CPSC 440: Advanced Machine Learning Multivariate Gaussian

Mark Schmidt

University of British Columbia

Winter 2022

Bonus Slide Switch to Beamer

- Starting in this lecture, most slides will be in LATEX.
- Why the change?
 - I have made major changes to the course this year (hopefully improvements).
 - But it is hard to prepare three 50-minute lectures per week.
 - So am going to rely much more on my old material.
- I am going to try to put the old material into the "story" of the current course.
 - But material was aimed at grad students who do a lot of "filling in the blanks".
 - Slow me down if I am going way too fast.
- Notation in these slides will be the same, but bonus slides will be this colour.
 - And Beamer slides do not work quite as well for annotation (you will see why).

Product of Gaussians in Matrix Notation

 $\bullet\,$ If we have d variables, we could make each follow an independent Gaussian,

 $x_j^i \sim \mathcal{N}(\mu_j, \sigma_j^2),$

• In this case the joint density $p(x^i \mid \mu_1, \mu_2, \dots, \mu_d, \sigma_1^2, \sigma_2^2, \dots, \sigma_d^2)$ can be written:

$$\begin{split} \prod_{j=1}^{d} p(x_j^i \mid \mu_j, \sigma_j^2) &\propto \prod_{j=1}^{d} \exp\left(-\frac{(x_j^i - \mu_j)^2}{2\sigma_j^2}\right) \\ &= \exp\left(-\frac{1}{2}\sum_{j=1}^{d} \frac{1}{\sigma_j^2} (x_j^i - \mu_j)^2\right) \qquad (e^a e^b = e^{a+b}) \\ &= \exp\left(-\frac{1}{2} (x^i - \mu)^T \Sigma^{-1} (x^i - \mu)\right) \qquad \text{(matrix notation)} \end{split}$$

where $\mu = (\mu_1, \mu_2, \dots, \mu_d)$ and Σ is a diagonal matrix with diagonal elements σ_j^2 . • Distributions with this form are a special case of the multivariate Gaussian.

Multivariate Gaussian Distribution

• A d > 1 generalization of unvariate Gaussian is the multivariate normal/Gaussian,

Bivariate Normal

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

- This maintains many of the nice properties of univariate Gaussians.
 - Closed-form intuitive MLE, many analytic properties, makes theory easier.
- Multivariate Gaussians with non-diagonal covariance Σ models correlations.
 - Can take into account that "adjacent rooms have similar values".

Multivariate Gaussian Distribution

• The probability density for the multivariate Gaussian is given by

$$p(x^{i} \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i} - \mu)^{T} \Sigma^{-1} (x^{i} - \mu)\right), \quad \text{ or } x^{i} \sim \mathcal{N}(\mu, \Sigma),$$

where $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ is symmetric with $\Sigma \succ 0$, and $|\Sigma|$ is the determinant.

• Writing $\Sigma \succ 0$ means eigenvalues of Σ are all positive (Σ is "positive definite").

• It does require that all elements of Σ are positive.

- Or equivalently that $v^T \Sigma v > 0$ for all vectors $v \neq 0$ (implies Σ is invertible).
- Where does this wonky formula come from?
 - Consider a product of independent Gaussians, $z_i^i \sim \mathcal{N}(0, 1)$.
 - Then perform a linear transformation, $x^i = Az^i + \mu$.
 - If we define $\Sigma = AA^T$, multivariate Gaussian is PDF of transformed variables.
 - Derivation in bonus slides.
- If $|\Sigma| = 0$ we say the Gaussian is degenerate (bonus).
 - Transformed variables x^i don't span the full space.

Multivariate Gaussian and Product of Gaussians

- The effect of a diagonal Σ on the multivariate Gaussian:
 - If $\Sigma = \alpha I$ the level curves are circles: 1 parameter.
 - If $\Sigma = D$ (diagonal) then axis-aligned ellipses: d parameters.
 - We saw that this is equivalent to using a product of independent Gaussians.
 - If Σ is dense they do not need to be axis-aligned: d(d+1)/2 parameters.

(by symmetry, we only need upper-triangular part of Σ)

• Diagonal Σ assumes features are independent, dense Σ models dependencies.

Multivariate Gaussian

Independence in Gaussians

- Independence in multivariate Gaussian:
 - Independence between pairs of x_j is determined by covariance off-diagonals:

 $x_i \perp x_j \Leftrightarrow \Sigma_{ij} = 0,$

(so if Σ is diagonal the x_i are mutually independent).

- If we allow Σ_{ij} to be non-zero, it models correlation between x_i and x_j .
 - We will see mathematically how the covariance relates to independence shortly.
 - This correlation can be positive or negative.
- Multivariate Gaussian is different than previous "product of whatever" models.
 - Multivariate Gaussian can model dependencies between all pairs of variables.
 - But, Gaussians do not directly model dependencies between triplets.
 - Or other higher-order interactions.

