CPSC 440: Machine Learning

Bernoulli Distribution
Winter 2022



Last Time: Binary Density Estimation

 We introduced the problem of binary density estimation:

— Give IID samples for a binary variable, estimate proportion of “1” values.
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 We can then do inference with the model:
— Compute probability that at least one among 10 people has COVID-19.
— Compute number you would need to recruit to expect to get 50 cases.



Model Definition: Bernoulli Distribution

 Models for binary density estimation need a parameterization.
— A way to go from some “parameters” to the probability ‘p’

* For binary variables, we usually use the Bernoulli distribution:
— We say that x follows a Bernoulli with parameter 8 if p(x=11] 8) = 6.

— Soif 8 =0.12 in the COVID-19 example, we think 12% of population has COVID-19.
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— To define a valid probability, we require that 8 is between 0 and 1 (inclusive).




Digression: “Inference” in Statistics vs. ML

In machine learning, people often use this terminology:
— “Learning” is the task of going from data ‘X’ to parameter(s) 6.
— “Inference” is the task of using the parameter(s) to infer/predict something.

In statistics, people often use the reverse terminology:
— “Inference” is the task of going from data ‘X’ to parameter(s) 6.
— “Prediction” is the task of using the parameters to infer/predict something.

This partially reflects historical views of both fields:
— Statisticians often focused on finding the parameters.
— ML hackers often focused on making predictions.

And some people also use “inference” to refer to both tasks!
— But, this course will use the machine learning terminology.



Inference Task: Computing Probabilities

: given 8, compute p(x=0 | 0).

* Recall that probabilities add up to 1 over discrete domains:
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* Using the “sum to one” property to solve the above inference task:
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* So for the Bernoulli distribution we have p(x=0 | 8)=1-6.
e [f08 =0.12 in the COVID-19 case, we think 1 - 0.12 = 0.88 does not have disease.




Bernoulli Distribution Notation

 We can write both cases, p(x=1 | 8)=0 and p(x=0 | 8)=1-0, as:
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* Another notation you might see uses an “indicator function”:

s l6) = 013 < gy

— |[something] is a function that is 1 if “something” is true, and O otherwise.



Inference Task: Computing Dataset Probabilities

. given 8 and 11D data, compute p(x?, x?,..., x" | 8).
— Notation warning: in this class | use superscripts for the example number.
* Different than CPSC 340, where we use subscripts like x..

— Why do we care about this quantity?

* Many ways to estimate 6 require us to compute this “likelihood” of the training data.
— Such as “maximum likelihood estimation”.

* We may want to compute this on validation/test data to compare models.

* Assuming “independence of |ID data given parameters”, we have
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— Technically, this is a “conditional independence” assumption.
» We will discuss later why the x' being 11D implies this conditional independence holds.



Inference Task: Computing Dataset Probabilities

e Let’s use the independence property to compute p(1,0,1,1,0 | 6):
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. Abstract ways to write this for a generic dataset of ‘'n” examples:
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Inference Task: Computing Dataset Probabilities

* Sogiven 8, we can compute probability of dataset X’ as: - Ao My
P/ Y16)=¢ (I-o)

* Implementing this in code:

Fir;f Yr Yy ’:\:7:%
for i m[n A/’f"f Wrsim'
if XL == )
’n, +> | 0l = §LM(X>
“:of: I hQ = n~nl
end
nd Q) p—
;=(M¢"nl)*(l- Theta) 2D ’0)‘ f My,%(v'd“) % "’9“"1“"")

 Computational complexity: O(n).
— You do a simple addition for each of the ‘n” elements, then do some simple operations to get final value.

* Notice that the “nicer version” returns logarithm, log(p(X | 8)).

— If ‘'n’is large and/or @ is close to 0 or 1, the probability will be very small.
e Calculation might underflow and return ‘0’ due to truncation in floating point arithmetic.

— With logarithm, you will still be able to compare different 8 values.



Inference Task: Decoding

. given 0, find X’ that maximizes p(x | 8).
— This is called decoding: “what is most likely be happen?”

* For Bernoulli models:

— If 8 < 0.5, the decoding is x= 0.
 If 8 =0.12, it is more likely that a random person does not have COVID-19.

— If 8 > 0.5, the decoding is x = 1.
 If 8 =0.6, it is more likely that a random person does have COVID-19.

— If 8 = 0.5, both x=1 and x=0 are both valid decodings.

* Decoding is not very exciting for Bernoulli models.
— It is more-difficult for more-complicated models, and it will be important later.
— In supervised learning, you often want to make predictions using the decoding.



Inference Task: Decoding Dataset

. given 0, find ‘x’ that maximizes p(x?, x?,..., x" | 0).
— “What set of training examples are we most likely to observe”?
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* |f 8 <0.5, then the decoding is x!=0, x?=0, x3=0, x*=0, x°=0, x°=0,...
— We maximize p(X | 8) by making n, as big as possible and n, as small as possible.
— In the “most likely” set of sample with 8=0.12, nobody has COVID-19!
 The decoding often does not represent “typical” behavior.
— For example, if 6=0.12 we should expect 12% of samples to be 1, not 0%!

— Decoding has the “highest” probability, but that probability might be really low.
* There are many datasets with 1 values, but each has a lower probability than “all zeros”.



Inference Task: Sampling

. given 0,
generate samples of X’ distributed according to p(x | 8).
— This is called sampling from the distribution.

