CPSC 440: Machine Learning

Attention and Transformers
Winter 2022

Last Time: LSTMs and Multi-Modal Learning

 We discussed long short term memory (LSTM) models:
— RNNs with memory cells designed to remember information Ionger

QTD QTD %) A = Ot o ho(Q) -F h(/. L, ((qu)
LN, C¢ = Fece,Tio o= b (Wx, Ui,)

A Tmad feg { A I t [{ 9(] ‘
£9 jd‘-ﬂ*é 9‘) ho(w?"f‘l'uyqf-,) O h Wo ¢+ uoqt—,)

* We discussed using encoders and decoders of different data types:
— Encoder takes an image and decoder outputs a sequence.
— Image captioning, video annotation, lip reading, poetry about images.

Previously: Sequence-to-Sequence RNNSs

* Sequence-to-sequence:
— Recurrent neural network for sequences of different lengths.

* Problem:
— All “encoding” information must be summarized by last state (z, above).

— Might “forget” earlier parts of sentence.
* Or middle of sentence if using bi-directional RNN.

— Might want to “re-focus” on parts of input, depending on decoder state.

Attention

 Many recent systems use “attention” to focus on parts of input.
— Including “neural machine translation” system of Google Translate.

* Many variations on attention, but usually include the following:

— Each decoding can use hidden state from each encoding step.

* Used to re-weight during decoding to emphasize important parts.

RNN vs. RNN with Attention Videos

SEQUENCE TO SEQUENCE MODEL

—

student

I am a

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding

Decoding

c# 9lels
uappIH

: : Attention Attention Attention Attention
Encoder Encoder Encoder
RNN RNN RNN Decoder Decoder Decoder Decoder
RNN RNN RNN RNN
—_—

Je suis étudiant

Not-Very-Practical Attention

A naive “attention” method (no one uses this, but idea is similar):
— At each decoding step, weight decoder state (as usual) and weight all encoder states.

- N -
~\
- ~
’ !
) '
‘- |

/

ﬂ \
: ftotJh9 ‘
Q 0} Q O Q >
wo\,\d fef e
nw \/\S ro q*k
smmf lo"ﬂ ‘

Xy

‘Emoij- J

— [— —_— —— —_—

— Another variation on the “residual connection” or “denseNet” trick.

— But this variant is not practical since number of decoding weights depends on input size.
* Practical variations try to summarize encoder information through a “context vector”.

ol

Context Vectors

« A common way to generate the context vector:
— Take current decoder state.

— Compute inner product with each encoder state.
* Gives a scalar for each encoding “time”.

— Pass these scalars through the softmax function.
* Gives a normalized weight for each time (what was previously shown in pairwise tables).

— Multiply each encoder state by probability, add them up.
* Gives fixed-length “context vector”.

» Alternate notation (like a hash function):
— Input is “queries” and “keys”.
— Output is “values”.

Context Vectors

« A common way to generate the context vector:
— Take current decoder state.

— Compute inner product with each encoder state.
* Gives a scalar for each encoding “time”.

— Pass these scalars through the softmax function.

* Gives a normalized weight for each time (can be shown in pairwise tables).
— Multiply each encoder state by probability, add them up.

* Gives fixed-length “context vector”.

» Alternate notation (like a hash function):
— Input is “queries” and “keys”.
— Output is “values”.

1. Prepare inputs

2. Score each hidden state

3. Softmax the scores

4. Multiply each vector by
its softmaxed score

5. Sum up the weighted
vvvvvvv

Attention at time step 4

Encoder Decoder hidden
hidden state at time step 4
states

ssssss
13 9 9 | Attention weights for
decoder time step #4

0.96 [0.02 | 0.02 | softmax scores
i - +

Context vector for
decoder time step #4

Using Context Vectors for Attention

* Context vector is usually appended to decoder’s state when going to next layer.
— Output could be generated directly from this, or passed through a neural net.

— Common variation is “multi-headed attention”: can get scores from different aspects.
* One context vector for semantics, one for grammar, one for tense, and so on.
* Each is appended to decoder state when going to next layer.
e Context vectors are usually not included when updating the decoder state temporally.

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

f_ :
Encoding Stage Attention Decoding Stage
-

—

\ - -

e Remember that we train the encoder and decoder at the same time.

Using Context Vectors for Attention

* Context vector is usually appended to decoder’s state when going to next layer.
— Output could be generated directly from this, or passed through a neural net.

— Common variation is “multi-headed attention”: can get scores from different aspects.
* One context vector for semantics, one for grammar, one for tense, and so on.
* Each is appended to decoder state when going to next layer.
e Context vectors are usually not included when updating the decoder state temporally.