Example: Multivariate Gaussians on Digits

• Recall the task of density estimation with handwritten images of digits:

• Let's treat this as a continuous density estimation problem.

Example: Multivariate Gaussians on Digits

- MLE of parameters using independent Gaussians (diagonal Σ):
 - Mean μ_j (left) and variance σ_j^2 (right) for each feature.

• Samples generate from this model:

 $\bullet\,$ Because Σ is diagonal, doesn't model dependencies between pixels.

Example: Multivariate Gaussians on Digits

• MLE of mean vector using multivariate Gaussians (dense Σ):

• Which is the same as diagonal case $(784 \times 784 \text{ covariance not shown})$.

• Samples generate from this model:

• Captures pairwise correlations between pixels, but only between pairs.

1 Multivariate Gaussian

Inference in Multivariate Gaussian

- How do we do predictions/inference in the model?
 - $\bullet\,$ We can compute likelihood of data p(x) by plugging into formula.
 - As with univariate variate Gaussian, likelihood is not a probability.
 - The decoding of the vector x is given by the mean μ .
 - But what about deriving marginals like $p(x_j)$?
 - You could use marginals to compute probability that x_j falls in an interval.
 - Or computing conditionals like $p(x_j | x_{j'})$?
 - Maybe you know the values of some variables and want to "fill in" others.
 - Or generating samples from the distribution (for Monte Carlo inference)?
- Gaussians have many nice properties that make many computations easy.
 - Rather than giving a list of properties, we will introduce them "as needed".
 - A multivariate Gaussian "cheat sheet" is here:
 - $\bullet \quad https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf$
 - For a more-careful discussion of Gaussians, see the playlist here:
 - https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34

Affine Property of Gaussians: Special Case of Shift

• Assume that random variable x follows a Gaussian distribution,

 $z \sim \mathcal{N}(\mu, \Sigma).$

• And consider shifting the random variable by a vector b,

x = z + b.

• Then random variable x follows a Gaussian distribution

 $x \sim \mathcal{N}(\mu + b, \Sigma),$

where we've shifted the mean.

Affine Property of Gaussians: General Case

• Assume that random variable x follows a Gaussian distribution,

 $z \sim \mathcal{N}(\mu, \Sigma).$

• And consider an affine transformation of the random variable,

$$x = \mathbf{A}z + b.$$

• Then random variable x follows a Gaussian distribution

$$x \sim \mathcal{N}(\mathbf{A}\mu + b, \mathbf{A}\Sigma\mathbf{A}^{\top}),$$

although note we might have $|A\Sigma A^{\top}| = 0$.

• For example, if x has a higher-dimension that z.

Sampling from a Multivariate Gaussian

• The affine property of multivariate Gaussian:

- If $z \sim \mathcal{N}(\mu, \Sigma)$, then $Az + b \sim \mathcal{N}(A\mu + b, A\Sigma A^T)$.
- \bullet To sample from a general multivariate Gaussian $\mathcal{N}(m,C)$:
 - **1** Sample z from a $\mathcal{N}(0, I)$.

• Each z_j comes independently from the "standard normal" $\mathcal{N}(0,1)$.

2 Transform z to a sample from the right Gaussian using the affine property:

$$Az + m \sim \mathcal{N}(m, \underbrace{AA^T}_C),$$

where we choose A so that $AA^T = C$.

• One way to compute A from C is the Cholesky factorization (cholesky in Julia).

Inference Task: Marginalization

- Consider the inference task of marginalization.
 - Going from the joint $p(x_1, x_2, \ldots, x_d)$ to the marginal $p(x_j)$.
- We can do this with the marginalization rule,

$$p(x_j) = \int_{x_1} \cdots \int_{x_{j-1}} \int_{x_{j+1}} \cdots \int_{x_d} p(x \mid \mu, \Sigma) dx_d \cdots x_{j+1} dx_{j-1} \cdots dx_1,$$

but this integral may be unpleasant.

• For Gaussians, the affine property allows us to easily derive the marginal.

