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Last Time: L2-Regularized Least Squares and Gaussians
We started discussing regression:

Supervised learning with a continuous output yi.

Linear regression models make predictions using ŷi = wTxi.
For regression weights w.

A common training objective is L2-regularized least squares,

argmin
w

1

2σ2
‖Xw − y‖2 + λ

2
‖w‖2.

This corresponds to MAP estimation with a Gaussian likelihood and prior,

yi ∼ N (wTxi, σ2), wj ∼ N (0, λ−1).

The unique MAP estimate is given by:

wMAP =
1

σ2

(
1

σ2
XTX + λI

)−1
XT y.
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Bayesian Linear Regression
Consider linear regression with Gaussian likelihood and prior,

yi ∼ N (wTxi, σ2), wj ∼ N (0, λ−1).

By some tedious Gaussian identities, the posterior has the form

w | X, y ∼ N

(
wMAP,

(
1

σ2
XTX + λI

)−1)
,

which is a Gaussian centered at the MAP estimate.
The variance tells us how much variation we have around the MAP estimate.

Note that in other models the MAP is usually not the mean of the posterior.

By more tedious Gaussian identities the posterior predictive has the form

ỹ | X, y, x̃ ∼ N (wTMAPx̃, σ
2 + x̃T

(
1

σ2
XTX + λI

)−1
x̃).

Decoding in posterior predictive gives MAP predictions (special for Gaussians).
But working with the full posterior predictive gives us variance of predictions.
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Bayesian Linear Regression

Bayesian perspective gives us variability in w and predictions:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

http://krasserm.github.io/2019/02/23/bayesian-linear-regression
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Bayesian Linear Regression
Bayesian linear regression with Gaussian RBFs are features:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

We have not only a prediction, but Bayesian inference gives “error bars”.
Gives an idea of “where model is confident” and where it is not.

http://krasserm.github.io/2019/02/23/bayesian-linear-regression
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Digression: Gaussian Processes
In CPSC 340 you may have seen the kernel trick:

Re-writes L2-regularized least squares linear/prediction in terms of inner products.
Allows us to efficiently use some exponential-sized or infinite-sized feature sets.

We can use kernel trick on posterior in Gaussian likelihood/prior model.
Allows us to efficiently use some exponential-sized or infinite-sized feature sets.
Posterior in this case can be written as a Gaussian process (GP).

Notation: a stochastic process is an infinite collection of random variables.

Gaussian process is a stochastic process where any finite sample is Gaussian.
Defined in terms of a mean function and a covariance function.

The set of possible covariance functions is the set of possible kernel functions.
A popular book on this topic if you want to read more:

http://www.gaussianprocess.org/gpml/chapters/RW.pdf

We will assume we have explicit features, but you could kernels/GPs instead.

http://www.gaussianprocess.org/gpml/chapters/RW.pdf
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Setting Hyper-Parameters with Empirical Bayes

To set hyper-parameters like σ2 and λ, we could use a validation set.

But could also use empirical Bayes and optimize the marginal likelihood,

σ̂2, λ̂ ∈ argmax
σ2,λ

p(y | X,σ2, λ).

The marginal likelihood integrates over the parameters w,

p(y | X,σ2, λ) =
∫
w
p(y, w | X,σ2, λ)dw =

∫
w
p(y | X,w, σ2)p(w | λ)dw (w ⊥ X).

This is the marginal in a product of Gaussians, which is (with some work):

p(y | X,σ2, λ) = (λ)d/2

(σ
√
2π)n| 1

σ2XTX + λI|1/2
exp

(
− 1

2σ2
‖XwMAP − y‖2 −

λ

2
‖wMAP‖2

)
.

You could run gradient descent on the negative log of this to set hyper-parameters.
You could do“projected” gradient to handle parameters with constraints.
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Setting Hyper-Parameters with Empirical Bayes

Consider having a hyper-parameter λj for each wj ,

yi ∼ N (wTxi, σ2), wj ∼ N (0, λ−1j ).

Too expensive for cross-validation, but can still do empirical Bayes.

You can do projected gradient descent to optimize the λj .

Weird fact: this yields sparse solutions.

It can send some λj →∞, concentrating posterior for wj at exactly 0.
This is L2-regularization, but empirical Bayes naturally encourages sparsity.

“Automatic relevance determination” (ARD)

Non-convex and theory not well understood:

Tends to yield much sparser solutions than L1-regularization.
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Setting Hyper-Parameters with Empirical Bayes

Consider also having a hyper-parameter σi for each i,

yi ∼ N (wTxi, σ2i ), wj ∼ N (0, λ−1j ).

You can also use empirical Bayes to optimize these hyper-parameters.

