CPSC 440: Machine Learning

Bernoulli Distribution Winter 2022

Last Time: Binary Density Estimation

- We introduced the problem of binary density estimation:
 - Give IID samples for a binary variable, estimate proportion of "1" values.

- We can then do inference with the model:
 - Compute probability that at least one among 10 people has COVID-19.
 - Compute number you would need to recruit to expect to get 50 cases.

Model Definition: Bernoulli Distribution

- Models for binary density estimation need a parameterization.
 - A way to go from some "parameters" to the probability 'p'.
- For binary variables, we usually use the **Bernoulli distribution**:
 - We say that x follows a Bernoulli with parameter θ if $p(x = 1 | \theta) = \theta$.
 - So if θ = 0.12 in the COVID-19 example, we think 12% of population has COVID-19.

- To define a valid probability, we require that θ is between 0 and 1 (inclusive).

Digression: "Inference" in Statistics vs. ML

- In machine learning, people often use this terminology:
 - "Learning" is the task of going from data 'X' to parameter(s) θ .
 - "Inference" is the task of using the parameter(s) to infer/predict something.
- In statistics, people often use the reverse terminology:
 - "Inference" is the task of going from data 'X' to parameter(s) θ .
 - "Prediction" is the task of using the parameters to infer/predict something.
- This partially reflects historical views of both fields:
 - Statisticians often focused on finding the parameters.
 - ML hackers often focused on making predictions.
- And some people also use "inference" to refer to both tasks!
 - But, this course will use the machine learning terminology.

Inference Task: Computing Probabilities

- Inference task: given θ , compute p(x = 0 | θ).
- Recall that probabilities add up to 1 over discrete domains:

$$p(x=1|G) + p(x=0|G) = 1$$

 \Rightarrow summing over all values of 'x

Using the "sum to one" property to solve the above inference task:

$$p(x = 0 | 0) = 1 - p(x = 1 | 0) = 1 - 0$$

- So for the Bernoulli distribution we have $p(x = 0 | \theta) = 1 \theta$.
 - If θ = 0.12 in the COVID-19 case, we think 1 0.12 = 0.88 does not have disease.

Bernoulli Distribution Notation

• We can write both cases, $p(x = 1 | \theta) = \theta$ and $p(x = 0 | \theta) = 1 - \theta$, as:

• Another notation you might see uses an "indicator function":

$$p(x | \theta) = \Theta^{T(x=1)}(1-\theta)^{T(x=0)}$$

– I[something] is a function that is 1 if "something" is true, and 0 otherwise.

Inference Task: Computing Dataset Probabilities

- Inference task : given θ and IID data, compute $p(x^1, x^2, ..., x^n | \theta)$.
 - Notation warning: in this class I use superscripts for the example number.
 - Different than CPSC 340, where we use subscripts like x_i.
 - Why do we care about this quantity?
 - Many ways to estimate θ require us to compute this "likelihood" of the training data.
 Such as "maximum likelihood estimation".
 - We may want to compute this on validation/test data to compare models.
- Assuming "independence of IID data given parameters", we have

$$p(x',x',...,x''|6) = \hat{T}_{i=i} p(x'|6)$$

- Technically, this is a "conditional independence" assumption.
 - We will discuss later why the xⁱ being IID implies this conditional independence holds.

Inference Task: Computing Dataset Probabilities

• Let's use the independence property to compute $p(1, 0, 1, 1, 0 | \theta)$:

$$\rho(x', x', ..., x'' | \Theta) = \frac{n}{1!} \rho(x' | \Theta)$$

= $\rho(x' | \Theta) \rho(x^2 | \Theta) \rho(x^3 | \Theta) \rho(x'' | \Theta) \rho(x'' | \Theta)$
= Θ (1- Θ) Θ Θ (1- Θ)
= $\Theta^3 (1 - \Theta)^{2}$

• Abstract ways to write this for a generic dataset of 'n' examples:

$$\rho(X|\theta) = \Theta^{\frac{2}{3}} x'(1-\theta)^{\frac{2}{3}} (1-x') \qquad \gamma^{\frac{2}{3}} (1-x') \qquad \gamma^{\frac{2}{3}} (1-x') \qquad \gamma^{\frac{2}{3}} (1-\theta)^{\frac{2}{3}} (1-\theta)^{\frac{2}{3}} \qquad \gamma^{\frac{2}{3}} (1-\theta)^{\frac{2}{3}} (1-\theta)^{\frac{2}{3}} \qquad \gamma^{\frac{2}{3}} (1-\theta)^{\frac{2}{3}} (1-\theta)^{\frac{2}{3}} \qquad \gamma^{\frac{2}{3}} (1-\theta)^{\frac{2}{3}} (1-\theta)^{\frac{2}{3}} \qquad \gamma^{\frac{2}{3}} (1-\theta)^{\frac{2}{3}} \qquad$$

Inference Task: Computing Dataset Probabilities

So given θ , we can compute probability of dataset 'X' as: $\rho(X | \theta) = \theta'' (1 - \theta)''$ ۲

