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Multivariate Gaussian Inference in Multivariate Gaussians

Bonus Slide Switch to Beamer

Starting in this lecture, most slides will be in LATEX.

Why the change?

I have made major changes to the course this year (hopefully improvements).
But it is hard to prepare three 50-minute lectures per week.
So am going to rely much more on my old material.

I am going to try to put the old material into the “story” of the current course.
But material was aimed at grad students who do a lot of “filling in the blanks”.

Slow me down if I am going way too fast.

Notation in these slides will be the same, but bonus slides will be this colour.

And Beamer slides do not work quite as well for annotation (you will see why).
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Product of Gaussians in Matrix Notation

If we have d variables, we could make each follow an independent Gaussian,

xij ∼ N (µj , σ
2
j ),

In this case the joint density p(xi | µ1, µ2, . . . , µd, σ
2
1, σ

2
2, . . . , σ

2
d) can be written:

d∏
j=1

p(xij | µj , σ2
j ) ∝

d∏
j=1

exp

(
−

(xij − µj)2

2σ2
j

)

= exp

−1

2

d∑
j=1

1

σ2
j

(xij − µj)2

 (eaeb = ea+b)

= exp

(
−1

2
(xi − µ)TΣ−1(xi − µ)

)
(matrix notation)

where µ = (µ1, µ2, . . . , µd) and Σ is a diagonal matrix with diagonal elements σ2
j .

Distributions with this form are a special case of the multivariate Gaussian.
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Multivariate Gaussian Distribution

A d > 1 generalization of unvariate Gaussian is the multivariate normal/Gaussian,

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

This maintains many of the nice properties of univariate Gaussians.
Closed-form intuitive MLE, many analytic properties, makes theory easier.

Multivariate Gaussians with non-diagonal covariance Σ models correlations.
Can take into account that “adjacent rooms have similar values”.

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html
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Multivariate Gaussian Distribution
The probability density for the multivariate Gaussian is given by

p(xi | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)TΣ−1(xi − µ)

)
, or xi ∼ N (µ,Σ),

where µ ∈ Rd, Σ ∈ Rd×d is symmetric with Σ � 0, and |Σ| is the determinant.
Writing Σ � 0 means eigenvalues of Σ are all positive (Σ is “positive definite”).

It does require that all elements of Σ are positive.

Or equivalently that vT Σv > 0 for all vectors v 6= 0 (implies Σ is invertible).

Where does this wonky formula come from?
Consider a product of independent Gaussians, zij ∼ N (0, 1).

Then perform a linear transformation, xi = Azi + µ.
If we define Σ = AAT , multivariate Gaussian is PDF of transformed variables.
Derivation in bonus slides.

If |Σ| = 0 we say the Gaussian is degenerate (bonus).
Transformed variables xi don’t span the full space.
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Multivariate Gaussian and Product of Gaussians

The effect of a diagonal Σ on the multivariate Gaussian:

If Σ = αI the level curves are circles: 1 parameter.
If Σ = D (diagonal) then axis-aligned ellipses: d parameters.

We saw that this is equivalent to using a product of independent Gaussians.

If Σ is dense they do not need to be axis-aligned: d(d+ 1)/2 parameters.
(by symmetry, we only need upper-triangular part of Σ)

Diagonal Σ assumes features are independent, dense Σ models dependencies.
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Independence in Gaussians

Independence in multivariate Gaussian:

Independence between pairs of xj is determined by covariance off-diagonals:

xi ⊥ xj ⇔ Σij = 0,

(so if Σ is diagonal the xj are mutually independent).

If we allow Σij to be non-zero, it models correlation between xi and xj .

We will see mathematically how the covariance relates to independence shortly.
This correlation can be positive or negative.

Multivariate Gaussian is different than previous “product of whatever” models.

Multivariate Gaussian can model dependencies between all pairs of variables.
But, Gaussians do not directly model dependencies between triplets.

Or other higher-order interactions.
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Example: Multivariate Gaussians on Digits

Recall the task of density estimation with handwritten images of digits:

xi = vec




,

Let’s treat this as a continuous density estimation problem.
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Example: Multivariate Gaussians on Digits

MLE of parameters using independent Gaussians (diagonal Σ):

Mean µj (left) and variance σ2
j (right) for each feature.

Samples generate from this model:

Because Σ is diagonal, doesn’t model dependencies between pixels.
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Example: Multivariate Gaussians on Digits

MLE of mean vector using multivariate Gaussians (dense Σ):

Which is the same as diagonal case (784× 784 covariance not shown).

Samples generate from this model:

Captures pairwise correlations between pixels, but only between pairs.
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Outline

1 Multivariate Gaussian

2 Inference in Multivariate Gaussians
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Inference in Multivariate Gaussian

How do we do predictions/inference in the model?
We can compute likelihood of data p(x) by plugging into formula.

As with univariate variate Gaussian, likelihood is not a probability.

The decoding of the vector x is given by the mean µ.
But what about deriving marginals like p(xj)?

