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Last Time: Attention and Transformers

• We discussed attention in RNNs:
– Re-weight encoder states into

context vector at each time.

• We discuss transformer networks:
– Include “self-attention” layers.

• Use attention mechanism between all input values.

– Outperform CNNs/RNNs on many applications.
• Many details/heuristics needed to make transformers work.

– Basis of modern self-supervised language models like BERT and GPT-3.
• Use BERT as pre-training for language models.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



OpenAI’s GPT-3

• One of the most widely-used methods is GPT-3:

– Recent “massive number of parameters” NLP model.

• Full version has 175 billion parameters.

– Often works well in new applications with
little or no “fine-tuning” on the application
(pre-training does almost everything).

– Basis for many modern language applications.

– See the paper for a starting point on where we
are (and are not) in terms of language understanding.

https://arxiv.org/pdf/2005.14165.pdf



More Applications
• Generating memes:

– https://github.com/alpv95/Dank-Learning

• Generating Wikipedia articles:
– https://arxiv.org/pdf/1801.10198.pdf

• Talking with historical figures:
– https://www.besttechie.com/aiwriter-uses-openai-to-simulate-conversations-with-historical-figures/

• Generating music:
– https://magenta.tensorflow.org/music-transformer

• Writing code:
– https://copilot.github.com

• Generating video game content:
– https://play.aidungeon.io/main/home

https://github.com/alpv95/Dank-Learning
https://arxiv.org/pdf/1801.10198.pdf
https://www.besttechie.com/aiwriter-uses-openai-to-simulate-conversations-with-historical-figures/
https://magenta.tensorflow.org/music-transformer
https://copilot.github.com/
https://play.aidungeon.io/main/home


End of Part 2 (“Categorical Variables”): Key Concepts

• We discussed categorical density estimation.
– Model the proportion of times different categories appear.

– Categorical 𝜃𝑐 parameterization and unnormalized probabilities ෨𝜃𝑐.

– Sampling using the cumulative distribution function (CDF).

• We discussed Monte Carlo for approximating expectations.
– Generate samples from a model.

– Compute the average function value on the samples.

• We discussed conjugate priors.
– For a given likelihood, a prior that leads to posterior in “family” of prior.

– Conjugate prior for categorical distribution is the Dirichlet distribution.
• Dirichlet gives a “probability over discrete probabilities”.



End of Part 2 (“Categorical Variables”): Key Concepts

• We reviewed standard conditional independence assumptions:
– Data is IID [given parameters].
– Data is independent of hyper-parameters given parameters.
– Discriminative models assume parameters are independent of features.

• We discussed Bayesian learning:
– Instead of using a single parameter, sum/integrate over all parameters.
– Prediction using the posterior predictive distribution.

• And possibly a cost function for Bayesian decision theory.

– Very-strong protection against overfitting.

• We discussed empirical Bayes:
– Optimize hyper-parameters using the marginal likelihood.
– Can optimize a large number of hyper-parameters, without a validation set.

• We discussed hierarchical Bayes:
– Putting a prior on the prior, which we used to model non-IID grouped data.



End of Part 2 (“Categorical Variables”): Key Concepts

• We discussed multi-class classification.

– Categorical generalization of sigmoid function is the softmax function.

• We discussed multi-class neural networks.

– Put softmax on the last layer.

– Other layers can stay the same, and the same tricks are used/needed.

• We discussed “what have we learned”.

– Layers in CNNs seem to be doing something sensible.

– But ML models are easily fooled in various ways.

– And ML models can have harmful biases.



End of Part 2 (“Categorical Variables”): Key Concepts

• We discussed recurrent neural networks (RNNs).
– Use tied parameters across time to model sequences of different lengths.

• Makes vanishing/exploding gradient and “forgetting” problems worse.

– Sequence-to-sequence handles output sequences of unknown lengths.

– Multi-modal learning considers input and output of different formats.

• We discussed long short term memory (LSTM) models.
– Include memory cells that are read/written/cleared with gates.

– Allows modeling longer-range dependencies than standard RNNs.

• We discussed attention.
– Allows decoder to access information from all encoding steps.

• We discussed transformers.
– “Fully-connected” attention that forms basis for many modern methods.