Implementing this in code: ۲

inst
$$fry: nI=0$$

 $nO=0$
for i in I n
if $X(i) == 1$
 $n_1 += 1$
 end
 end
 $p=(thet_0^n n1) * (1-thet_0)^n 0$

Miror version:

$$nl = sum(X)$$

$$n0 = n - nl$$

$$loy_p = nl \neq log(theta) + n0 \neq loy(l - theta)$$

- Computational complexity: O(n). ۲
 - You do a simple addition for each of the 'n' elements, then do some simple operations to get final value.
- Notice that the "nicer version" returns logarithm, $\log(p(X | \theta))$. ٠
 - If 'n' is large and/or θ is close to 0 or 1, the probability will be very small.
 - Calculation might underflow and return '0' due to truncation in floating point arithmetic.
 - With logarithm, you will still be able to compare different θ values.

Inference Task: Decoding

- Inference task: given θ , find 'x' that maximizes $p(x \mid \theta)$.
 - This is called decoding: "what is most likely be happen?"
- For Bernoulli models:
 - If θ < 0.5, the decoding is x= 0.
 - If θ = 0.12, it is more likely that a random person **does not** have COVID-19.
 - If θ > 0.5, the decoding is x = 1.
 - If θ = 0.6, it is more likely that a random person **does** have COVID-19.
 - If θ = 0.5, both x=1 and x=0 are both valid decodings.
- Decoding is not very exciting for Bernoulli models.
 - It is more-difficult for more-complicated models, and it will be important later.
 - In supervised learning, you often want to make predictions using the decoding.

Inference Task: Decoding Dataset

- Inference task: given θ , find 'x' that maximizes $p(x^1, x^2, ..., x^n | \theta)$.
 - "What set of training examples are we most likely to observe"?
- Recall that we showed: $\rho(X | \theta) = \theta^{(1-\theta)^{0}}$
- If $\theta < 0.5$, then the decoding is x¹=0, x²=0, x³=0, x⁴=0, x⁵=0, x⁶=0,...
 - We maximize $p(X \mid \theta)$ by making n_0 as big as possible and n_1 as small as possible.
 - In the "most likely" set of sample with θ =0.12, nobody has COVID-19!
- The decoding often does not represent "typical" behavior.
 - For example, if θ =0.12 we should expect 12% of samples to be 1, not 0%!
 - Decoding has the "highest" probability, but that probability might be really low.
 - There are many datasets with 1 values, but each has a lower probability than "all zeros".

Inference Task: Sampling

- Inference task: given θ , generate samples of 'x' distributed according to p(x | θ).
 - This is called sampling from the distribution.
- I think of sampling as the "opposite" of density estimation:

- You are given the model, and your job is to generate IID examples.
 - Often write code to generate one IID sample, then call it many times.

Digression: Motivation for Sampling

- Sampling is not very interesting for Bernoulli distributions.
 - Because knowing θ tells you everything about the distribution.
- But sampling will let us do neat things in more-complicated density models:
 - "This person does not exist".

- Sampling often gives indications about whether model is reasonable.
 - If samples look nothing like the data, then model is not very good.

Inference Task: Sampling

- Basic ingredient of all sampling methods:
 - We assume we can sample uniformly on the interval between 0 and 1.
 - In practice, we use a "pseudo-random" number generator.
 - Like Julia's *rand* function (we won't discuss how these work it, Google it if you want to sleep).
- Consider sampling from a Bernoulli with θ = 0.9.
 - 90% of the time our sampler should produce a 1.
 - 10% of the time our sampler should produce a 0.
- How to generate a 1 in 90% of samples based on uniform sampling?
 - 1. Generate a uniform sample (between 0 and 1)
 - 2. If the sample is less than 0.9, return 1.
 - Otherwise, return 0.

Inference Task: Sampling

- Sampling from a Bernoulli with generic θ value:
 - Generate a sample uniformly on the interval between 0 and 1.
 - If the sample is less than θ , return 1.
 - Otherwise, return 0.

• In code: Nice version:
$$u = rand(1)$$

if $u \le theta$
 $x = 1$
 $else$
 $x = 0$
Slick but
less interpretable

$$X = rand(1) < = theta$$

Cost is O(1), assuming that random number generator costs O(1).
 To generate 't' samples, call the function 't' times. Cost in this case is O(t).

Next Topic: Maximum Likelihood Estimation

MLE: Binary Density Estimation

- We have discussed how to use a Bernoulli model ("inference").
- Now we will consider how to train a Bernoulli model ("learning").
 - Goal is to go from samples to an estimate of parameter θ :

- Classic way to find parameters (used in the picture above):
 - Maximum likelihood estimation (MLE).

The Likelihood Function

- The likelihood function is the probability of the data given parameters.
 - In the Bernoulli model, we showed earlier that our likelihood is:

 $p(x | 6) = 6^{n} (1 - 6)^{n}$

- The probability of seeing the data 'X' if our Bernoulli parameter is θ .
- Here is a plot of the likelihood if our IID data is $x^1=1$, $x^2=1$, $x^3=0$.

