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Last Time: Inference in Multivariate Gaussian

The multivariate normal/Gaussian distribution models PDF of vector xi as

p(xi | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)>Σ−1(xi − µ)

)
where µ ∈ Rd and Σ ∈ Rd×d is symmetric with Σ � 0.

The density for a linear transformation of a product of independent Gaussians.

Models correlations between non-zero elements of Σ.

If Σ is diagonal then it assumes all variables are independent.

We discussed affine property that linear transformation of Gaussians is Gaussian.

Can be used to generate samples from a Gaussian.

We discussed how marginals and conditionals are Gaussian.

We often draw a graph of the non-zero elements of precision Θ = Σ−1].

Variables are conditionally independent if conditioning set blocks paths in the graph.
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Discussion of Independence in Gaussians

If Σ is diagonal then Θ is diagonal.

This gives a disconnected graph: all variables are independent.

If Θ is a full matrix, graph does not imply any conditional independences.

“Everything depends on everything, no matter how many of the xj you know.”

The value Θij is related to the partial correlation which is −Θij/
√

ΘiiΘjj .

The “remaining correlation when we know all other variables”.

Dependencies can exist if Θij = 0 due to correlations with other variables.

Only independent if all paths that correlation could go across are blocked.
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MLE for Multivariate Gaussian (Mean Vector)

With a multivariate Gaussian we have

p(xi | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)>Σ−1(xi − µ)

)
,

so up to a constant our negative log-likelihood for n examples xi is

1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ) +
n

2
log |Σ|.

This is a convex quadratic in µ, setting gradient to zero gives

µ̂ =
1

n

n∑
i=1

xi.

MLE for µ is the mean along each dimension, and it does not depend on Σ.
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MLE for Multivariate Gaussians (Covariance Matrix)

To get MLE for Σ we re-parameterize in terms of precision matrix Θ = Σ−1,

1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ) +
n

2
log |Σ|

=
1

2

n∑
i=1

(xi − µ)>Θ(xi − µ) +
n

2
log |Θ−1|

After some tedious linear algebra (in bonus slides) we obtain that this is equal to

f(Θ) =
n

2
Tr(SΘ)− n

2
log |Θ|, with S =

1

n

n∑
i=1

(xi − µ)(xi − µ)>

where:
S is the covariance of the data (if we subtract mean from all examples,
S = (1/n)XTX).
Trace operator Tr(A) is the sum of the diagonal elements of A.
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MLE for Multivariate Gaussians (Covariance Matrix)

Gradient matrix of NLL with respect to Θ is (not obviously)

∇f(Θ) =
n

2
S − n

2
Θ−1.

The MLE for a given µ is obtained by setting gradient matrix to zero, giving

Θ = S−1 or Σ =
1

n

n∑
i=1

(xi − µ)(xi − µ)>.

The constraint Σ � 0 means we need positive-definite sample covariance, S � 0.
If S is not positive-definite, NLL is unbounded below and no MLE exists.
This is like requiring “not all values are the same” in univariate Gaussian.

In d-dimensions, you need d linearly-independent xi values (no “collinearity”)

For most distributions, the MLEs are not the data’s mean and covariance.
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MAP Estimation for Mean

For fixed Σ, conjugate prior for mean is a Gaussian:

xi ∼ N (µ,Σ), µ ∼ N (µ0,Σ0),→ µ | X,Σ ∼ N (µ+,Σ+),

where (using product of Gaussians property we are about to cover)

Σ+ = (nΣ−1 + Σ−10 )−1,

µ+ = Σ+(nΣ−1µMLE + Σ−10 µ0). MAP estimate of µ

In special case of Σ = σ2I and Σ0 = (1/λ)I we get

Σ+ = ((n/σ2)I + λI)−1,

µ+ = Σ+((n/σ2)µMLE + λµ0).

Posterior predictive is N (µ+,Σ + Σ+) (product of (n+ 2) then marginalize).
Many Bayesian inference tasks have closed form, or Monte Carlo is easy.
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Product of Gaussian Densities Property

Consider variable x whose PDF is written as product of two Gaussians,

p(x) = f1(x)f2(x)

where:
f1 is proportional to a Gaussian with mean µ1 and covariance I.
f2 is proportional to a Gaussian with mean µ2 and covariance I.

