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Bayesian Linear Regression Rejection and Importance Sampling

Last Time: L2-Regularized Least Squares and Gaussians

o We started discussing regression:
e Supervised learning with a continuous output 3°.

Linear regression models make predictions using 3" = w’ z".
o For regression weights w.

@ A common training objective is L2-regularized least squares,
1 A
argmin — || Xw — y||> + = 2,
gmin o~ 1 Xw =yl + 5 ul

@ This corresponds to MAP estimation with a Gaussian likelihood and prior,
Y~ Nzt o?), wj~N(O,N).
The unique MAP estimate is given by:

1 /1 -
WMAP = ? <0.2XTX + /\I) XTy.
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Bayesian Linear Regression
@ Consider linear regression with Gaussian likelihood and prior,
Y~ Nzl o?), wj~N(O,N7D).

@ By some tedious Gaussian identities, the posterior has the form
1 -1
’LU‘X,yNN WMAP, <2XTX+/\I> s
o

which is a Gaussian centered at the MAP estimate.
e The variance tells us how much variation we have around the MAP estimate.
@ Note that in other models the MAP is usually not the mean of the posterior.

@ By more tedious Gaussian identities the posterior predictive has the form
1 -1
7| X,y,& ~N(whapt,o? + &1 <2XTX + AI) ).
g

@ Decoding in posterior predictive gives MAP predictions (special for Gaussians).
e But working with the full posterior predictive gives us variance of predictions.
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Bayesian Linear Regression

@ Bayesian perspective gives us variability in w and predictions:
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Bayesian Linear Regression

@ Bayesian linear regression with Gaussian RBFs are features:
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http://krasserm.github.i0/2019/02/23/bayesian-1linear-regression
@ We have not only a prediction, but Bayesian inference gives “error bars”.
e Gives an idea of "where model is confident” and where it is not.


http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Bayesian Linear Regression

Digression: Gaussian Processes

In CPSC 340 you may have seen the kernel trick:
o Re-writes L2-regularized least squares linear/prediction in terms of inner products.
o Allows us to efficiently use some exponential-sized or infinite-sized feature sets.

@ We can use kernel trick on posterior in Gaussian likelihood/prior model.
o Allows us to efficiently use some exponential-sized or infinite-sized feature sets.
o Posterior in this case can be written as a Gaussian process (GP).

Notation: a stochastic process is an infinite collection of random variables.

Gaussian process is a stochastic process where any finite sample is Gaussian.
o Defined in terms of a mean function and a covariance function.
@ The set of possible covariance functions is the set of possible kernel functions.
e A popular book on this topic if you want to read more:
@ http://www.gaussianprocess.org/gpml/chapters/RW.pdf

We will assume we have explicit features, but you could kernels/GPs instead.


http://www.gaussianprocess.org/gpml/chapters/RW.pdf
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Setting Hyper-Parameters with Empirical Bayes

@ To set hyper-parameters like 2 and ), we could use a validation set.

@ But could also use empirical Bayes and optimize the marginal likelihood,

6%, X € argmaxp(y | X, 0%, N).
0—2

)

@ The marginal likelihood integrates over the parameters w,

MMXW%M—/?@kaﬂﬂﬂw—/p@h&mfmmhwm (w L X).

w w

@ This is the marginal in a product of Gaussians, which is (with some work):
()\)d/Q
(oV2m)"| L XTX + M |1/2

1 A A
X, 0%\ = _ X ST 2
ply | X,0% ) eXP( 202” wmap — Y| 2||w|\/|APH )

e You could run gradient descent on the negative log of this to set hyper-parameters.
@ You could do“projected” gradient to handle parameters with constraints.
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Setting Hyper-Parameters with Empirical Bayes
o Consider having a hyper-parameter \; for each wy,
Yt~ N(wlz', 0%), wj~N(0, )\j_l).
@ Too expensive for cross-validation, but can still do empirical Bayes.

e You can do projected gradient descent to optimize the ;.

@ Weird fact: this yields sparse solutions.

o It can send some \; — 00, concentrating posterior for w; at exactly 0.
e This is L2-regularization, but empirical Bayes naturally encourages sparsity.

e “Automatic relevance determination” (ARD)

@ Non-convex and theory not well understood:
e Tends to yield much sparser solutions than L1-regularization.
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Setting Hyper-Parameters with Empirical Bayes

Consider also having a hyper-parameter o; for each 1,

Y~ Nzl o?), wj~N(0, )\j_l).

You can also use empirical Bayes to optimize these hyper-parameters.

The “automatic relevance determination” selects training examples (¢; — 00).
e This is like the support vectors in SVMs, but tends to be much more sparse.

Type Il MLE can also be used to learn kernel parameters like RBF variance.
e Do gradient descent on the ¢ values in the Gaussian kernel.

