
CPSC 440: Machine Learning

Bernoulli Distribution

Winter 2022



Last Time: Binary Density Estimation

• We introduced the problem of binary density estimation:

– Give IID samples for a binary variable, estimate proportion of “1” values.

• We can then do inference with the model:

– Compute probability that at least one among 10 people has COVID-19.

– Compute number you would need to recruit to expect to get 50 cases.
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Model Definition: Bernoulli Distribution

• Models for binary density estimation need a parameterization.
– A way to go from some “parameters” to the probability ‘p’.

• For binary variables, we usually use the Bernoulli distribution:
– We say that x follows a Bernoulli with parameter 𝜃 if p(x = 1 | 𝜃) = 𝜃.
– So if 𝜃 = 0.12 in the COVID-19 example, we think 12% of population has COVID-19. 

– To define a valid probability, we require that 𝜃 is between 0 and 1 (inclusive).



Digression: “Inference” in Statistics vs. ML

• In machine learning, people often use this terminology:
– “Learning” is the task of going from data ‘X’ to parameter(s) 𝜃.
– “Inference” is the task of using the parameter(s) to infer/predict something.

• In statistics, people often use the reverse terminology:
– “Inference” is the task of going from data ‘X’ to parameter(s) 𝜃.
– “Prediction” is the task of using the parameters to infer/predict something.

• This partially reflects historical views of both fields:
– Statisticians often focused on finding the parameters.
– ML hackers often focused on making predictions.

• And some people also use “inference” to refer to both tasks!
– But, this course will use the machine learning terminology.



Inference Task: Computing Probabilities

• Inference task: given 𝜃, compute p(x = 0 | 𝜃).

• Recall that probabilities add up to 1 over discrete domains:

• Using the “sum to one” property to solve the above inference task:

• So for the Bernoulli distribution we have p(x = 0 | 𝜃) = 1 - 𝜃.
• If 𝜃 = 0.12 in the COVID-19 case, we think 1 - 0.12 = 0.88 does not have disease.



Bernoulli Distribution Notation

• We can write both cases, p(x = 1 | 𝜃)=𝜃 and p(x = 0 | 𝜃)=1-𝜃, as:

• Another notation you might see uses an “indicator function”:

– I[something] is a function that is 1 if “something” is true, and 0 otherwise.



• Inference task : given 𝜃 and IID data, compute p(x1, x2,..., xn | 𝜃).
– Notation warning: in this class I use superscripts for the example number.

• Different than CPSC 340, where we use subscripts like xi.

– Why do we care about this quantity?
• Many ways to estimate 𝜃 require us to compute this “likelihood” of the training data.

– Such as “maximum likelihood estimation”.

• We may want to compute this on validation/test data to compare models.

• Assuming “independence of IID data given parameters”, we have

– Technically, this is a “conditional independence” assumption.
• We will discuss later why the xi being IID implies this conditional independence holds.

Inference Task: Computing Dataset Probabilities 



Inference Task: Computing Dataset Probabilities 

• Let’s use the independence property to compute p(1, 0, 1, 1, 0 | 𝜃):

• Abstract ways to write this for a generic dataset of ‘n’ examples:



Inference Task: Computing Dataset Probabilities 

• So given 𝜃, we can compute probability of dataset ‘X’ as:

• Implementing this in code:

• Computational complexity: O(n).
– You do a simple addition for each of the ‘n’ elements, then do some simple operations to get final value.

• Notice that the “nicer version” returns logarithm, log(p(X | 𝜃)).
– If ‘n’ is large and/or 𝜃 is close to 0 or 1, the probability will be very small.

• Calculation might underflow and return ‘0’ due to truncation in floating point arithmetic. 

– With logarithm, you will still be able to compare different 𝜃 values.



Inference Task: Decoding

• Inference task: given 𝜃, find ‘x’ that maximizes p(x | 𝜃).
– This is called decoding: “what is most likely be happen?”

• For Bernoulli models:
– If 𝜃 < 0.5, the decoding is x= 0.

• If 𝜃 = 0.12, it is more likely that a random person does not have COVID-19.

– If 𝜃 > 0.5, the decoding is x = 1.
• If 𝜃 = 0.6, it is more likely that a random person does have COVID-19.

– If 𝜃 = 0.5, both x=1 and x=0 are both valid decodings.

• Decoding is not very exciting for Bernoulli models.
– It is more-difficult for more-complicated models, and it will be important later.
– In supervised learning, you often want to make predictions using the decoding.



Inference Task: Decoding Dataset

• Inference task: given 𝜃, find ‘x’ that maximizes p(x1, x2,..., xn | 𝜃).
– “What set of training examples are we most likely to observe”?

• Recall that we showed:

• If 𝜃 < 0.5, then the decoding is x1=0, x2=0, x3=0, x4=0, x5=0, x6=0,… 
– We maximize p(X | 𝜃) by making n0 as big as possible and n1 as small as possible.
– In the “most likely” set of sample with 𝜃=0.12, nobody has COVID-19!

• The decoding often does not represent “typical” behavior.
– For example, if 𝜃=0.12 we should expect 12% of samples to be 1, not 0%!
– Decoding has the “highest” probability, but that probability might be really low.

• There are many datasets with 1 values, but each has a lower probability than “all zeros”. 



Inference Task: Sampling

• Inference task: given 𝜃, 
generate samples of ‘x’ distributed according to p(x | 𝜃).