Then this product of Gaussian PDFs is a Gaussian with µ = µ1+µ2

2 and Σ = 1
2 .
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Product of Gaussian Densities Property
If p(x) ∝ f1(x)f2(x) f1 and f2 with

f1 proportional to a Gaussian with mean µ1 and covariance Σ1.
f2 proportional to a Gaussian with mean µ2 and covariance Σ2.

Then p is a Gaussian with (see textbook)

covariance of Σ = (Σ−11 + Σ−12 )−1.

mean of µ = ΣΣ−11 µ1 + ΣΣ−12 µ2,

How we do we use this to derive the posterior distribution for the mean?

p(µ | X,Σ, µ0,Σ0) ∝ p(µ | µ0,Σ0)

n∏
i=1

p(xi | µ,Σ) (Bayes rule)

= p(µ | µ0,Σ0)

n∏
i=1

p(µ | xi,Σ) (symmetry of xi and µ)

= (product of (n+ 1) Gaussians).
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MAP Estimation in Multivariate Gaussian (Trace Regularization)

A common MAP estimate for Σ is

Σ̂ = S+λI,

where S is the covariance of the data.

Key advantage: Σ̂ is postiive-definite (eigenvalues are at least λ).

This minimizes NLL plus L1-regularization of precision diagonals (see bonus)

f(Θ) = Tr(SΘ)− log |Θ|︸ ︷︷ ︸
NLL

+λ

d∑
j=1

|Θjj |.

although it does not set Θjj values to exactly zero.

Log-determinant term becomes arbitrarily steep as the Θjj approach 0.
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Graphical LASSO

A popular generalization called the graphical LASSO,

f(Θ) = Tr(SΘ)− log |Θ|+ λ

d∑
i=1

d∑
j=1

|Θij |,

where we apply L1-regularization to all elements of Θ.

With large enough λ, gives sparse off-diagonals in Θ.

Though need specialized optimization algorithms to solve this problem.

Recall that sparsity of Θ determines conditional independence.
When we set a Θij = 0 it remove an edges from the graph.

Makes the graph simpler, and can make computations cheaper.
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Graphical LASSO Example

Graphical LASSO applied to stocks data:

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Graphical LASSO Example

Graphical LASSO applied to US senate voting data (Bush junior era):

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Graphical LASSO Example

Graphical LASSO applied to protein data:

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Graphical LASSO on Digits

Precision matrix from graphical LASSO applied to MNIST digits (λ = 1/8):

To understand this picture, first the size of the precision matrix:
The images of digits, which are m×m matrices (m pixels by m pixels)

This gives d = m2 elements of xi, which we’ll assume are in “column-major” order.
Frist m elements of xi are column 1, next m elements are columm 2, and so on.

The picture above, which is d× d so will thus be m2 ×m2.
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Graphical LASSO on Digits

Precision matrix from graphical LASSO applied to MNIST digits (λ = 1/8):

So what are the non-zeroes in the precision matrix?
1 The diagonals Θi,i (positive-definite matrices must have positive diagonals).
2 The first off-diagonals Θi,i+1 and Θi+1,i.

This represents the dependencies between adjacent pixels vertically.

3 The (m+ 1) off-diagonals Θi,i+m and Θi+m,i.

This represents the dependencies between adjacent pixels horizontally.
Because in “column-major” order, you go “right” a pixel every m indices.
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Graphical LASSO on Digits

Precision matrix from graphical LASSO applied to MNIST digits (λ = 1/8):

The edges in the graph are pixels next to each other in the image.

Graphical Lasso is a special case of structure learning in graphical models.

We will discusss graphical models more later.



Learning in Multivariate Gaussians Supervised Learning with Gaussians

Conjugate Priors for Covariance

Graphical LASSO is not using a conjugate prior.

Conjugate prior for Θ with known mean is Wishart distribution
A multi-dimensional generalization of the gamma distribution.