The “automatic relevance determination” selects training examples (σi →∞).

This is like the support vectors in SVMs, but tends to be much more sparse.

Type II MLE can also be used to learn kernel parameters like RBF variance.

Do gradient descent on the σ values in the Gaussian kernel.

Bonus slides: Bayesian feature selection gives probability that wj is non-zero.

Posterior can be more informative than standard sparse MAP methods.
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Choosing Polynomial Degree with Empirical Bayes

Using empirical Bayes to choose degree hyper-parameter with polynomial basis:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Marginal likelihood (“evidence”) is highest for degree 3.
“Bayesian Occam’s Razor”: prefers simpler models that fit data well.
p(y | X,σ2, λ, k) is smaller for degree 4 polynomials since they can fit more datasets.
It’s actually non-monotonic it prefers degree 1 and 3 over degree 2.
Model selection criteria like BIC are approximations to marginal likelihood as n→∞.

http://krasserm.github.io/2019/02/23/bayesian-linear-regression
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Choosing Polynomial Degree with Empirical Bayes

Why is the marginal likelihood higher for degree 3 than 7?

Marginal likelihood for degree 3 (ignoring conditioning on hyper-parameters):

p(y | X) =

∫
w0

∫
w1

∫
w2

∫
w3

p(y | X,w)p(w | λ)dw

Marginal likelihood for degree 7:

p(y | X) =

∫
w0

∫
w1

∫
w2

∫
w3

∫
w4

∫
w5

∫
w6

∫
w7

p(y | X,w)p(w | λ)dw.

Higher-degree integrates over high-dimensional volume:

A non-trivial proportion of degree 3 functions fit the data really well.

There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions.
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Choosing Between Bases with Empirical Bayes

We could compare marginal likelihood between different non-linear transforms:

p(y | X, polynomial basis) > p(y | X,Gaussian RBF as basis)?

This is the idea behind Bayes factors for hypothesis testing (see bonus slides).

Alternative to classic hypothesis tests like t-tests.

Usual warning: empirical Bayes can sometimes becomes degenerate.

May need a non-vague prior on the hyper-parameters.

But we could have a hyper-prior over possible non-linear transformations.

And use empirical Bayes in this hierarchical model to learn basis and parameters.
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Application: Automatic Statistician

Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples

http://www.automaticstatistician.com/examples
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Motivation: Bayesian Logistic Regression

A classic way to fit a binary classifier is L2-regularized logistic loss,

ŵ ∈ argmax
w

n∑
i=1

log(1 + exp(−yiwTxi)) + λ

2
‖w‖2.

This corresponds to using a sigmoid likelihood and Gaussian prior,

p(yi | xi, w) = 1

1 + exp(−yiwTxi)
, wj ∼ N

(
0,

1

λ

)
.

In Bayesian logistic regression, we would work with the posterior.
But the posterior is not a Gaussian, so this is not a conjugate prior.

We do not have a nice expression for the posterior predictive or marginal likelihood.
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Motivation: Monte Carlo for Bayesian Logistic Regression

Posterior predictive in Bayesian logistic regression has the form

p(ỹi | x̃i, X, y, λ) =
∫
w
p(ỹi | x̃i, w)p(w | y,X, λ)dw

= E[p(ỹi | x̃i, w)].

If we could sample from the posterior, we could compute this with Monte Carlo!
But we do not know how to generate IID samples from this posterior.

We will later cover MCMC, which is a standard method in scenarios like this.

Today we will cover simpler rejection sampling and importance sampling.
These assume you can generate from a simple distribution q (like a Gaussian).
But you really want to solve an integral for a complicated distribution p.

Like the posterior for Bayesian logistic regression.
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Previously: Rejection Sampling to Compute Conditionals

We have already discussed rejection sampling to do conditional sampling:

Example: sampling from a Gaussian subject to x ∈ [−1, 1].

Generate Gaussian samples, throw out (“reject”) the ones that aren’t in [−1, 1].
The remaining samples will follow the conditional distribution.

Can be used to generate IID samples from conditional distributions.
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General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm
General rejection sampling algorithm tries to “sample area under the graph”:
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General Rejection Sampling Algorithm

Ingredients of the general rejection sampling algorithm:
1 Ability to evaluate unnormalized p̃(x),

p(x) =
p̃(x)

Z
.

2 A distribution q that is easy to sample from.
3 An upper bound M on p̃(x)/q(x).

Rejection sampling algorithm:
1 Sample x from q(x).
2 Sample u from U(0, 1).
3 Keep the sample if u ≤ p̃(x)

Mq(x) .

