: the exponential family.