Next Topic: Gaussian Density Estimation



Motivating Problem: Cell Phone Battery Life

• Consider modeling battery life between charges:
– It makes sense to view this as a continuous quantity.

• Rather than a fixed set of values, the battery life could be any real number.

• Reviews/advertisements will often advertise estimates:

• We want to find the full distribution over charging times.
– So we can solve real-world problems like:

• “If I have not charged for 18 hours, what is the probability I will make it to 21 hours?”



General Problem: Continuous Density Estimation

• We can view this as density estimation with a continuous variable:
– Input: ‘n’ IID samples of continous values x1, x2, x3,…, xn from a population.
– Output: model of probability density for any real number ‘x’.

• Continuous density estimation as a picture:

• Watch out: we are estimating the density here, not the probability.
– We could have p(x) > 1.
– You would get probabilities for doing integrals of the density over intervals.

Battery Life

20h18m00s

16h53m42s

21h03m50s

17h33m13s

27h46m28s

p(x = 20h18m02s) = 0.8X = 



Other Applications

• Other applications where continuous density estimation is useful:
– Modeling sizes (size of food grown in field, birthweight of babies).

– Modeling times or control values in a manufacturing process.

– Modeling stock variations or income distributions.

– Modeling continuous medical measurements (blood pressure).

– Modeling grades.

• Even with 1 variable there are many possible distributions.
– More complicated than binary/categorical.

• We first consider the simple case were we assume data is Gaussian.
– Also known as a “normal” distribution.



Univariate Gaussian

• The Gaussian probability density has the form:

– The mean parameter 𝜇 can be any real number.

– The standard deviation 𝜎 can be any positive number.

• We call 𝜎2 the variance.

• Gaussians are also known as normal distributions.

• If we assume xi follows a Gaussian distribution, we often write:



Univariate Gaussian

• Mean parameter 𝜇 controls location of center of density.

• Variance parameter 𝜎2 controls how spread out density is.
– As 𝜎 → 0 you get a “spike” at the mean, as 𝜎 → ∞ you get uniform.

https://en.wikipedia.org/wiki/Normal_distribution



Motivation for Gaussian

• Why use the Gaussian distribution?
– Data might actually follow Gaussian.

• Good justification if true, but usually false.

– Central limit theorem: many sums of random variables converge* to Gaussian.
• Usually a bad justification: does not imply data distribution converges to a Gaussian.

– You would have to argue that your data comes from an asymptotic process where CLT applies.

– Distribution with maximum entropy that fits mean and variance of data.
• “Makes the least assumptions” while matching the mean and variance of data.

– We will discuss this later when we discuss the “exponential family”.

• But for complicated problems, just matching means and variances is not enough.

– Makes many computations and doing theory much easier.
• The same reason we use a lot of the common distributions.

• Sometimes Gaussians are “good enough to be useful”.

• Gaussians are common “building blocks” in more-advanced methods.



Motivations for not using Gaussians

• Histogram of xi values with red line being MLE Gaussian density:

• Grades usually have all these issues.



Next Topic: Gaussian Inference and Learning



Inference in Univariate Gaussians

• Decoding: find ‘x’ that maximizes the PDF p(x | 𝜇, 𝜎2).
– The decoding is given by the mean 𝜇.

• Computing likelihood of an IID dataset:

– Not that the likelihood is a density and not a probability.

• Computing probability that an ‘x’ lies in an interval:

– If a=b this is zero, so any ‘x’ has probability zero.



Cumulative Distribution Function (CDF)

• We often use F(c) = prob(x ≤ c) = ׬−∞
𝑐
𝑝 𝑥 to denote the CDF.

– F(c) is between 0 and 1, giving proportion of times ‘x’ is below ‘c’.

– F(c) monotonically increases with ‘c’.

• The Gaussian CDF is given by:

– Where the “error function” erf is computed numerically and given by:

https://en.wikipedia.org/wiki/Cumulative_distribution_function



Sampling with the Inverse CDF (“Quantile”) Function

• How can we sample from a continuous density?

• We want to write a function that takes a uniform sample and:
– 50% of the time it returns a sample in the region where F(c)= 50%. 

– 25% of the time it returns a sample in the region where F(c) = 25%.

– 75% of the time it returns a sample in the region where F(c) = 75%.

