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Last Time: Bayesian Logistic Regression
@ We discussed Bayesian inference in L2-regulairzed logistic regression,
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e Prior is not conjugate so posterior does not have a nice form.
e We could use Monte Carlo for inference, but difficult to sample from posterior.

@ We discussed rejection sampling to sample complicated distributions.

o Samples from a simple distribution ¢ and accepts/rejects samples to look like p.
e But requires knowing a bound on ¢(z)/p(x) and may reject almost all samples.

@ We discussed importance sampling to approximate expectations.
e Samples from ¢ but reweights f(x) by ¢(x)/p(x) in Monte Carlo estimate.
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Importance Sampling

@ Importance sampling is only efficient if ¢ is close to p.
@ Otherwise, weights will be huge for a small number of samples.
e Even though unbiased, variance can be huge.

@ Can be problematic if ¢ has lighter “tails” than p:
o You rarely sample the tails, so those samples get huge weights.
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@ As with rejection sampling, does not tend to work well in high dimensions.
e Though there is room to cleverly design q.
o Like “alternate between sampling two Gaussians with different variances”.
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Overview of Bayesian Inference Tasks

Bayesian inference requires computing expectations with respect to posterior,

E[f(0)] = /9 F(0)p(6 | z)db.

Examples:
o If f(0) =p(z|0), we get posterior predictive.
o If f(8) =1(0 € S) we get probability of S (e.g., marginals or conditionals).
o If f(#) =1 and we use p(0 | =), we get marginal likelihood.

But posterior often doesn’t have a closed-form expression.
o We don't just want to flip coins and multiply Gaussians.

Our two main tools for aproximate inference:
@ Monte Carlo methods.
@ Variational methods.

@ Classic ideas from statistical physics, that revolutionized Bayesian stats.
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Approximate Inference

Two main strategies for approximate inference:
@ Monte Carlo methods:
e Approximate p with empirical distribution over samples,

e Turns inference into sampling.
@ Variational methods:
e Approximate p with “closest” distribution ¢ from a tractable family,

o E.g., Gaussian, product of Bernoulli, or other models with easy inference.

e Turns inference into optimization.
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Variational Inference lllustration

@ Approximate non-Gaussian p by a Gaussian ¢:

@ Variational methods try to find simple distribution ¢ that is closest to target p.
e Unlike Monte Carlo, does not converge to solution.
@ A Gaussian may not be able to perfectly model posterior.
e But variational methods quickly give approximation solution.
@ Which sometimes is all we need.
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Laplace Approximation
@ A classic variational method is the Laplace approximation.
@ Find an z that maximizes p(z),
x* € argmin{—log p(x)}.

@ Computer second-order Taylor expansion of f(z) = —logp(z) at z*.

—logp(z) ~ f(a*) + Vf(a*) (x —z*) + %(x — 2V f (2% (x — z*).
—_——
0

© Find Gaussian distribution ¢ where —log ¢(x) has same Taylor expansion at x*.

~logq(a) = f(a*) + 5 (¢ — ")V f (@) — ),

so ¢ follows a N (z*, V2 f(z*)~!) distribution.
@ This is the same approximation used by Newton's method in optimization.
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Laplace Approximation

@ So Laplace approximation replaces complicated p with Gaussian gq.
o Centered at mode and agreeing with 1st/2nd-derivatives of log-likelihood:
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@ Now you only need to compute Gaussian integrals (linear algebra for many f).
o Very fast: just solve an optimization (compared to super-slow Monte Carlo).
e Bad approximation if posterior is heavy-tailed, multi-modal, skewed, and so on.

@ It might not even give you the “best” Gaussian approximation:

-
@ We will discuss more-fancy variational methods later.
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Outline

© Regression with Neural Networks
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Motivating Problem: Depth Estimation from Images

o We want to predict “distance to car” for each pixel in an image.