@ Bonus slides: Bayesian feature selection gives probability that w; is non-zero.
o Posterior can be more informative than standard sparse MAP methods.
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Choosing Polynomial Degree with Empirical Bayes

o Using empirical Bayes to choose degree hyper-parameter with polynomial basis:
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http://krasserm.github.i0/2019/02/23/bayesian-linear-regression
e Marginal likelihood (“evidence”) is highest for degree 3.
“Bayesian Occam'’s Razor": prefers simpler models that fit data well.
p(y | X,02%, )\, k) is smaller for degree 4 polynomials since they can fit more datasets.
It's actually non-monotonic it prefers degree 1 and 3 over degree 2.
Model selection criteria like BIC are approximations to marginal likelihood as n — co.


http://krasserm.github.io/2019/02/23/bayesian-linear-regression
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Choosing Polynomial Degree with Empirical Bayes

@ Why is the marginal likelihood higher for degree 3 than 77
o Marginal likelihood for degree 3 (ignoring conditioning on hyper-parameters):

mmm:AJ;LAfMwaMMW

e Marginal likelihood for degree 7:

MWFAALLLLLLMMMWWW

o Higher-degree integrates over high-dimensional volume:

@ A non-trivial proportion of degree 3 functions fit the data really well.

@ There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions.
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Choosing Between Bases with Empirical Bayes

@ We could compare marginal likelihood between different non-linear transforms:

p(y | X, polynomial basis) > p(y | X, Gaussian RBF as basis)?

@ This is the idea behind Bayes factors for hypothesis testing (see bonus slides).
e Alternative to classic hypothesis tests like t-tests.

@ Usual warning: empirical Bayes can sometimes becomes degenerate.
e May need a non-vague prior on the hyper-parameters.

@ But we could have a hyper-prior over possible non-linear transformations.
e And use empirical Bayes in this hierarchical model to learn basis and parameters.
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Application: Automatic Statistician

@ Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples

An automatic report for the dataset : 01-airline
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Outline

© Rejection and Importance Sampling



Bayesian Linear Regression Rejection and Importance Sampling

Motivation: Bayesian Logistic Regression

@ A classic way to fit a binary classifier is L2-regularized logistic loss,
n ) A A
w e argmaleog(l + exp(—y'w! z%)) + §||w||2
Y=t
@ This corresponds to using a sigmoid likelihood and Gaussian prior,

1 1
____ wi~N(0,=]).
L+ exp(—ywTai) < A)

@ In Bayesian logistic regression, we would work with the posterior.
e But the posterior is not a Gaussian, so this is not a conjugate prior.
@ We do not have a nice expression for the posterior predictive or marginal likelihood.

ply' | o' w) =
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Motivation: Monte Carlo for Bayesian Logistic Regression

@ Posterior predictive in Bayesian logistic regression has the form

P( | 7, Xy, \) = / (@ | &, whp(w | y, X, \)dw
— E[p( | #,w))

o If we could sample from the posterior, we could compute this with Monte Carlo!
e But we do not know how to generate [ID samples from this posterior.

@ We will later cover MCMC, which is a standard method in scenarios like this.

@ Today we will cover simpler rejection sampling and importance sampling.

o These assume you can generate from a simple distribution ¢ (like a Gaussian).
e But you really want to solve an integral for a complicated distribution p.

o Like the posterior for Bayesian logistic regression.
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Previously: Rejection Sampling to Compute Conditionals

@ We have already discussed rejection sampling to do conditional sampling:
o Example: sampling from a Gaussian subject to x € [—1,1].

/ /

|

+ 1
o Generate Gaussian samples, throw out (“reject”) the ones that aren't in [—1, 1.
@ The remaining samples will follow the conditional distribution.

@ Can be used to generate IID samples from conditional distributions.
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General Rejection Sampling Algorithm

@ General rejection sampling algorithm tries to “sample area under the graph”:

an+ To S*Mr/f
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General Rejection Sampling Algorithm

@ General rejection sampling algorithm tries to “sample area under the graph”:

Wa Con _Sawf,e
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General Rejection Sampling Algorithm

@ General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm

@ General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm

@ General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm

@ General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm

@ General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm

@ General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm

@ Ingredients of the general rejection sampling algorithm:
@ Ability to evaluate unnormalized p(z),

@ A distribution ¢ that is easy to sample from.
© An upper bound M on p(z)/q(x).

@ Rejection sampling algorithm:
© Sample x from ¢(z).
@ Sample u from ¢(0,1).

: p(z)
@ Keep the sample if u < Moo

@ The accepted samples will be from p(x).
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General Rejection Sampling Algorithm

@ For Bayesian logistic regression, we could use rejection sampling as follows:
e Sample from prior to sample from posterior (M = 1 for discrete z),
PO | z) = p(x | 0) p(0),
——
<1
e Would tend to accept high-likelihood samples and reject low-likelihood samples.
@ Drawbacks of rection sampling:
e You need to know a bound M on g(x)/p(x) (may be hard/impossible to find).
o If x is unbounded and p has heavier tails than ¢, no M exist.
e You may reject a large number of samples.
@ Most samples are rejected for high-dimensional complex distributions.

e If —logp(x) is convex and x is 1D there is a fancier version:
o Adaptive rejection sampling refines piecewise-linear ¢ after each rejection.



