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Last Time: Inference in Multivariate Gaussian

The multivariate normal/Gaussian distribution models PDF of vector x! as

g exp (—;(9:" —p) TN - u))

x| pu,¥) = T
p(a’ | p, X) RIS

where 1 € R? and ¥ € R™*? is symmetric with 3 > 0.
e The density for a linear transformation of a product of independent Gaussians.
@ Models correlations between non-zero elements of .
e If X is diagonal then it assumes all variables are independent.
@ We discussed affine property that linear transformation of Gaussians is Gaussian.
o Can be used to generate samples from a Gaussian.

We discussed how marginals and conditionals are Gaussian.

We often draw a graph of the non-zero elements of precision © = X~ ~1),
e Variables are conditionally independent if conditioning set blocks paths in the graph.
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Discussion of Independence in Gaussians

If 3 is diagonal then © is diagonal.
e This gives a disconnected graph: all variables are independent.

o If © is a full matrix, graph does not imply any conditional independences.
o “Everything depends on everything, no matter how many of the x; you know.’

1

@ The value ©j; is related to the partial correlation which is —0;;/1/0;;0;;.
e The “remaining correlation when we know all other variables”.
e Dependencies can exist if ©;; = 0 due to correlations with other variables.

e Only independent if all paths that correlation could go across are blocked.
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MLE for Multivariate Gaussian (Mean Vector)

@ With a multivariate Gaussian we have
7 ) — 1 _1 i TE—I i
p(a' | B) = —g—gexp | —5 (" —p) (@' —p) ),
(2m)2[X|z
so up to a constant our negative log-likelihood for n examples 2 is
I Tl n
5 2 @ =) 57 (@' — ) + S log [,
i=1
@ This is a convex quadratic in p, setting gradient to zero gives

= %sz

i=1

e MLE for u is the mean along each dimension, and it does not depend on X.
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MLE for Multivariate Gaussians (Covariance Matrix)

@ To get MLE for X we re-parameterize in terms of precision matrix © = %71,

1, . 1, i n
5 2@ =) ST (@ — ) + 5 log 3|
=1

1 n . T . n _
=52 (a' = @) 'O’ — ) +  log|O7!|
i=1
@ After some tedious linear algebra (in bonus slides) we obtain that this is equal to
(6) = 2Tr(50) — Loz 0], with § = 13 (' — ) (a’ — )"
=— ——lo wi = — ' —p)(zt —
5 5 108191, n 2 H H
where:
e S is the covariance of the data (if we subtract mean from all examples,
S=(1/n)XTX).
e Trace operator Tr(A) is the sum of the diagonal elements of A.
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MLE for Multivariate Gaussians (Covariance Matrix)

e Gradient matrix of NLL with respect to © is (not obviously)
_ g g1
V©) = 5 S 5 e .

@ The MLE for a given p is obtained by setting gradient matrix to zero, giving

1 < . .
O=5"1 o == b — )T,
PO DIGOICE
=1
@ The constraint X > 0 means we need positive-definite sample covariance, S > 0.

e If S is not positive-definite, NLL is unbounded below and no MLE exists.
e This is like requiring “not all values are the same” in univariate Gaussian.

o In d-dimensions, you need d linearly-independent " values (no “collinearity”)

@ For most distributions, the MLEs are not the data’'s mean and covariance.
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MAP Estimation for Mean
@ For fixed X, conjugate prior for mean is a Gaussian:
a' ~ N, 2), 1~ N(po, 2o), = | X, 8~ N(ut, 57F),
where (using product of Gaussians property we are about to cover)
>t =mx 4+ xyh,
pt =S umie + g o). MAP estimate of p
@ In special case of X = 02I and Xy = (1/\)] we get
St = (/o) + M),
pt =3F((n/o?) i + Apo)-

e Posterior predictive is N'(u™,3 4+ XT) (product of (n + 2) then marginalize).
e Many Bayesian inference tasks have closed form, or Monte Carlo is easy.
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Product of Gaussian Densities Property

@ Consider variable x whose PDF is written as product of two Gaussians,

p(z) = fi(z)fo(x)

where:
e f1 is proportional to a Gaussian with mean p; and covariance 1.

e fo is proportional to a Gaussian with mean ps and covariance 1.
1

@ Then this product of Gaussian PDFs is a Gaussian with p = % and ¥ =

N
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Product of Gaussian Densities Property
o If p(x) o fi(z)f2(z) f1 and fo with

e f1 proportional to a Gaussian with mean p; and covariance 3.
e fo proportional to a Gaussian with mean p9o and covariance Y.

@ Then p is a Gaussian with (see textbook)
covariance of ¥ = (7' + 25 h) 7L

mean of = X7 g + XX5 o,

@ How we do we use this to derive the posterior distribution for the mean?

n
p(p | X, %, 10, %0) o< p(pe | po, To) [ [ (" | 11, %) (Bayes rule)
=1

— p(t | 10, 50) [ p |, 5)  (symmetry of 2 and )
=1

= (product of (n + 1) Gaussians).
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MAP Estimation in Multivariate Gaussian (Trace Regularization)
@ A common MAP estimate for X is
S =S+,

where S is the covariance of the data.
o Key advantage: 3 is postiive-definite (eigenvalues are at least \).