You could use marginals to compute probability that xj falls in an interval.

Or computing conditionals like p(xj | xj′)?

Maybe you know the values of some variables and want to “fill in” others.

Or generating samples from the distribution (for Monte Carlo inference)?

Gaussians have many nice properties that make many computations easy.
Rather than giving a list of properties, we will introduce them “as needed”.
A multivariate Gaussian “cheat sheet” is here:

https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

For a more-careful discussion of Gaussians, see the playlist here:
https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34

https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34
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Affine Property of Gaussians: Special Case of Shift

Assume that random variable x follows a Gaussian distribution,

z ∼ N (µ,Σ).

And consider shifting the random variable by a vector b,

x = z + b.

Then random variable x follows a Gaussian distribution

x ∼ N (µ+ b,Σ),

where we’ve shifted the mean.
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Affine Property of Gaussians: General Case

Assume that random variable x follows a Gaussian distribution,

z ∼ N (µ,Σ).

And consider an affine transformation of the random variable,

x = Az + b.

Then random variable x follows a Gaussian distribution

x ∼ N (Aµ+ b, AΣA>),

although note we might have |AΣA>| = 0.

For example, if x has a higher-dimension that z.
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Sampling from a Multivariate Gaussian

The affine property of multivariate Gaussian:

If z ∼ N (µ,Σ), then Az + b ∼ N (Aµ+ b, AΣAT ).

To sample from a general multivariate Gaussian N (m,C):
1 Sample z from a N (0, I).

Each zj comes independently from the “standard normal” N (0, 1).

2 Transform z to a sample from the right Gaussian using the affine property:

Az +m ∼ N (m,AAT︸ ︷︷ ︸
C

),

where we choose A so that AAT = C.

One way to compute A from C is the Cholesky factorization (cholesky in Julia).



Multivariate Gaussian Inference in Multivariate Gaussians

Inference Task: Marginalization

Consider the inference task of marginalization.

Going from the joint p(x1, x2, . . . , xd) to the marginal p(xj).

We can do this with the marginalization rule,

p(xj) =

∫
x1

· · ·
∫
xj−1

∫
xj+1

· · ·
∫
xd

p(x | µ,Σ)dxd · · ·xj+1dxj−1 · · · dx1,

but this integral may be unpleasant.

For Gaussians, the affine property allows us to easily derive the marginal.
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Partitioned Gaussian

Consider a dataset where we’ve partitioned the variables into two sets:

X =

x1 x2 z1 z2

 .
It’s common to write multivariate Gaussian for partitioned data as:[

x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
,

Example:

If


x1
x2
z1
z2

 ∼ N



0.3
−0.1
1.5
2.5

 ,


1.5 −0.1 −0.1 0
−0.1 2.3 0.1 0
−0.1 0.1 1.6 −0.2

0 0 −0.2 4


 , then µz =

[
1.5
2.5

]
and Σzz =

[
1.6 −0.2
−0.2 4

]
.

The blocks do not have to be the same size.
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Marginalization of Gaussians

Consider a dataset where we’ve partitioned the variables into two sets:

X =

x1 x2 z1 z2

 .
It’s common to write multivariate Gaussian for partitioned data as:[

x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
,

If I want the marginal distribution p(x), I can use the affine property,

x =
[
I 0

]︸ ︷︷ ︸
A

[
x
z

]
+ 0︸︷︷︸

b

,

to get that
x ∼ N (µx,Σxx).
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Marginalization of Gaussians

In a picture, ignoring a subset of the variables gives a Gaussian:

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Conditioning in Gaussians

Again consider a partitioned Gaussian,[
x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
.

Using a lot linear algebra (see textbook), conditional probabilities are Gaussian,

x | z ∼ N (µx | z,Σx | z),

where

µx | z = µx + ΣxzΣ
−1
zz (z − µz), Σx | z = Σxx − ΣxzΣ

−1
zz Σzx.

“For any fixed z, the distribution of x is a Gaussian”.
Notice that if Σxz = 0 then x and z are independent (µx | z = µx, Σx | z = Σxx).

Since if Σxz = 0 we have p(x | z) = p(x).
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Conditional Independence in Gaussians

Independence in Gaussians is determined by sparsity pattern of the covariance Σ.
Sparsity pattern: “where the non-zeroes are”.

Conditional independence in Gaussians is determined by inverse of covariance Σ.
We call the inverse the precision matrix Θ, so Θ , Σ−1.
Specifically, conditional independence is determined by the sparsity pattern of Θ.

We use the sparsity pattern of Θ to define a graph.
Each node in the graph corresponds to a variable j ∈ {1, 2, . . . , d}.
Each edge in the graph corresponds to a non-zero Θij .

Checking independence and conditional independence using the graph:
xi ⊥ xj if no path exists between xi and xj in the graph.
xi ⊥ xj | xk if xk blocks all paths from xi to xj in the graph.