Gamma is a distribution over positive scalars.
Wishart is a distribution over positive-definite matrices.

Posterior predictive is a student t distribution.
Conjugate prior for Σ is inverse-Wishart (equivalent posterior).

If both µ and Θ are variables, conjugate prior is normal-Wishart.
Normal times Wishart, with a particular dependency among parameters.
Posterior predictive is again a student t distribution.

Wikipedia has already done a lot of possible homework questions for you:
https://en.wikipedia.org/wiki/Conjugate_prior

https://en.wikipedia.org/wiki/Conjugate_prior
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Generative Classification with Gaussians

We previously considerd the generative classifier naive Bayes.

Assumed xi ⊥ xj | y, which is strong/unrealistic.

Consider a generative classifier with continuous features:

p(yi | xi) ∝ p(xi, yi)
= p(xi | yi)︸ ︷︷ ︸

continuous

p(yi)︸ ︷︷ ︸
discrete

.

In Gaussian discriminant analysis (GDA) we assume xi | yi is a Gaussian.

It is classification so output yi is categorical.
Classifier asks “which Gaussian makes xi most likely?”
This can model pairwise correlations within each class.

Does not need naive Bayes assumption.
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Gaussian Discriminant Analysis (GDA) and Closed-Form MLE

In Gaussian discriminant analysis we assume xi | yi is a Gaussian.

p(xi, yi = c) = p(yi)p(xi | yi = c)︸ ︷︷ ︸
product rule

= πc︸︷︷︸
p(yi=c)

p(xi | µc,Σc)︸ ︷︷ ︸
Gaussian PDF

.

A special case is linear discriminant analysis (LDA):

In LDA we assume that Σc is the same for all classes c.

In LDA the MLE has a simple closed-form expression:

π̂c =
nc
n
, µ̂c =

1

nc

∑
yi=c

xi.

π̂c is fraction of times we are in class c, µ̂ is mean of class c.
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Linear Discriminant Analysis (LDA)

Example of fitting linear discriminant analysis (LDA) to a 3-class problem:

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

LDA is a linear classifier.
Unlike other linear classifiers like logistic regression, it has a closed-form MLE.
Though it may be less accurate if the classes do not look like Gaussians.

If class proportions πc are equal, class label is determined by nearest mean.
Prediction is like a “1-nearest neighbour” or k-means clustering method.

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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Gaussian Discriminant Analysis (GDA)
We can also have a covariance Σc for each class.

So the class will be determined by class proportions, means, and variances.

The MLE for each each Σc is the covariance of data in class c,

Σ̂c =
1

nc

∑
yi=c

(xi − µ̂c)(xi − µ̂c)T ,

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

This leads to a quadratic classifier.
GDA is sometimes called quadratic discriminant analysis.

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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Regression with Gaussians
Regression is a variant on supervised learning where yi is continuous.

https://en.wikipedia.org/wiki/Regression_analysis

It is possible to use generative regression models.
For example, we could model p(x, y) as a multivariate Gaussian.

Then use that the conditional p(y | x) is Gaussian for prediction.

But we usually treat features as fixed (as in discriminative classification models).
And to start, we will consider models that make linear predictions, ŷi = wTxi.

https://en.wikipedia.org/wiki/Regression_analysis


Learning in Multivariate Gaussians Supervised Learning with Gaussians

Review: L2-Regularized Least Squares and Gaussians

A common linear regression model is L2-regularized least squares,

argmin
w

1

2σ2
‖Xw − y‖2 +

λ

2
‖w‖2,

This corresponds to MAP estimation with a Gaussian likelihood and prior,

yi ∼ N (wTxi, σ2), wj ∼ N (0, λ−1).

By setting the gradient to zero, the unique solution is given by:

ŵ =
1

σ2

(
1

σ2
XTX + λI

)−1
XT y.

In 340 we fixed σ2 = 1 (since changing is σ2 equivalent to changing λ).
In Bayesian inference, both σ2 and λ affect the predictions.

To predict on new example x̃ with MAP estimate, we use ŷ = ŵT x̃.