@ This minimizes NLL plus L1-regularization of precision diagonals (see bonus)

d
f(©) = Tr(SO) —log|©| +A Z [
NLL j=1

although it does not set ©;; values to exactly zero.
o Log-determinant term becomes arbitrarily steep as the ©;; approach 0.
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Graphical LASSO

@ A popular generalization called the graphical LASSO,

d d
£(©) =Tr(SO) —log|O] + A > > (041,

i=1 j=1
where we apply L1-regularization to all elements of O.

@ With large enough ), gives sparse off-diagonals in ©.
e Though need specialized optimization algorithms to solve this problem.

@ Recall that sparsity of © determines conditional independence.
o When we set a ©;; = 0 it remove an edges from the graph.
o Makes the graph simpler, and can make computations cheaper.
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Graphical LASSO Example

@ Graphical LASSO applied to stocks data:
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https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models


https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Graphical LASSO Example

@ Graphical LASSO applied to US senate voting data (Bush junior era):
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https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models


https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Graphical LASSO Example
@ Graphical LASSO applied to protein data:

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models


https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Graphical LASSO on Digits

@ Precision matrix from graphical LASSO applied to MNIST digits (A = 1/8):

@ To understand this picture, first the size of the precision matrix:
e The images of digits, which are m x m matrices (m pixels by m pixels)

o This gives d = m? elements of x*, which we'll assume are in “column-major” order.
o Frist m elements of =" are column 1, next m elements are columm 2, and so on.

o The picture above, which is d x d so will thus be m? x m?.
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Graphical LASSO on Digits

@ Precision matrix from graphical LASSO applied to MNIST digits (A = 1/8):

@ So what are the non-zeroes in the precision matrix?
@ The diagonals O, ; (positive-definite matrices must have positive diagonals).
@ The first off-diagonals ©; ;11 and ©;1 ;.
@ This represents the dependencies between adjacent pixels vertically.
© The (m + 1) off-diagonals ©; ;1 and O, 4, ;.
@ This represents the dependencies between adjacent pixels horizontally.
@ Because in “column-major” order, you go “right” a pixel every m indices.
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Graphical LASSO on Digits

@ Precision matrix from graphical LASSO applied to MNIST digits (A = 1/8):

@ The edges in the graph are pixels next to each other in the image.

@ Graphical Lasso is a special case of structure learning in graphical models.
o We will discusss graphical models more later.
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Conjugate Priors for Covariance

@ Graphical LASSO is not using a conjugate prior.

@ Conjugate prior for © with known mean is Wishart distribution
e A multi-dimensional generalization of the gamma distribution.

e Gamma is a distribution over positive scalars.
o Wishart is a distribution over positive-definite matrices.

e Posterior predictive is a student ¢ distribution.
o Conjugate prior for X is inverse-Wishart (equivalent posterior).

o If both © and © are variables, conjugate prior is normal-Wishart.
e Normal times Wishart, with a particular dependency among parameters.
e Posterior predictive is again a student ¢ distribution.

@ Wikipedia has already done a lot of possible homework questions for you:
e https://en.wikipedia.org/wiki/Conjugate_prior


https://en.wikipedia.org/wiki/Conjugate_prior
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Outline

© Supervised Learning with Gaussians
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Generative Classification with Gaussians

@ We previously considerd the generative classifier naive Bayes.
o Assumed x; L z; | y, which is strong/unrealistic.

o Consider a generative classifier with continuous features:

p(y' | 2') < p(at,y)
=pl'y) ply') -
————
continuous discrete
e In Gaussian discriminant analysis (GDA) we assume z° | 3/ is a Gaussian.

o It is classification so output ¥’ is categorical.
o Classifier asks “which Gaussian makes 2" most likely?”
e This can model pairwise correlations within each class.

@ Does not need naive Bayes assumption.
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Gaussian Discriminant Analysis (GDA) and Closed-Form MLE

e In Gaussian discriminant analysis we assume ' | y* is a Gaussian.

py' =c)=py)p(' |y =c)= m pa’|pe,2e).

product rule p(y*=c) Gaussian PDF

@ A special case is linear discriminant analysis (LDA):
o In LDA we assume that X, is the same for all classes c.

@ In LDA the MLE has a simple closed-form expression:
N N A 1 i
g —, - — €T .
Te n e T Z
yl=c

e 7. is fraction of times we are in class ¢, [i is mean of class c.
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Linear Discriminant Analysis (LDA)

e Example of fitting linear discriminant analysis (LDA) to a 3-class problem:

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
o LDA is a linear classifier.

o Unlike other linear classifiers like logistic regression, it has a closed-form MLE.
e Though it may be less accurate if the classes do not look like Gaussians.