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

rEncoding Stage Attention Decoding Stage
—
[| am)
. [=]
Attentions 4 Attentlons

H|l I —f-\ i —f-\

hihohs | § e

L-‘ \ JJ

e Remember that we train the encoder and decoder at the same time.

Multi-Modal Attention

e Attention for image captioning:

Figure 3. Examples of attending to the correct object (white indicates the attended rcgmns underlines indicated the corresponding word)

A woman is throwlng a frisbee in a park, A dog is standing on a hardwood floor, A stop sign is on a road with a
mountain in the background,

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear, in the water, trees in the background.

Biological Motivation for Attention

Gaze tracking:
— https://www.youtube.com/watch?v=QUbiHKucljw

Selective attention test:
— https://www.youtube.com/watch?v=vJG698U2Mvo

Change blindness:
— https://www.youtube.com/watch?v=EARtANyz98Q

Door study:
— https://www.youtube.com/watch?v=FWSxSQsspiQ

https://www.youtube.com/watch?v=QUbiHKucljw
https://www.youtube.com/watch?v=vJG698U2Mvo
https://www.youtube.com/watch?v=EARtANyz98Q
https://www.youtube.com/watch?v=FWSxSQsspiQ

Neural Turing/Programmers

* Many interesting variations on memory/attention.
— A getting-out-of-date survey: https://distill.pub/2016/augmented-rnns

Here is an example of what the system can do. After having been trained, it
was fed the following short story containing key events in JRR Tolkien's
Lord of the Rings:

Bilbo travelled to the cave.
Gollum dropped the ring there.)]] i ™ -
Bilbo took the ring. (

Bilbo went back to the Shire. L

Bilbo left the ring there. | :

Frodo got the ring. ¥ 5 | #| 5

Frodo journeyed to Mount-Doom.) !) T T T
Frodo dropped the ring there. i] i] B [l '_ R T]
Sauron died. A | - A d s | B | | »| S »| S | | A | =
Frodo went back to the Shire. — — —)

Bilbo travelled to the Grey-havens.

The End. Neural Turing Attentional Adaptive Neural

Adter seeing this text, the system was asked a few questions, to which it Machines Interfaces Computation Time Programmers

provided the following answers: have external memory that allow RNNs to focus on allows for varying amounts can call functions, building
Q: Where is the ring? they c ead and write barts of their ino . e, o

A: Mount-Doom ey can read and write to. parts of their input of computation per step. programs as they run.

Q: Where is Bilbo now?
A: Grey-havens

Q: Where is Frodo now?
A: Shire

It's probably one of the few technical papers that cite "Lord of the Rings".

— We will focus next on a wildly-popular variant called “transformers”.

https://distill.pub/2016/augmented-rnns

Next Topic: Transformers

Convolutions for Sequences?

* Should we really be going through a sequence sequentially?
— What if stuff in the middle is really important, and changes meaning?

* Recent works have explored using convolutions for sequences.

S

ATELALE

Digression: Dilated Convolutions (“a trous”)

* Best CNN systems have gradually reduced convolutions sizes.
— Many modern architectures use 3x3 convolutions, far fewer parameters.

* Sequences of convolutions take into account larger neighbourhood.
— 3x3 convolution followed by another gives a 5x5 neighbourhood.
— But need many layers to cover a large area.

* Alternative recent strategy is dilated convolutions (“a trous”).

2 D=3
..............................
| |
EEEEE RS B E m
| H E .
. m
[o W _HE N |
\ |
| o
.......... . .
| | BN BN
o—f— - p-—t—0— ¢ o—¢-—4—-f = —t——e———4———o——¢—¢———9—o . .
i
...............................

* Not the same as “stride” in a CNN:
— Doing a 3x3 convolution at all locations, but using pixels that are not adjacent.

Dilated Convolutions (“a trous”)

Modeling music and language and with dilated convolutions:

. .

05006 0.0 0.0 0.0

©0.0.0. 0. 0. 0. 0.0 .0 0O

Output
Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation =1

Input

Lg

to t1 ta tz ta ts t 17 |t

S0 S1 S2 S3 S84 S5 S¢ ST S8 Sy S10 S11 S12 S13 S14 S15 516

Figure 1. The architecture of the ByteNet. The target decoder
(blue) 1s stacked on top of the source encoder (red). The decoder
generates the variable-length target sequence using dynamic un-
folding.

RNNs/CNNs/Attention for Music and Dance

Music generation:
— https://www.youtube.com/watch?v=RaO4HpMO7hE

Text to speech and music waveform generation:
— https://deepmind.com/blog/wavenet-generative-model-raw-audio

Dance choreography:
— http://theluluartgroup.com/work/generative-choreography-using-deep-learning

Music composition:
— https://www.facebook.com/yann.lecun/videos/10154941390687143

https://www.youtube.com/watch?v=RaO4HpM07hE
https://deepmind.com/blog/wavenet-generative-model-raw-audio
http://theluluartgroup.com/work/generative-choreography-using-deep-learning
https://www.facebook.com/yann.lecun/videos/10154941390687143

Transformer Networks

— Constant time to transfer across positions.