* | think of sampling as the “opposite” of density estimation:

COVID-19?
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* You are given the model, and your job is to generate IID examples.
— Often write code to generate one IID sample, then call it many times.



Digression: Motivation for Sampling

 Sampling is not very interesting for Bernoulli distributions.
— Because knowing 0 tells you everything about the distribution.

e But sampling will let us do neat things in more-complicated density models:
— “This person does not exist”.

— Sampling often gives indications about whether model is reasonable.
* If samples look nothing like the data, then model is not very good.



Inference Task: Sampling

e Basic ingredient of all sampling methods:
— We assume we can sample uniformly on the interval between 0 and 1.

— In practice, we use a “pseudo-random” number generator.
 Like Julia’s rand function (we won’t discuss how these work it, Google it if you want to sleep).

* Consider sampling from a Bernoulli with 8 = 0.9.
— 90% of the time our sampler should produce a 1.
— 10% of the time our sampler should produce a 0.

* How to generate a 1in 90% of samples based on uniform sampling?
1. Generate a uniform sample (between 0 and 1) e
€ Juvn
2. Ifthe sampleisless than 0.9, return 1. — .

* Otherwise, return 0. o HR/?)O'? l




Inference Task: Sampling

 Sampling from a Bernoulli with generic 6 value:
— Generate a sample uniformly on the interval between 0 and 1.

— If the sample is less than @, return 1.
 Otherwise, return O.

e Incode: Hie veson w=rand(l) Shek but |y = rand (1) <= Hhely
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e Costis O(1), assuming that random number generator costs O(1).
— To generate ‘t’ samples, call the function ‘t’ times. Cost in this case is O(t).



Next Topic: Maximum Likelihood Estimation



MLE: Binary Density Estimation

* We have discussed how to use a Bernoulli model (“inference”).
 Now we will consider how to train a Bernoulli model (“learning”).

— Goal is to go from samples to an estimate of parameter 6:
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e Classic way to find parameters (used in the picture above):

— Maximum likelihood estimation (MLE).



The Likelihood Function

 The likelihood function is the probability of the data given parameters.
— In the Bernoulli model, we showed earlier that our likelihood is: P/y /6): 6)”' (I- 9)00

* The probability of seeing the data ‘X’ if our Bernoulli parameter is 6.
* Here is a plot of the likelihood if our IID data is x'=1, x>=1, x3=0.
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— The likelihood of p(1, 1,0 | 6 =0.5) =(1/2)(1/2)(1/2) = 0.125.
— If8=0.75,thenp(1,1,0 | 8 =0.75) = (3/4)(3/4)(1/4) = 0.14 (dataset is more likely for 8 = 0.75 than 0.5).
— If 8 =0 (“always 0”), then p(1, 1,0 | 8 =0) = 0 (dataset is not possible for 8 = 0).
* Data has probability 0 if 8=0 or 8=1 (since we have a ‘1’ and a ‘0’ in the data).
— Data doesn’t have highest probability at 0.5 (because we have more ‘1s’ than ‘0s’).
— Note that this is a probability distribution over ‘X, not ‘0’ (area under the curve is not 1).



Maximum Likelihood Estimation (MLE)

 Maximum likelihood estimation (MLE):

— Choose the parameters that have the highest likelihood, p(X | 8).
* “Find the parameter(s) @ under which the data ‘X’ was most likely to be seen.”

* The likelihood from the previous slide with x!=1, x?=1, x3=0:
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— In this example, MLE is 8 = 2/3.

* The MLE for general Bernoulliis 8 =n /(n; + n).

— “If you flip a coin 50 times and it lands heads 23 times,
your guess for prob(“head”) is 23/50.”



Derivation of MLE for Bernoulli

* Let’s derive the MLE for Bernoulli.
— This will seem overly-complicated for such a simple result.
— But the same steps can be used in more-complicated situations.

* MLE “finds the argument” maximizing the likelihood function:
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Digression: Maximizing the Log-Likelihood

* |nstead of finding an element maximizing the likelihood:
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 We usually find an element maximizing the log of the likelihood:
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— People often say “log-likelihood” as a short version of “log of the likelihood”.

 Both approaches give the same solution.

— Because logarithm is “strictly monotonic” over positive values.
* Ifa > B, thenlog(a) > log(B).
* See notes on course webpage about “Max and Argmax” for details.

— And logarithm is nicer numerically since likelihood is usually really close to O.



Derivation MLE for Bernoulli

 MLE for Bernoulli by maximizing the likelihood:
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* MLE for Bernoulli by maximizing the log-likelihood:
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Derivation MLE for Bernoulli

* From the last slide we want to find:

6 € 1S 1 log(6) + n, I - 0){

* Recall that a maximum must have derivative equal to zero.
— Equating the derivative of the log-likelihood with zero:
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Summary

Binary density estimation:

— Modeling p(x =1) given IID samples x3, x?,..., x".

Bernoulli distribution:

— Probability distribution over a binary variable.

— Parameterized by a number 6 such that p(x=1 | 8) = 6.

Inference:

— Computing a quantity based on a model.

— Examples include computing probabilities, decoding, and sampling.
Maximum likelihood estimation (MLE):

— Estimate parameters by maximizing probability of data given parameters.
— For Bernoulli, sets 8 = (hnumber of 1s)/(number of examples).

Next time: more boring definitions.