– 10% of the time it returns a sample in the region where F(c) = 10%.

– And so on, so the CDF F(c) divides up the interval [0,1].

• The function we want is the inverse of the CDF F-1 (“quantile” function): 
– F-1(u) = c for the unique ‘c’ where F(c) = u.

– Allows sampling from Gaussians and using Monte Carlo with Gaussians.



Inverse Transform Method (Exact 1D Sampling)
• Inverse transform method for exact sampling of a continuous density in 1D:

1. Sample ‘u’ uniformly between 0 and 1.
2. Return F-1(u).

• For Gaussians, we have F-1(u) = 𝜇 + 𝜎 2erf-1(2u – 1).
– Formula will convert uniform ‘u’ values into sample from a Gaussian.
– To sample a N(0,1) distribution as in the “randn()” function, use “sqrt(2)*erfinv(2*rand()-1)”.

• Showing that CDF of samples has CDF we want to sample from (for invertible ‘F’):

– So after the inverse transform, we have the CDF of the distribution we want.

• Video on pseudo-randomness and inverse-transform sampling.

https://www.youtube.com/watch?v=C82JyCmtKWg


MLE for Univariate Gaussian

• We showed that the likelihood for ‘n’ IID examples is given by:

• To compute the MLE, minimize the NLL (which is convex):

• Setting derivative with respect to 𝜇 to 0 gives MLE of:

– So MLE for the mean is the mean of the samples.

• Plugging in ො𝜇 and setting derivative with respect to 𝜎 to 0 gives:

– So MLE for the variance is the variance of the samples.

• Unless all xi are equal (then NLL is not bounded below and MLE does not exist).



Conjugate Prior and Posterior for Mean
• For fixed variance, conjugate prior for mean is Gaussian.

– “Self conjugacy” is a very special property (a key to usefulness of Gaussians).
• Derived by using ‘∝’ and “completing the square” in exponent (see notes on webpage).

– Formulas look a bit weird, but consider ෥𝑚 and ෤𝑣 change as ‘n’ grows:
• As ‘n’ grows posterior mean ෥𝑚 converges from prior mean 𝑚 towards MLE.
• As ‘n’ grows posterior variance ෤𝑣 converges from prior variance 𝑣 down to 0.

– MAP estimate is given by ෥𝑚 (it has the highest PDF of the posterior).
– Posterior predictive is also given by a Gaussian (not obvious, see notes linked on webpage).

• With mean ෥𝑚 and variance ෤𝑣 + 𝜎2.
• For complicated Bayeisan inference tasks, can use Monte Carlo by sampling from Gaussian posterior.

• We will come back to MAP/Bayes estimation for variance later.



Summary
• Gaussian density estimation:

– Modeling continuous variable samples, assuming it follows a Gaussian.
– We use Gaussians because they have lots of nice properties.
– But Gaussians assume symmetric, no outliers, no truncation, uni-modal.

• Mean and variance parameterization of Gaussians:
– Mean specifies center of distribution.
– Variance specifies spread of distribution.

• Inverse transform method for sampling:
– Apply the “inverse” of the CDF to uniform samples to generate samples.

• MLE and MAP for Gaussians:
– MLE is given by mean and variance of samples.
– Conjugate prior for mean is another Gaussian.

• MAP moves between mean of samples and prior mean.
• Posterior predictive is also Gaussian in this  case.

• Next time: more about Gaussians than you ever wanted to know.



Cumulative Distribution Function (CDF)

• CDF can be used for discrete and continuous variables (and mixed).

• We can generalize the quantile function to non-invertible case.

https://en.wikipedia.org/wiki/Cumulative_distribution_function



Quantile Function – Non-Invertible Case

• If the CDF ‘F’ is not invertible, we define the quantile F-1 as:

• “Smallest value ‘c’ such that F(c) is bigger than u.”
– See notes on max and argmax if you have not seen ‘inf’ before.

• It’s a variant on ‘min’ that is defined in more cases.

• If ‘F’ is invertible at this ‘c’, this gives the usual inverse.
– But this more-general definition handles non-invertible points.

• For example, the CDF is not invertible for categorical variables at the “jumps” in CDF.
– Many values of ‘u’ are mapped to by the same ‘c’.