Technically, this only checks whether independence is implied by the sparsity pattern.
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Conditional Independence in Gaussians
Consider a Gaussian with the following covariance matrix:

Σ =


0.0494 −0.0444 −0.0312 0.0034 −0.0010
−0.0444 0.1083 0.0761 −0.0083 0.0025
−0.0312 0.0761 0.1872 −0.0204 0.0062
0.0034 −0.0083 −0.0204 0.0528 −0.0159
−0.0010 0.0025 0.0062 −0.0159 0.2636


Σij 6= 0 so all variables are dependent: x1 6⊥ x2, x1 6⊥ x5, and so on.

This would show up in graph: you would be able to reach any xi from any xj .
The inverse is given by a tri-diagonal matrix:

Σ−1 =


32.0897 13.1740 0 0 0
13.1740 18.3444 −5.2602 0 0

0 −5.2602 7.7173 2.1597 0
0 0 2.1597 20.1232 1.1670
0 0 0 1.1670 3.8644


So conditional independence is described by a 5-node “chain’-structured” graph:
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Conditional Independence in Gaussians

All variables are dependent in this graph, since a path exists.

But we have many conditional independences such as:

x1 ⊥ x3 | x2.
x2 ⊥ x5 | x4.
x1 ⊥ x5 | x3.
x1 ⊥ x3, x4, x5 | x2 (we will later call this specific one the “Markov property”).
x1, x2 ⊥ x4, x5 | x3.
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Conditional Independence in Gaussian

Checking conditional independence among variable groups in Gaussians:

A ⊥ B | C if C blocks all paths from any A to any B.

Example:

A 6⊥ C.
A 6⊥ C | B.
A ⊥ C | B,E.
A,B 6⊥ F | C
A,B ⊥ F | C,E.
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Summary

Multivariate Gaussian generalizes univariate Gaussian for multiple variables.

Parameterized by mean vector µ and positive-definite covariance matrix Σ.
Product of independent Gaussians is equivalent to using a diagonal Σ.
Models correlations between paris of variables with non-zero off-diagonals in Σ.

Inference multivariate Gaussian:

Affine transformations of Gaussians are Gaussians (can be used to sample).
Marginals and conditionals of Gaussians are Gaussians.

Conditional independence in multivariate Gaussians:

Precision matrix Θ is inverse of Σ.
Conditional independence determined by off-diagonals in Θ.
We use the non-zero off-diagonals in Θ to define a graph.
Variables are independent if all paths are blocked by conditioning variables.

Next time: learning the graph?
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Positive-Definiteness of Θ and Checking Positive-Definiteness

If we define centered vectors x̃i = xi − µ then empirical covariance is

S =
1

n

n∑
i=1

(xi − µ)(xi − µ)> =
1

n

n∑
i=1

x̃i(x̃i)> =
1

n
X̃>X̃ � 0,

so S is positive semi-definite but not positive-definite by construction.

If data has noise, it will be positive-definite with n large enough.

For Θ � 0, note that for an upper-triangular T we have

log |T | = log(prod(eig(T ))) = log(prod(diag(T ))) = Tr(log(diag(T ))),

where we’ve used Matlab notation.

So to compute log |Θ| for Θ � 0, use Cholesky to turn into upper-triangular.

Bonus: Cholesky fails if Θ � 0 is not true, so it checks positive-definite constraint.
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Positive-Definite implies Invertibility

If A � 0, then all the eigenvalues of A are positive.

If each eigenvalue is positive, the product of the eigenvalues is positive.

The product of the eigenvalues is equal to the determinant.

Thus, the determinant is positive.

The determinant not being 0 implies the matrix is invertible.
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Multivariate Gaussian from Univariate Gaussians

Consider a joint distribution that is the product univariate standard normals:

p(zi) =

d∏
j=1

1√
2π

exp

(
−1

2
(zij)

2

)

=
1

(2π)
d
2

exp

(
1

2
〈zi, zi〉

)
.

Now define xi = Azi + µ for some (non-singular) matrix A and vector µ.

The change of variables formula for multivariate probabilities is

p(xi) = p(zi)

∣∣∣∣∂zi∂xi

∣∣∣∣ .
Plug in zi = A−1(xi − µ) and ∂zi

∂xi
= A−1...
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Multivariate Gaussian from Univariate Gaussians

This gives

p(xi | µ,A) =
1

(2π)
d
2

exp

(
1

2
〈A−1(xi − µ), A−1(xiµ)〉

)
| det(A−1)|

=
1

(2π)
d
2 | det(A)|

exp

(
1

2
(xi − µ)A−>A−1(xi − µ)

)
.

Define Σ = AA> (so Σ−1 = A−>A−1 and det Σ = (detA)2) to get

p(xi | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)>Σ−1(xi − µ)

)
So multivariate Gaussian is an affine transformtation of independent Gaussians.
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Degenerate Gaussians

If |Σ| = 0, we say the Gaussian is degenerate.

In this case the PDF only integrates to 1 along a subspace of the original space.

With d = 2 degenerate Gaussians only have non-zero probability along a line (or
just one point).
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