TN,

https://paperswithcode.com/task/3d-depth-estimation
@ We might consider using fully-convolutional networks.
e But we now have multiple continuous labels.


https://paperswithcode.com/task/3d-depth-estimation
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Neural Network with Continuos Outputs

e Standard neural network with multiple continuous outputs (3 hidden layers):
gt = Vh(W3h(W?2h(W'zh)), so ¢& = vl h(W3h(W2h(Wzh))).
@ Standard training objective is to minimize squared error,
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@ This corresponds to MLE in a network that outputs the mean of a Gaussian,

Y~ NG T).

@ As usual, we only need to change the last layer to change output type.
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Neural Networks with Covariances

@ The neural network could also parameterize the variance,
y' ~ NG, SWPh(W?h(W'a')))),

where the function S transforms the hidden layer into a positive-definite matrix.
e So inferences over multiple variables will capture the label’s pairwise correlations.
o For depth estimation, neighbouring pixels are likely to have similar depths.

@ Common choices for S:

o S parameterizes a diagonal matrix D (may output log(o.) values to make positive).
o S parameterizes a square root matrix A, such that ¥ = AAT.

@ We could also consider Bayesian neural networks.
o Where you might use a Laplace approximation of the posterior.
e Though the matrix V2 f(W?3, W2, W' V) may be too large and will be singular.
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Object Localization

@ Object localization is task of finding locations of objects:
e Input is an image.
o Output is a bounding box for each object (among predefined classes).

e dalE =Y
RS

persan. e

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4


https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4
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Region Convolutional Neural Networks: “Pipeline” Approach

e Early approach (region CNN) resemble classic computer vision “pipelines”:
© Propose a bunch of potential boxes (based on segmenting image in various ways).
@ Compute features of each box using a CNN (after re-shaping box to standard size).
© Classify boxes using SVMs (max pool among regions with high overlap).

© Refine each box using linear regression on CNN features.
@ 4 continuous outputs: center x-coordinate, center y-coordinate, log-width, log-height.

R-CNN: Regions with CNN features
g vt region

iy S C NN N4

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

https://arxiv.org/pdf/1311.2524.pdf

@ Improved on state of the art, but slow and there are 4 parts to train.


https://arxiv.org/pdf/1311.2524.pdf
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Fast R-CNNs
@ R-CNN was quickly replaced by fast R-CNN:

o Propose a bunch of potential bounding boxes (same as before).

o Apply CNN to whole image, then get features of bounding boxes.
o Faster than applying CNN to 2000 candidate regions.

o Make softmax (over k + 1 classes) and bounding box regression part of network.
@ More accurate since are parts are trained together.

Outputs: bbox
softmax regressor

Rol FC :E— FC

pooling
layer

FCs

Rol feature
vector For each Rol

https://arxiv.org/pdf/1504.08083.pdf

@ Most parts trained together, but bounding box proposals do not use encoding.


https://arxiv.org/pdf/1504.08083.pdf
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Faster R-CNNs

@ Faster R-CNNs made generating bounding boxes part of the network.
o Uses region-proposal network as part of network to predict potential bounding boxes.
o Many implementation details required to get it working.

classifier

proposals, i ;
Region Proposal Networ!
feature maps

conv layers /
4

- 77

https://arxiv.org/pdf/1506.01497 .pdf

o With all steps being part of one network, this called an end-to-end model.


https://arxiv.org/pdf/1506.01497.pdf
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YOLO: You Only Look Once

@ A more-recent variant that further speeds things up is YOLO:

-

Figure 1: The YOLO Detection System. Processing image:
with YOLO is simple and straightforward. Our system (1) resize
the input image to 448 x 448, (2) runs a single convolutional
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.

https://arxiv.org/pdf/1506.02640.pdf
e Divides image into grid.
e Directly predict properties for a fixed number of bounding boxes for grid box:

o Probability that box is an object (for pruning set of possible boxes).

@ Box x-coordinate, y-coordinate, width, height.

@ Class of box (no separate phase of “proposing boxes” and ‘“classifying boxes”).
e Max pooling (“non-max suprresion”).

