
CPSC 440: Machine Learning

Recurrent Neural Networks

Winter 2022

Last Time: What are we Learning?

• Modern ML is amazing:

– Unprecedented performance on difficult problems.

– Good enough to be used in many products.

– Deep models seem to learn increasingly-complicated features.

• Modern ML is awful:

– Easily-fooled by out-of-distribution or adversarial examples.

– Confuses correlation and causation.

– Can propagate and even enhance harmful biases.

– Does not work well for some problems (social prediction).

• For some applications current ML methods should not be used.

Some Issues with Algorithms for Social Prediction

• Does fighting over-fitting give bad predictions on sub-groups?
– If you have 99% “Group A” in your dataset,

model can do well on average by only focusing on Group A.
• Treat the other 1% as outliers.

– Does “not trying to overfit” mean we perform badly on some groups?
– Can we discover what groups exist in our dataset?

• What if all institutions use the same algorithm?
– You apply for jobs everywhere, and are always rejected by the algorithm?

• Even though you may be arbitrarily-close to the decision threshold.

• Fixing the various societal problems with using ML algorithms:
– Hot research topic at the moment (good thesis or course project topic).
– We do not currently have nice “solutions” for these issues.

• Try to think of potential confounding factors, and consider whether ML is not appropriate.

Energy Costs

• Current methods require:

– A lot of data.

– A lot of time to train.

– Many training runs to do hyper-parameter optimization.

• Recent paper regarding recent deep language models:

– Entire training procedure emits 5 times more CO2

than lifetime emission of a car, including making the car.

https://arxiv.org/abs/1906.02243

Next Topic: Recurrent Neural Networks

Review: Word Representations

• How do we represent words with features?

• Lexical features:
– Represent words using a “1 of k” encoding.

• Where ‘k’ is the number of words in training data.
– Or “words that appear at least 5 times in the training data”.

– Set all these features to 0 for other words.

• Latent-factor models like word2vec or GloVe:
– Unsupervised learning of a set of continuous features for each word.

• Distances in this space may approximate semantic meaning.

• May do sensible things for words not seen during training.

http://sebastianruder.com/secret-word2vec

Motivation: Part of Speech (POS) Tagging

• Consider predicting part of speech for each word in a sentence:

• Input is a sequence of words.
– Could be represented as “1 of k” or using continuous vectors like word2vec.

• Output is a categorical label for each word.
– In English there are more than 40 categories.

• And there are some dependencies in labels (like “only 1 verb in the sentence”).

• General problem: sequence labeling.
– Biological sequences, various language tasks, sound processing.

https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31

Individual-Word Neural Network Classifier

• We could train a neural network to predict label of a given word.
– Above we have 1 input feature for each time.

• But each time might have multiple features (if we use something like word2vec).

– We are also not showing the non-linear transform or bias variables.

• But this type of model would not capture dependencies.
– Information from earlier in sentence does influence prediction.

• The word “desert” could be a noun or a verb depending on context.

Recurrent Neural Network for Sequence Labeling

• Recurrent neural networks (RNNs):
– Add connections between adjacent different times to model dependencies.

– Add an initial hidden state.

– Use the same parameters across time.

• Repeating parameters in different places is called parameter tieing.
– We previously saw convolutions, which use parameter tieing across space.

– By tieing parameters across time, RNNs can label sequences of different lengths.

Recurrent Neural Network for Sequence Labeling

Recurrent Neural Network Inference

– Assume we have:
• ‘k’ different classes that each ො𝑦t can take.
• ‘m’ hidden units at each time.
• ‘T’ times (length of sequene).

– Cost to compute all ො𝑦𝑡 if each time has ‘m’ units and we have ‘T’ times:
• We need to do an O(md) operations ‘T’ times to compute Wxt for all ‘t’.
• We need to do an O(km) operation ‘T’ times to compute ො𝑦𝑡 for all ‘t’.
• We need to do a O(m2) operation ‘T’ times to compute each zt.
• Total cost: O(tmd + tkm + tm2).