@ If class proportions 7. are equal, class label is determined by nearest mean.
e Prediction is like a “1-nearest neighbour” or k-means clustering method.


https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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Gaussian Discriminant Analysis (GDA)

@ We can also have a covariance Y. for each class.
e So the class will be determined by class proportions, means, and variances.
@ The MLE for each each Y. is the covariance of data in class c,
. 1 R o
Ye=— (zi = fic)(mi — fc)",

Ne <
c yiec

https://web.stanford.edu/~hastie/Papers/ESLII.pdf
@ This leads to a quadratic classifier.
o GDA is sometimes called quadratic discriminant analysis.


https://web.stanford.edu/~hastie/Papers/ESLII.pdf
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Regression with Gaussians

@ Regression is a variant on supervised learning where 7/’ is continuous.

15f

101

https://en.wikipedia.org/wiki/Regression_analysis

@ It is possible to use generative regression models.
o For example, we could model p(z,y) as a multivariate Gaussian.
@ Then use that the conditional p(y | =) is Gaussian for prediction.

o But we usually treat features as fixed (as in discriminative classification models)

T

e And to start, we will consider models that make linear predictions, §* = w* 2"


https://en.wikipedia.org/wiki/Regression_analysis
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Review: L2-Regularized Least Squares and Gaussians

A common linear regression model is L2-regularized least squares,
argmin — || Xw — + —||lw
gmin -1 Xw — | + Sljwll,

This corresponds to MAP estimation with a Gaussian likelihood and prior,

Y~ N(wzt o?), wj~N(©O,A7h).

By setting the gradient to zero, the unique solution is given by:
1 -1
W= — ( XTX + )J) xTy.
o

In 340 we fixed 02 = 1 (since changing is o2 equivalent to changing \).
o In Bayesian inference, both o2 and \ affect the predictions.

To predict on new example & with MAP estimate, we use § = W' Z.
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Summary

MLE for multivariate Gaussian:

o MLE for p is mean of data, MLE for X is covariance of data (if positive definite).
Posterior and posterior predictive under Gaussian prior on mean is Gaussian.

e Can be shown using that product of Gaussians is Gaussian.
Graphical Lasso uses L1-regularization of precision matrix.

o Leads to a sparse graph structure representing conditional independences.
Supervised learning with Gaussians

o Generative classifier with Gaussian classes is Gaussian discriminant analysis (GDA).
e L2-regularized least squares is obtained using a Gaussian likelihood and prior.

o Regression model assuming features fixed/non-random as in discriminative classifiers.

Next time: linear regression plus empirical Bayes to cheat on your stats homework.



Supervised Learning with Gaussians

MLE for Multivariate Gaussians (Covariance Matrix)

o To get MLE for ¥ we re-parameterize in terms of precision matrix © = X1,

N —
gk

@
Il
—

, L n
(@' = ) ' 27" = p) + 5 log |2

(8 — )T O (st — ) + glog (S (ok because ¥ is invertible)

Il
N =
1gE

N
I
—

Il
DN | —
gl

@
Il
N

Tr ((CBZ —p) 'Oz — ,u)) + 2 log|©|™' (scalar y" Ay = Tr(y" Ay))

|
N —
)=

@
Il
—

Tr((2' — p)(2' — p)7O) — glog 0| (Tr(ABC) = Tr(CAB))

@ Where the trace Tr(A) is the sum of the diagonal elements of A.
o That Tr(ABC) =Tr(C AB) when dimensions match is the cyclic property of trace.
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MLE for Multivariate Gaussians (Covariance Matrix)
@ From the last slide we have in terms of precision matrix © that
1 i i T n
=52 (@' = (' — )" ) - 5 log 6]
i=1
@ We can exchange the sum and trace (trace is a linear operator) to get,

%Tr (Z(:{:’ — )z — M)T@> — glog |O] ZTr A;B) (ZA B)

=1

21| Y6 w7 e | - Dlogle. (ZAiB>:<ZAi>B

i=1

sample co:/;ria nce 'S’
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MLE for Multivariate Gaussians (Covariance Matrix)

@ So the NLL in terms of the precision matrix © and sample covariance S is

n

£(8) = STH(58) —  log 6], with § = %Z(z" — (' =)’
i=1

@ Weird-looking but has nice properties:
o Tr(SO) is linear function of ©, with Vg Tr(S0) = S.

(it's the matrix version of an inner-product s )
o Negative log-determinant is strictly-convex and has Vg log |©] = ©71.
(generalizes Vlog |z| = 1/x for for > 0).

@ Using these two properties the gradient matrix has a simple form:

n n _._
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Trace Regularization and L1-regularization

@ A classic regularizer for 3. is to add a diagonal matrix to S and use
3 = S+\,

which satisfies ¥ > 0 because S = 0 (eigenvalues at least \).

@ This corresponds to L1-regularization of diagonals of precision.

d

f(©) =Tr(S©) —log 6] + A > 0,5 (Gauss. NLL plus L1 of diags)
=1
d
= Tr(SO) — log |©| + A Z 9;; (Diagonals of pos. def. matrix are > 0)
j=1
= Tr(S©) — log |©| + ATr(©) (Definition of trace)
= Tr(S©+X0) — log |©| (Linearity of trace)
= Tr((S + AI)©) — log |©| (Distributive law)

e Taking gradient and setting to zero gives ¥ = S + A.
o But doesn’t set to exactly zero as log-determinant term is too “steep” at 0.
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