Partitioned Gaussian

• Consider a dataset where we've partitioned the variables into two sets:

$$X = \begin{bmatrix} | & | & | & | \\ x_1 & x_2 & z_1 & z_2 \\ | & | & | & | \end{bmatrix}.$$

• It's common to write multivariate Gaussian for partitioned data as:

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right),$$

• Example:

$$\mathsf{lf} \begin{bmatrix} x_1 \\ x_2 \\ z_1 \\ z_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0.3 \\ -0.1 \\ 1.5 \\ 2.5 \end{bmatrix}, \begin{bmatrix} 1.5 & -0.1 & -0.1 & 0 \\ -0.1 & 2.3 & 0.1 & 0 \\ -0.1 & 0.1 & 1.6 & -0.2 \\ 0 & 0 & -0.2 & 4 \end{bmatrix} \right), \quad \mathsf{then} \quad \mu_z = \begin{bmatrix} 1.5 \\ 2.5 \end{bmatrix} \quad \mathsf{and} \quad \Sigma_{zz} = \begin{bmatrix} 1.6 & -0.2 \\ -0.2 & 4 \end{bmatrix}.$$

• The blocks do not have to be the same size.

Marginalization of Gaussians

• Consider a dataset where we've partitioned the variables into two sets:

$$X = \begin{bmatrix} | & | & | & | \\ x_1 & x_2 & z_1 & z_2 \\ | & | & | & | \end{bmatrix}.$$

• It's common to write multivariate Gaussian for partitioned data as:

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right),$$

• If I want the marginal distribution p(x), I can use the affine property,

$$x = \underbrace{\begin{bmatrix} I & 0 \end{bmatrix}}_{A} \begin{bmatrix} x \\ z \end{bmatrix} + \underbrace{0}_{b},$$

to get that

 $x \sim \mathcal{N}(\mu_x, \Sigma_{xx}).$

Marginalization of Gaussians

• In a picture, ignoring a subset of the variables gives a Gaussian:

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Multivariate Gaussian

Conditioning in Gaussians

• Again consider a partitioned Gaussian,

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right).$$

• Using a lot linear algebra (see textbook), conditional probabilities are Gaussian,

$$x \mid z \sim \mathcal{N}(\mu_{x \mid z}, \Sigma_{x \mid z}),$$

where

$$\mu_{x \mid z} = \mu_x + \Sigma_{xz} \Sigma_{zz}^{-1} (z - \mu_z), \quad \Sigma_{x \mid z} = \Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}.$$

- "For any fixed z, the distribution of x is a Gaussian".
 - Notice that if $\Sigma_{xz} = 0$ then x and z are independent $(\mu_{x \mid z} = \mu_x, \Sigma_{x \mid z} = \Sigma_{xx})$.

• Since if $\Sigma_{xz} = 0$ we have $p(x \mid z) = p(x)$.

Conditional Independence in Gaussians

- \bullet Independence in Gaussians is determined by sparsity pattern of the covariance $\Sigma.$
 - Sparsity pattern: "where the non-zeroes are".
- Conditional independence in Gaussians is determined by inverse of covariance Σ .
 - We call the inverse the precision matrix Θ , so $\Theta \triangleq \Sigma^{-1}$.
 - Specifically, conditional independence is determined by the sparsity pattern of $\Theta.$
- We use the sparsity pattern of Θ to define a graph.
 - Each node in the graph corresponds to a variable $j \in \{1, 2, \dots, d\}$.
 - Each edge in the graph corresponds to a non-zero Θ_{ij} .
- Checking independence and conditional independence using the graph:
 - $x_i \perp x_j$ if no path exists between x_i and x_j in the graph.
 - $x_i \perp x_j \mid x_k$ if x_k blocks all paths from x_i to x_j in the graph.
 - Technically, this only checks whether independence is implied by the sparsity pattern.

Conditional Independence in Gaussians

• Consider a Gaussian with the following covariance matrix:

	Г 0.0494	-0.0444	-0.0312	0.0034	-0.0010
	-0.0444	0.1083	0.0761	-0.0083	0.0025
$\Sigma =$	-0.0312	0.0761	0.1872	-0.0204	0.0062
	0.0034	-0.0083	-0.0204	0.0528	-0.0159
	-0.0010	0.0025	0.0062	-0.0159	0.2636

- $\Sigma_{ij} \neq 0$ so all variables are dependent: $x_1 \not\perp x_2$, $x_1 \not\perp x_5$, and so on.
 - This would show up in graph: you would be able to reach any x_i from any x_j .
- The inverse is given by a tri-diagonal matrix:

	F 32.0897	13.1740	0	0	0 7
	13.1740	18.3444	-5.2602	0	0
$\Sigma^{-1} =$	0	-5.2602	7.7173	2.1597	0
	0	0	2.1597	20.1232	1.1670
	Lo	0	0	1.1670	3.8644

• So conditional independence is described by a 5-node "chain'-structured" graph:

$$(x_1) - (x_2) - (x_3) - (x_4) - (x_5)$$

Conditional Independence in Gaussians

• All variables are dependent in this graph, since a path exists.

$$(x_1) - (x_2) - (x_3) - (x_4) - (x_5)$$

• But we have many conditional independences such as:

•
$$x_1 \perp x_3 \mid x_2$$
.