Bayesian Linear Regression Rejection and Importance Sampling

Importance Sampling

@ Importance sampling is a variation that accepts all samples.
e Reasoning behind importance sampling:

E,lf(2)] =) _p(e)f(x)

=3 402D ()

q()

p(x) 1 ¢~ plx)

B, |20 7(0)] ~ 2 30 0 1)

o) @)~ 5 2 a0

where the last line uses Monte Carlo approximation with IID samples from gq.
@ Replace sum over x with integral for continuous distributions.

o We can sample from ¢ but reweight by p(z)/q(z) to compute expectation.

e Only assumption is that ¢ is non-zero when p is non-zero.

o If you only know unnormalized p(x), a variant gives approximation of normalizer Z.
@ You could use this to approximate marginal likelihood in Bayesian logistic regression.
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Summary

Bayesian Linear Regression
e Gaussian conditional likelihood and Gaussian prior gives Gaussian posterior.
o Posterior predictive is also Gaussian ( “regression with error bars™).
Empirical Bayes for linear regression

o Can use marginal likelihood to noise variance(s) and regularization parameters(s).
e Can also select which non-linear transforms to use.

e Bayesian Occam’s razor: can encourage sparsity and simplicity.
Bayesian logistic regression
e Gaussian prior is not conjugate so need approximations.
Rejection sampling: generate exact samples from complicated distributions.
e Tends to reject too many samples in high dimensions.
Importance sampling: reweights samples from the wrong distribution.
e Tends to have high variance in high dimensions.

Next time: approximating integrals with optimization.
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Gradient of Validation/Cross-Validation Error

@ It's also possible to do gradient descent on A to optimize
validation/cross-validation error of model fit on the training data.

o For L2-regularized least squares, define w(\) = (XTX + AI)~1XTy.

@ You can use chain rule to get derivative of validation error E,,jiq with respect to A:

%E"a“d (w(X)) = Egaig(w(X)w'(A).

@ For more complicated models, you can use total derivative to get gradient with
respect to A in terms of gradient/Hessian with respect to w.
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Bayesian Feature Selection

o Classic feature selection methods don't work when d >> n;:
o AIC, BIC, Mallow's, adjusted-R?, and L1-regularization return very different results.

@ Here maybe all we can hope for is posterior probability of w; = 0.
o Consider all models, and weight by posterior the ones where w; = 0.

o If we fix A and use L1-regularization, posterior is not sparse.

e Probability that a variable is exactly 0 is zero.
e L1-regularization only leads to sparse MAP, not sparse posterior.
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Bayesian Feature Selection

@ Type Il MLE gives sparsity because posterior variance goes to zero.
o But this doesn’t give probability of individual w; values being 0.

@ We can encourage sparsity in Bayesian models using a spike and slab prior:

e ———
)

e Mixture of Dirac delta function at 0 and another prior with non-zero variance.
o Places non-zero posterior weight at exactly 0.
e Posterior is still non-sparse, but answers the question:

@ “What is the probability that variable is non-zero"?



Rejection and Importance Sampling

Bayesian Feature Selection

Monte Carlo samples of w; for 18 features when classifying 2" vs. ‘3"
e Requires “trans-dimensional” MCMC since dimension of w is changing.

Positive Variables Negative Variables Neutral Variables
40 10000 10000
2000 ‘ - ‘ 5000 5000 r l
0 a )
-5 0 5 5 8 -5 0
Positive VGHBMEG Negative \/uﬂablas Neutral Variables
10000 5000 =
5°°°‘ ‘ __.i_ ‘ N
. |
5 D 5 75 5 5 0 5
Positive Variables Negative \/ur\ables Neutral Variables
10000 4001 10000
5000 ‘ I ! 2000 . I 5000 r I
1) )
5 0 5 E-] 0 8 E-] 0 5
Positive Variables Negative Variables Neutral Variables
10000 10000 10000
5000 ‘ I ‘ 5000 I 5000 ‘ I
a o
-5 0 5 E-] 0 5 -5 o 5
Positive Variables Negative Variables Neutral Variables
10000 10000 ~—
5000 ‘ ‘ I 5000 ‘ I
)
5 5 —5 ] -5 0 5
Positive Vanahlss Negative Var\ahles Neutral Variables
10000 - 5000 10000 -
5000 I ‘ 5000 I 1
)
0 5 S -5 o 5

o “Positive” variables had w; > 0 when fit with L1-regularization.
o “Negative” variables had w; < 0 when fit with L1-regularization.
o “Neutral’ variables had w; = 0 when fit with L1-regularization.



Rejection and Importance Sampling

Bayes Factors for Bayesian Hypothesis Testing

@ Suppose we want to compare hypotheses:
o E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.

@ Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)
p(y | X,degree 1)

o If very large then data is much more consistent with degree 2.
e A common variation also puts prior on degree.

@ A more direct method of hypothesis testing:

o No need for null hypothesis, “power” of test, p-values, and so on.
o As usual only says which model is more likely, not whether any are correct.
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American Statistical Assocation:

e “Statement on Statistical Significance and P-Values”.
@ http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory":

@ https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
@ https://en.wikipedia.org/wiki/Replication_crisis

@ http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

”T—TeStS Aren't MOnOtOniC”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don’t solve problems with p-values and multiple testing.
e But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:

@ http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf
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