@ Reasonably-accurate real-time object detection (with fancy-enough hardware).


https://arxiv.org/pdf/1506.02640.pdf
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Instance Segmentation and Pose Estimation

@ Can add extra predictions to these networks.
@ For example, mask R-CNNs add instance segmentation and/or pose estimation:

https://arxiv.org/pdf/1703.06870.pdf
@ Instance segmentation applies binary mask to bounding boxes (pixel labels).
@ Pose estimation predicts continuous joint keypoint locations.


https://arxiv.org/pdf/1703.06870.pdf
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End-to-End Computer Vision Models

Key ideas behind end-to-end systems:

@ Write each step as a differentiable operator.
@ Train all steps using backpropagation and stochastic gradient.

Has been called differentiable programming.

@ There now exist end-to-end models for all the standard vision tasks.

o Depth estimation, pose estimation, optical flow, tracking, 3D geometry, and so on.
o A bit hard to track the progress at the moment.
e A survey of =~ 200 papers from 2016:

@ http://www.themtank.org/a-year-in-computer-vision

Pose estimation video: https://www.youtube.com/watch?v=pW6nZXeW1lGM

Making 60-fps high-resolution colour version of videos from 120 year ago:
e https://www.youtube.com/watch?v=YZuP41ALx_Q


http://www.themtank.org/a-year-in-computer-vision
https://www.youtube.com/watch?v=pW6nZXeWlGM
https://www.youtube.com/watch?v=YZuP41ALx_Q
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End of Part 3 (“Gaussian Variables”): Key Concepts

@ We discussed continuous density estimation with multivariate Gaussians.

o Parameterized by mean vector and positive definite covariance matrix.
e Assumes distribution is uni-modal, no outliers, untruncated.

@ And symmetric around principle axes.
e “Gaussianity” is preserved under many operations.
e Addition, marginalization, conditionining, product of densities.

@ We discussed conditional independence in Gaussians.
e Models correlations between variables where ¥;; # 0.

@ Diagonal covariance corresponds to assuming variables all variables are independent.
o We define a graph based on the ©;; values.

o If variables are blocked in graph, implies conditional independence.
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End of Part 3 (“Gaussian Variables”): Key Concepts

@ We discussed several methods for sampling and/or Monte Carlo:
e Inverse transform method uses inverse of CDF to sample continuos densities.
o Rejection sampling rejects samples from a simpler distribution.
e Importance sampling reweights samples from a simpler distribution.

@ We discussed learning in Gaussians.
e Closed-form MLE given by data’s mean and variance.
e Conjugate prior for mean in Gaussian.
e Adding a scaled identity matrix to MLE gives positive-definite estimate.
o Graphical Lasso allows learning sparse conditional independence graph.

@ Gaussian discriminant analysis is generative classifer with Gaussian classes.
e Does not need naive Bayes assumption.
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End of Part 3 (“Gaussian Variables”): Key Concepts

@ We discussed regression.

e Supervised learning with continuous outputs.
o Least squares with L2-regularization assumes Gaussian likelihood and prior.

@ We discussed Bayesian linear regression.

e Gives confidence in predictions.
e Empirical Bayes can be used to set many hyper-parameters.

e Automatic relevance determination: prefers simpler models that fit data well.
e Laplace approximation can be used in non-conjugate settings.
@ Special case of a variational inference method (approximate with simpler distribution).

@ We discussed end-to-end learning.

e Try to write each step as a differentiable operation.
e Train entire network with backprop and SGD.

o We illustrated this with evolution of object localization in vision.
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Summary

Variational methods approximate p with a simpler distribution q.

@ You then do inference with ¢ as an approximation to using p.
Laplace approximation simple variationl inference method.

o Use Gaussian centered at MAP that agrees with first two derivatives of NLL.
Neural networks with continous output:

e Typically trained using squared error, corresponding to Gaussian likelihood.
End to end models: use a neural network to do all steps.

o Write each step in a vision “pipeline” as a differentiable operator.
e Train entire network using SGD.

Next time: the exponential family.
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