Learning in Multivariate Gaussians Supervised Learning with Gaussians

Summary

MLE for multivariate Gaussian:

MLE for µ is mean of data, MLE for Σ is covariance of data (if positive definite).

Posterior and posterior predictive under Gaussian prior on mean is Gaussian.

Can be shown using that product of Gaussians is Gaussian.

Graphical Lasso uses L1-regularization of precision matrix.

Leads to a sparse graph structure representing conditional independences.

Supervised learning with Gaussians

Generative classifier with Gaussian classes is Gaussian discriminant analysis (GDA).
L2-regularized least squares is obtained using a Gaussian likelihood and prior.

Regression model assuming features fixed/non-random as in discriminative classifiers.

Next time: linear regression plus empirical Bayes to cheat on your stats homework.
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MLE for Multivariate Gaussians (Covariance Matrix)

To get MLE for Σ we re-parameterize in terms of precision matrix Θ = Σ−1,

1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ) +
n

2
log |Σ|

=
1

2

n∑
i=1

(xi − µ)>Θ(xi − µ) +
n

2
log |Θ−1| (ok because Σ is invertible)

=
1

2

n∑
i=1

Tr
(

(xi − µ)>Θ(xi − µ)
)

+
n

2
log |Θ|−1 (scalar y>Ay = Tr(y>Ay))

=
1

2

n∑
i=1

Tr((xi − µ)(xi − µ)>Θ)− n

2
log |Θ| (Tr(ABC) = Tr(CAB))

Where the trace Tr(A) is the sum of the diagonal elements of A.
That Tr(ABC) =Tr(CAB) when dimensions match is the cyclic property of trace.
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MLE for Multivariate Gaussians (Covariance Matrix)

From the last slide we have in terms of precision matrix Θ that

=
1

2

n∑
i=1

Tr((xi − µ)(xi − µ)>Θ)− n

2
log |Θ|

We can exchange the sum and trace (trace is a linear operator) to get,

=
1

2
Tr

(
n∑
i=1

(xi − µ)(xi − µ)>Θ

)
− n

2
log |Θ|

∑
i

Tr(AiB) = Tr

(∑
i

AiB

)

=
n

2
Tr


 1

n

n∑
i=1

(xi − µ)(xi − µ)>︸ ︷︷ ︸
sample covariance ‘S’

Θ

− n

2
log |Θ|.

(∑
i

AiB

)
=

(∑
i

Ai

)
B
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MLE for Multivariate Gaussians (Covariance Matrix)

So the NLL in terms of the precision matrix Θ and sample covariance S is

f(Θ) =
n

2
Tr(SΘ)− n

2
log |Θ|, with S =

1

n

n∑
i=1

(xi − µ)(xi − µ)>

Weird-looking but has nice properties:

Tr(SΘ) is linear function of Θ, with ∇Θ Tr(SΘ) = S.
(it’s the matrix version of an inner-product s>θ)

Negative log-determinant is strictly-convex and has ∇Θ log |Θ| = Θ−1.
(generalizes ∇ log |x| = 1/x for for x > 0).

Using these two properties the gradient matrix has a simple form:

∇f(Θ) =
n

2
S − n

2
Θ−1.
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Trace Regularization and L1-regularization

A classic regularizer for Σ is to add a diagonal matrix to S and use

Σ = S+λI,

which satisfies Σ � 0 because S � 0 (eigenvalues at least λ).

This corresponds to L1-regularization of diagonals of precision.

f(Θ) = Tr(SΘ)− log |Θ| + λ
d∑

j=1

|Θjj | (Gauss. NLL plus L1 of diags)

= Tr(SΘ)− log |Θ| + λ
d∑

j=1

Θjj (Diagonals of pos. def. matrix are > 0)

= Tr(SΘ)− log |Θ| + λTr(Θ) (Definition of trace)

= Tr(SΘ+λΘ)− log |Θ| (Linearity of trace)

= Tr((S + λI)Θ)− log |Θ| (Distributive law)

Taking gradient and setting to zero gives Σ = S + λ.
But doesn’t set to exactly zero as log-determinant term is too “steep” at 0.
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