– This is called sampling from the distribution.

• I think of sampling as the “opposite” of density estimation:

• You are given the model, and your job is to generate IID examples.
– Often write code to generate one IID sample, then call it many times.
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Digression: Motivation for Sampling

• Sampling is not very interesting for Bernoulli distributions.
– Because knowing 𝜃 tells you everything about the distribution.

• But sampling will let us do neat things in more-complicated density models:

– “This person does not exist”.

– Sampling often gives indications about whether model is reasonable.
• If samples look nothing like the data, then model is not very good.

https://thispersondoesnotexist.com/



• Basic ingredient of all sampling methods:
– We assume we can sample uniformly on the interval between 0 and 1.

– In practice, we use a “pseudo-random” number generator.
• Like Julia’s rand function (we won’t discuss how these work it, Google it if you want to sleep).

• Consider sampling from a Bernoulli with 𝜃 = 0.9.
– 90% of the time our sampler should produce a 1.

– 10% of the time our sampler should produce a 0.

• How to generate a 1 in 90% of samples based on uniform sampling?
1. Generate a uniform sample (between 0 and 1).

2. If the sample is less than 0.9, return 1.
• Otherwise, return 0.

Inference Task: Sampling



Inference Task: Sampling

• Sampling from a Bernoulli with generic 𝜃 value:
– Generate a sample uniformly on the interval between 0 and 1.

– If the sample is less than 𝜃, return 1.
• Otherwise, return 0.

• In code:

• Cost is O(1), assuming that random number generator costs O(1).
– To generate ‘t’ samples, call the function ‘t’ times. Cost in this case is O(t).



Next Topic: Maximum Likelihood Estimation



MLE: Binary Density Estimation

• We have discussed how to use a Bernoulli model (“inference”).

• Now we will consider how to train a Bernoulli model (“learning”).

– Goal is to go from samples to an estimate of parameter 𝜃:

• Classic way to find parameters (used in the picture above):

– Maximum likelihood estimation (MLE).
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The Likelihood Function
• The likelihood function is the probability of the data given parameters.

– In the Bernoulli model, we showed earlier that our likelihood is:

• The probability of seeing the data ‘X’ if our Bernoulli parameter is 𝜃.

• Here is a plot of the likelihood if our IID data is x1=1, x2=1, x3=0.

– The likelihood of p(1, 1, 0 | 𝜃 =0.5) = (1/2)(1/2)(1/2) = 0.125.
– If 𝜃 = 0.75, then p(1, 1, 0 | 𝜃 = 0.75) = (3/4)(3/4)(1/4) ≈ 0.14 (dataset is more likely for 𝜃 = 0.75 than 0.5).
– If 𝜃 = 0 (“always 0”), then p(1, 1, 0 | 𝜃 = 0) = 0 (dataset is not possible for 𝜃 = 0).

• Data has probability 0 if 𝜃=0 or 𝜃=1 (since we have a ‘1’ and a ‘0’ in the data).

– Data doesn’t have highest probability at 0.5 (because we have more ‘1s’ than ‘0s’).
– Note that this is a probability distribution over ‘X’, not ‘𝜃’ (area under the curve is not 1).



Maximum Likelihood Estimation (MLE)

• Maximum likelihood estimation (MLE):
– Choose the parameters that have the highest likelihood, p(X | 𝜃).

• “Find the parameter(s) 𝜃 under which the data ‘X’ was most likely to be seen.”

• The likelihood from the previous slide with x1=1, x2=1, x3=0:

– In this example, MLE is 𝜃 = 2/3.

• The MLE for general Bernoulli is 𝜃 = n1/(n1 + n0).
– “If you flip a coin 50 times and it lands heads 23 times, 

your guess for prob(“head”) is 23/50.”



Derivation of MLE for Bernoulli

• Let’s derive the MLE for Bernoulli.

– This will seem overly-complicated for such a simple result.

– But the same steps can be used in more-complicated situations.

• MLE “finds the argument” maximizing the likelihood function:



Digression: Maximizing the Log-Likelihood
• Instead of finding an element maximizing the likelihood:

• We usually find an element maximizing the log of the likelihood:

– People often say “log-likelihood” as a short version of “log of the likelihood”.

• Both approaches give the same solution.
– Because logarithm is “strictly monotonic” over positive values.

• If 𝛼 > 𝛽, then log 𝛼 > log 𝛽 .
• See notes on course webpage about “Max and Argmax” for details.

– And logarithm is nicer numerically since likelihood is usually really close to 0.



Derivation MLE for Bernoulli

• MLE for Bernoulli by maximizing the likelihood:

• MLE for Bernoulli by maximizing the log-likelihood:



Derivation MLE for Bernoulli

• From the last slide we want to find:

• Recall that a maximum must have derivative equal to zero.

– Equating the derivative of the log-likelihood with zero:

– Using HS math:



Summary

• Binary density estimation:
– Modeling p(x =1) given IID samples x1, x2,…, xn.

• Bernoulli distribution:
– Probability distribution over a binary variable.
– Parameterized by a number 𝜃 such that p(x=1 | 𝜃) = 𝜃.

• Inference:
– Computing a quantity based on a model.
– Examples include computing probabilities, decoding, and sampling.

• Maximum likelihood estimation (MLE):
– Estimate parameters by maximizing probability of data given parameters.
– For Bernoulli, sets 𝜃 = (number of 1s)/(number of examples).

• Next time: more boring definitions.