- The likelihood of $p(1, 1, 0 | \theta = 0.5) = (1/2)(1/2)(1/2) = 0.125$.
- If θ = 0.75, then p(1, 1, 0 | θ = 0.75) = (3/4)(3/4)(1/4) ≈ 0.14 (dataset is more likely for θ = 0.75 than 0.5).
- If $\theta = 0$ ("always 0"), then p(1, 1, 0 | $\theta = 0$) = 0 (dataset is not possible for $\theta = 0$).
 - Data has probability 0 if θ =0 or θ =1 (since we have a '1' and a '0' in the data).
- Data doesn't have highest probability at 0.5 (because we have more '1s' than '0s').
- Note that this is a probability distribution over 'X', not ' θ ' (area under the curve is not 1).

Maximum Likelihood Estimation (MLE)

- Maximum likelihood estimation (MLE):
 - Choose the parameters that have the highest likelihood, $p(X | \theta)$.
 - "Find the parameter(s) θ under which the data 'X' was most likely to be seen."
- The likelihood from the previous slide with $x^1=1$, $x^2=1$, $x^3=0$:

– In this example, MLE is θ = 2/3.

- The MLE for general Bernoulli is $\theta = n_1/(n_1 + n_0)$.
 - "If you flip a coin 50 times and it lands heads 23 times, your guess for prob("head") is 23/50."

Derivation of MLE for Bernoulli

- Let's derive the MLE for Bernoulli.
 - This will seem overly-complicated for such a simple result.
 - But the same steps can be used in more-complicated situations.
- MLE "finds the argument" maximizing the likelihood function:

Digression: Maximizing the Log-Likelihood

• Instead of finding an element maximizing the likelihood:

• We usually find an element maximizing the log of the likelihood:

$$\hat{\Theta} \in \arg\max\left\{\log(p(X \mid \Theta))\right\}$$

- People often say "log-likelihood" as a short version of "log of the likelihood".
- Both approaches give the same solution.
 - Because logarithm is "strictly monotonic" over positive values.
 - If $\alpha > \beta$, then $\log(\alpha) > \log(\beta)$.
 - See notes on course webpage about "Max and Argmax" for details.
 - And logarithm is nicer numerically since likelihood is usually really close to 0.

Derivation MLE for Bernoulli

• MLE for Bernoulli by maximizing the likelihood:

$$\hat{\Theta} \in \operatorname{argmax}_{\Sigma} \{ \Theta^{n} (1 - 6)^{n} \}$$

• MLE for Bernoulli by maximizing the log-likelihood:

$$\begin{aligned} & \widehat{\Theta} \in \operatorname{Gramax} \{ \log(\Theta^{n}(1-\theta)^{n_{0}}) \} \\ & \stackrel{\text{"the sets are}}{=} \operatorname{argmax} \{ \log(\Theta^{n}) + \log((1-\theta)^{n_{0}}) \} \\ & \stackrel{\text{equivalent}}{=} \operatorname{argmax} \{ \log(\Theta^{n}) + \log((1-\theta)^{n_{0}}) \} \\ & \stackrel{\text{using } \log(\alpha\beta) = \log(\alpha) + \log(\beta) \\ & \stackrel{\text{using } \log(\alpha\beta) = \log(\alpha) + \log(\alpha\beta) \\ & \stackrel{\text{using } \log(\alpha\beta) = \log(\alpha) + \log(\alpha\beta) \\ & \stackrel{\text{using } \log(\alpha\beta) = \log(\alpha) \\ & \stackrel{\text{using } \log(\alpha\beta) = \log(\alpha) \\ & \stackrel{\text{using } \log(\alpha\beta) = \log(\alpha) \\ & \stackrel{\text{using } \log(\alpha\beta) = \log(\alpha\beta) \\ & \stackrel{\text{using } \log(\alpha\beta$$

Derivation MLE for Bernoulli

• From the last slide we want to find:

$$\hat{\Theta} \in \operatorname{argmax}_{\Theta} \{ n_1 \log(\Theta) + n_0 \log(1-\theta) \}$$

- Recall that a maximum must have derivative equal to zero.
 - Equating the derivative of the log-likelihood with zero:

$$\begin{pmatrix}
0 = \frac{n_{1}}{\Theta} - \frac{n_{0}}{1-\Theta} \\
\int_{\sigma_{1}} \frac{\sigma_{1}}{\sigma_{1}} - \frac{\sigma_{0}}{1-\Theta} \\
\int_{\sigma_{1}} \frac{\sigma_{1}}{\sigma_{1}} \int_{\sigma_{1}} \frac{\sigma$$

Summary

- Binary density estimation:
 - Modeling p(x = 1) given IID samples $x^1, x^2, ..., x^n$.
- Bernoulli distribution:
 - Probability distribution over a binary variable.
 - Parameterized by a number θ such that $p(x=1 | \theta) = \theta$.
- Inference:
 - Computing a quantity based on a model.
 - Examples include computing probabilities, decoding, and sampling.
- Maximum likelihood estimation (MLE):
 - Estimate parameters by maximizing probability of data given parameters.
 - For Bernoulli, sets θ = (number of 1s)/(number of examples).
- Next time: more boring definitions.