The accepted samples will be from p(x).
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General Rejection Sampling Algorithm

For Bayesian logistic regression, we could use rejection sampling as follows:

Sample from prior to sample from posterior (M = 1 for discrete x),

p̃(θ | x) = p(x | θ)︸ ︷︷ ︸
≤1

p(θ),

Would tend to accept high-likelihood samples and reject low-likelihood samples.

Drawbacks of rection sampling:
You need to know a bound M on q(x)/p(x) (may be hard/impossible to find).

If x is unbounded and p has heavier tails than q, no M exist.

You may reject a large number of samples.

Most samples are rejected for high-dimensional complex distributions.

If − log p(x) is convex and x is 1D there is a fancier version:

Adaptive rejection sampling refines piecewise-linear q after each rejection.
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Importance Sampling
Importance sampling is a variation that accepts all samples.

Reasoning behind importance sampling:

Ep[f(x)] =
∑
x

p(x)f(x)

=
∑
x

q(x)
p(x)

q(x)
f(x)

= Eq

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x)

q(x)
f(x),

where the last line uses Monte Carlo approximation with IID samples from q.
Replace sum over x with integral for continuous distributions.

We can sample from q but reweight by p(x)/q(x) to compute expectation.
Only assumption is that q is non-zero when p is non-zero.
If you only know unnormalized p̃(x), a variant gives approximation of normalizer Z.

You could use this to approximate marginal likelihood in Bayesian logistic regression.
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Summary

Bayesian Linear Regression
Gaussian conditional likelihood and Gaussian prior gives Gaussian posterior.
Posterior predictive is also Gaussian (“regression with error bars”).

Empirical Bayes for linear regression
Can use marginal likelihood to noise variance(s) and regularization parameters(s).
Can also select which non-linear transforms to use.

Bayesian Occam’s razor: can encourage sparsity and simplicity.

Bayesian logistic regression
Gaussian prior is not conjugate so need approximations.

Rejection sampling: generate exact samples from complicated distributions.
Tends to reject too many samples in high dimensions.

Importance sampling: reweights samples from the wrong distribution.
Tends to have high variance in high dimensions.

Next time: approximating integrals with optimization.
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Gradient of Validation/Cross-Validation Error

It’s also possible to do gradient descent on λ to optimize
validation/cross-validation error of model fit on the training data.

For L2-regularized least squares, define w(λ) = (XTX + λI)−1XT y.

You can use chain rule to get derivative of validation error Evalid with respect to λ:

d

dλ
Evalid(w(λ)) = E′valid(w(λ))w

′(λ).

For more complicated models, you can use total derivative to get gradient with
respect to λ in terms of gradient/Hessian with respect to w.
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Bayesian Feature Selection

Classic feature selection methods don’t work when d >> n:

AIC, BIC, Mallow’s, adjusted-R2, and L1-regularization return very different results.

Here maybe all we can hope for is posterior probability of wj = 0.

Consider all models, and weight by posterior the ones where wj = 0.

If we fix λ and use L1-regularization, posterior is not sparse.

Probability that a variable is exactly 0 is zero.
L1-regularization only leads to sparse MAP, not sparse posterior.
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Bayesian Feature Selection

Type II MLE gives sparsity because posterior variance goes to zero.

But this doesn’t give probability of individual wj values being 0.

We can encourage sparsity in Bayesian models using a spike and slab prior:

Mixture of Dirac delta function at 0 and another prior with non-zero variance.
Places non-zero posterior weight at exactly 0.
Posterior is still non-sparse, but answers the question:

“What is the probability that variable is non-zero”?
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Bayesian Feature Selection
Monte Carlo samples of wj for 18 features when classifying ‘2’ vs. ‘3’:

Requires “trans-dimensional” MCMC since dimension of w is changing.

“Positive” variables had wj > 0 when fit with L1-regularization.
“Negative” variables had wj < 0 when fit with L1-regularization.
“Neutral’ variables had wj = 0 when fit with L1-regularization.
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Bayes Factors for Bayesian Hypothesis Testing

Suppose we want to compare hypotheses:

E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.

Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)

p(y | X, degree 1)
.

If very large then data is much more consistent with degree 2.
A common variation also puts prior on degree.

A more direct method of hypothesis testing:

No need for null hypothesis, “power” of test, p-values, and so on.
As usual only says which model is more likely, not whether any are correct.
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American Statistical Assocation:
“Statement on Statistical Significance and P-Values”.
http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory”:
https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
https://en.wikipedia.org/wiki/Replication_crisis

http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

“T-Tests Aren’t Monotonic”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don’t solve problems with p-values and multiple testing.
But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf

http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
https://fivethirtyeight.com/features/science-isnt-broken
https://en.wikipedia.org/wiki/Replication_crisis
http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375
https://www.naftaliharris.com/blog/t-test-non-monotonic
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf
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