- $x_2 \perp x_5 \mid x_4$.
- $x_1 \perp x_5 \mid x_3$.
- $x_1 \perp x_3, x_4, x_5 \mid x_2$ (we will later call this specific one the "Markov property").
- $x_1, x_2 \perp x_4, x_5 \mid x_3.$

Conditional Independence in Gaussian

- Checking conditional independence among variable groups in Gaussians:
 - $A \perp B \mid C$ if C blocks all paths from any A to any B.

Summary

- Multivariate Gaussian generalizes univariate Gaussian for multiple variables.
 - Parameterized by mean vector μ and positive-definite covariance matrix Σ .
 - Product of independent Gaussians is equivalent to using a diagonal $\boldsymbol{\Sigma}.$
 - Models correlations between paris of variables with non-zero off-diagonals in $\boldsymbol{\Sigma}.$
- Inference multivariate Gaussian:
 - Affine transformations of Gaussians are Gaussians (can be used to sample).
 - Marginals and conditionals of Gaussians are Gaussians.
- Conditional independence in multivariate Gaussians:
 - Precision matrix Θ is inverse of Σ .
 - Conditional independence determined by off-diagonals in Θ .
 - $\bullet\,$ We use the non-zero off-diagonals in Θ to define a graph.
 - Variables are independent if all paths are blocked by conditioning variables.
- Next time: learning the graph?

Positive-Definiteness of Θ and Checking Positive-Definiteness

 $\bullet\,$ If we define centered vectors $\tilde{x}^i=x^i-\mu$ then empirical covariance is

$$S = \frac{1}{n} \sum_{i=1}^{n} (x^{i} - \mu) (x^{i} - \mu)^{\top} = \frac{1}{n} \sum_{i=1}^{n} \tilde{x}^{i} (\tilde{x}^{i})^{\top} = \frac{1}{n} \tilde{X}^{\top} \tilde{X} \succeq 0,$$

so S is positive semi-definite but not positive-definite by construction.

- If data has noise, it will be positive-definite with n large enough.
- For $\Theta \succ 0$, note that for an upper-triangular T we have

 $\log |T| = \log(\operatorname{prod}(\operatorname{eig}(T))) = \log(\operatorname{prod}(\operatorname{diag}(T))) = \operatorname{Tr}(\log(\operatorname{diag}(T))),$

where we've used Matlab notation.

- So to compute $\log |\Theta|$ for $\Theta \succ 0$, use Cholesky to turn into upper-triangular.
 - Bonus: Cholesky fails if $\Theta \succ 0$ is not true, so it checks positive-definite constraint.

Positive-Definite implies Invertibility

- If $A \succ 0$, then all the eigenvalues of A are positive.
- If each eigenvalue is positive, the product of the eigenvalues is positive.
- The product of the eigenvalues is equal to the determinant.
- Thus, the determinant is positive.
- The determinant not being 0 implies the matrix is invertible.

Multivariate Gaussian from Univariate Gaussians

• Consider a joint distribution that is the product univariate standard normals:

$$p(z^i) = \prod_{j=1}^d \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(z_j^i)^2\right)$$
$$= \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(\frac{1}{2}\langle z^i, z^i\rangle\right).$$

- Now define $x^i = Az^i + \mu$ for some (non-singular) matrix A and vector μ .
- The change of variables formula for multivariate probabilities is

$$p(x^i) = p(z^i) \left| \frac{\partial z^i}{\partial x^i} \right|.$$

• Plug in
$$z^i = A^{-1}(x^i - \mu)$$
 and $\frac{\partial z^i}{\partial x^i} = A^{-1}...$

Multivariate Gaussian from Univariate Gaussians

• This gives

$$p(x^{i} \mid \mu, A) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(\frac{1}{2} \langle A^{-1}(x^{i} - \mu), A^{-1}(x^{i}\mu) \rangle\right) |\det(A^{-1})|$$
$$= \frac{1}{(2\pi)^{\frac{d}{2}} |\det(A)|} \exp\left(\frac{1}{2} (x^{i} - \mu)A^{-\top}A^{-1}(x^{i} - \mu)\right).$$

• Define $\Sigma = AA^{\top}$ (so $\Sigma^{-1} = A^{-\top}A^{-1}$ and $\det \Sigma = (\det A)^2$) to get

$$p(x^{i} \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i} - \mu)^{\top} \Sigma^{-1}(x^{i} - \mu)\right)$$

• So multivariate Gaussian is an affine transformtation of independent Gaussians.

Degenerate Gaussians

- If $|\Sigma| = 0$, we say the Gaussian is degenerate.
- In this case the PDF only integrates to 1 along a subspace of the original space.
- With d = 2 degenerate Gaussians only have non-zero probability along a line (or just one point).