– For the likelihood, we could use an independent softmax for each time.
• p(y1:T | x1:T, W, V, U) = p(y1 | x1, W, V, U)p(y2 | x1:2, W, V, U)⋯p(yT | x1:T, W, V, U).

– Where each p(yt | x1:T, W, V, U) is given by softmax over ො𝑦𝑡 values.
– Conditioned on features and parameters, this assumes a “product of categoricals” model.

RNN Learning

• The objective function we use to train RNNs is the NLL:

– In the above I assume all sequences have the same length ‘T’.
• But in practice you will often have sequences of different lengths.

• Computing gradient called “backpropagation through time” (BTT).
– Equations are the same as usual backpropagation/chain-rule.

• If you do it by hand, make sure to add all terms for tied parameters.

– Automatic differentiation is commonly used.

• Usually trained with SGD.
– Sample an example ‘i’ on each iteration, do BTT, update all parameters.

– which has usual challenges.

RNN Learning – Extra Challenges

• Unfortunately, training RNNs presents some extra challenges:
– Computing gradient requires a lot of memory for long sequences.

• There are a lot intermediate calculations.

• Make sure AD package handles matrix multiplication.

– Parameter tieing often leads to vanishing/exploding gradient problems.
• Consider a linear RNN and just consider the temporal ‘U’ updates:

– zL = U*U*U*⋯*U*z0 = ULz0.

– For typical z0, the quantity zL either diverges exponentially or converges to zero exponentially.

» If largest singular value of ‘U’ is > 1, ||zL|| increases exponentially with ‘L’.

» If largest singular value of ‘U’ is < 1, ||zL|| converges to zero exponentially with ‘L’.

– Usual SGD methods tend not to work well.
• Often need to use optimizers like Adam or use gradient clipping:

– If norm of gradient is larger than some threshold, “shrink” norm to threshold:

• People are trying to explore initialization/keeping ‘U’ orthogonal.
– So that all singular values are 1 (some positive and negative results on this).

https://towardsdatascience.com/neural-network-optimization-7ca72d4db3e0

Deep RNNs

• Instead of drawing this:

• We often use diagrams like this:

– Up to some notation changes.

– We connect everything in blocks
connected by arrows.

• Deep RNNs add multiple hidden layers at each time:

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Bi-Directional RNNs

• Sometimes later information later changes meaning:

– "I've had a perfectly wonderful evening, but this wasn't it."

• “Paraprosdokian”.

• Bi-directional RNNs have hidden layers running in both directions:

– Use different parameters for the
forward and backward directions.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Next Topic: Sequence to Sequence RNNs

Motivating Problem: Machine Translation

• Consider the problem of machine translation:

– Input is text from one language.

– Output is text from another language with the same meaning.

• A key difference with pixel labeling:

– Input and output sequences may have different lengths.

• We do not just “find the French word corresponding to the English word”.

– We may not know the output length.

Sequence-to-Sequence RNNs

• Sequence-to-sequence RNNs encode and decode sequences:

– Each encoding step has one word as input and no output.

– Each decoding step outputs one word and has no input.

• Encoding and decoding steps use different tied parameters.

– Special “BOS” at end of input (says when encoding is done).

– Speical “EOS” at end of output (says when decoding is done).

x1

z1

x2

z2

x3

z3 z4 z5z0

y1 y2

Summary

• Recurrent neural networks (RNNs):
– Neural networks for sequence prediction.

– Have connections between hidden units at adjacent times.

– Use parameter tieing across time.
• Allows sequences of different lengths.

• Leads to vanishing and exploding gradients.

• Sequence-to-Sequence RNNs:
– Encoding phase takes in one input at a time until we reach “BOS”.

– Decoding phase outputs one output at a time until we output “EOS”.

– Allows input and output sequences whose lengths differ.

• Next time: generating poetry.