CNNs are less sequential, but take multiple steps to combine distant information.

“Attention is all you need”: keep the attention, ditch the RNN/CNN.

— Uses “self-attention” layers to model relationship between all words in input.

* Queries/keys/values all come from input in these steps.
attention
_—
attention
N~
embedding ,
1 h2

h;

All words attend
to all words in
previous layer;
most arrows here
are omitted

Sequence of representations of words, each depending on all other words.

Transformer Networks

* CNNs are less sequential, but take multiple steps to combine distant information.

o “Attention is all you need”: keep the attention, ditch the RNN/CNN.
— Constant time to transfer across positions.

— Uses “self-attention” layers to model relationship between all words in input.
* Take weighted combinations of each input to generate a “key”, a “value”, and a “query”.
 Compute inner product between “query” from word with “key” for each word to give scalar “score”.
 Compute softmax of “scores”, multiplied by word’s “value”, add these across words to get context vector.

BEE @& e moo
| | edd .
multiplication mmm multiplication muu multiplication mmu
x x 1
- w;«; Eﬁf"’ g
[v /I,
T e I s A
GEE BEE [GEr BEEE GHE EEE
uy Z input #1 q /‘ input #2 \ ‘IV} input #3
| oooofil S o oo B SO oo
Wi yhlg welppd | "%

* Many variations exist.

Transformer Networks

* Multiple “self-attention” layers in transformers replacing RNN/CNN.
— Has improved on state of the art results in many tasks.

English French Translation Quality

B ELEU

GHNMT (RNN) ConvS25 [CNN) Transfarmer

h
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html (f fse ’v“"l*‘(l*ﬁ%o O/OW\J ,OOM ,Oafamfl"S)

Transformer Networks: Practical Issues

“Self-attention” layers are basis for transformer networks.
— Simple idea, but practical systems have a lot of moving pieces.

Problem: position information is lost (self-attention is unordered).
— “Position representations” are additional variables added to each layer.

Problem: information about the future can be visible in the past.

— During training, prevent decoder from looking ahead.

Further “standard” tricks to make it work better:
— Multi-headed attention, skip/residual connections, and layer normalization.
— Between layers, pass each embedding through a feedforward neural network.

Transformer Architecture (from paper)

Output
Probabilities

| Linear |

& N\
| Add & Norm l"\
Feed
Forward

~\ | Add & Norm |:

- |
S| 6 MO Multi-Head
Feed Attention
Forward D) N x
-
Nix Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
= J &)
Positional Positior
Encodi P & :
ncoding Encodil
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Subsequent Work

 BERT: incredibly-popular model in natural language processing.
— Transformer model trained on masked sentences to predict masked words.
— Then fine-tune the architecture on specific applications.

*

BERT

EEEEE

Eer
o8 - TokN okt | L okt s || okt | TokN (SEP) Tk | L.
EE- EIEE- 6
Masked Sentence A Masked Senten ce B \ Question Paragraph
\ P 8 3 /
\ Unlabeled Sentence A and B Pair / \k_\ Question Answer Pair —//

Pre-training Fine-Tuning

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

* Transformers also form basis for other advanced language models (GPT).

* Transformers have been adapted to images, music, and so on.
— Also see the reformer for decreasing the quadratic cost of transformers.

https://ai.googleblog.com/2020/01/reformer-efficient-transformer.html?m=1

What are we learning?

Alteration Movie Review Label
Oricinal A triumph, relentless and beautiful N
rigiha n its downbeat darkness
S A triumph, relentless and beuatiful
wap in its downbeat darkness B
D A triumph, relentless and beautiful
Top in its dwnbeat darkness B
Def A triumph, relentless and beautiful N
+ Letense 1n 1ts downbeat darkness
A triumph, relentless and beautiful
+ Defense +

in its downbeat darkness

Table 1: Adversarial spelling mistakes inducing senti-
ment misclassification and word-recognition defenses.

* Single-character attacks on Bert can lower accuracy from 90 to 45%.
e Large datasets used to train often contain some toxic content.

Summary

Attention:

— Allow decoder to look at previous states.

Context vectors:

— Combine previous states into a fixed-length vector.
[Dilated] convolutions for sequences.

— Alternative to sequential architectures like RNNs.
Transformer networks:

— Layers of “self-attention” to build context.
* “Everything depends on everything”, and you learn how.
* Lots of implementation details, but excellent performance on many tasks.
* Basis for modern enormous/impressive language models and applications.

Next time: everyone’s favourite distribution.

