CPSC 440: Machine Learning

Recurrent Neural Networks

Winter 2022
Last Time: What are we Learning?

• Modern ML is amazing:
 – Unprecedented performance on difficult problems.
 – Good enough to be used in many products.
 – Deep models seem to learn increasingly-complicated features.

• Modern ML is awful:
 – Easily-fooled by out-of-distribution or adversarial examples.
 – Confuses correlation and causation.
 – Can propagate and even enhance harmful biases.
 – Does not work well for some problems (social prediction).

• For some applications current ML methods should not be used.
Some Issues with Algorithms for Social Prediction

• Does fighting over-fitting give bad predictions on sub-groups?
 – If you have 99% “Group A” in your dataset, model can do well on average by only focusing on Group A.
 • Treat the other 1% as outliers.
 – Does “not trying to overfit” mean we perform badly on some groups?
 – Can we discover what groups exist in our dataset?

• What if all institutions use the same algorithm?
 – You apply for jobs everywhere, and are always rejected by the algorithm?
 • Even though you may be arbitrarily-close to the decision threshold.

• Fixing the various societal problems with using ML algorithms:
 – Hot research topic at the moment (good thesis or course project topic).
 – We do not currently have nice “solutions” for these issues.
 • Try to think of potential confounding factors, and consider whether ML is not appropriate.
Energy Costs

• Current methods require:
 – A lot of data.
 – A lot of time to train.
 – Many training runs to do hyper-parameter optimization.

• Recent paper regarding recent deep language models:
 – Entire training procedure emits 5 times more CO$_2$ than lifetime emission of a car, including making the car.
Next Topic: Recurrent Neural Networks
Review: Word Representations

• How do we represent words with features?

• **Lexical** features:
 – Represent words using a “1 of k” encoding.
 • Where ‘k’ is the number of words in training data.
 – Or “words that appear at least 5 times in the training data”.
 – Set all these features to 0 for other words.

• **Latent-factor** models like word2vec or GloVe:
 – Unsupervised learning of a set of continuous features for each word.
 • Distances in this space may approximate semantic meaning.
 • May do sensible things for words not seen during training.
Motivation: Part of Speech (POS) Tagging

• Consider predicting part of speech for each word in a sentence:

 ![POS Tagging Diagram](https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31)

• Input is a sequence of words.
 – Could be represented as “1 of k” or using continuous vectors like word2vec.

• Output is a categorical label for each word.
 – In English there are more than 40 categories.
 • And there are some dependencies in labels (like “only 1 verb in the sentence”).

• General problem: sequence labeling.
 – Biological sequences, various language tasks, sound processing.
• We could train a neural network to predict label of a given word.
 – Above we have 1 input feature for each time.
 • But each time might have multiple features (if we use something like word2vec).
 – We are also not showing the non-linear transform or bias variables.
• But this type of model would not capture dependencies.
 – Information from earlier in sentence does influence prediction.
 • The word “desert” could be a noun or a verb depending on context.
Recurrent Neural Networks for Sequence Labeling

• Recurrent neural networks (RNNs):
 – Add connections between adjacent different times to model dependencies.
 – Add an initial hidden state.
 – Use the same parameters across time.

• Repeating parameters in different places is called parameter tying.
 – We previously saw convolutions, which use parameter tying across space.
 – By tying parameters across time, RNNs can label sequences of different lengths.
Recurrent Neural Network for Sequence Labeling

\[\hat{y}_t = V h(z_t) \]

We have a matrix \(V \) because we are doing multi-class.

\[z_t = W x_t + U h(z_{t-1}) \]

Weights on temporal connections, hidden units at previous time.

Parameters: \(W, V, U \) (and possibly \(z_0 \)).

(Notice that we use the same matrices \(\tilde{W}, \tilde{V}, \tilde{U} \) for all times \(t \).)
Recurrent Neural Network Inference

\[\hat{y}_t = \bigvee_{k=1}^{k} h(z_t) \]
\[z_t = \begin{bmatrix} W_{x_{t}} + U & h(z_{t-1}) \end{bmatrix} \]

- Assume we have:
 - ‘k’ different classes that each \(\hat{y}_t \) can take.
 - ‘m’ hidden units at each time.
 - ‘T’ times (length of sequence).

- **Cost to compute all \(\hat{y}_t \) if each time has ‘m’ units and we have ‘T’ times:**
 - We need to do an \(O(md) \) operations ‘T’ times to compute \(W_{x_t} \) for all ‘t’.
 - We need to do an \(O(km) \) operation ‘T’ times to compute \(\hat{y}_t \) for all ‘t’.
 - We need to do a \(O(m^2) \) operation ‘T’ times to compute each \(z_t \).
 - Total cost: \(O(tmd + tkm + tm^2) \).

- For the likelihood, we could use an independent softmax for each time.
 - \(p(y_{1:T} | x_{1:T}, W, V, U) = p(y_1 | x_1, W, V, U)p(y_2 | x_{1:2}, W, V, U) \cdots p(y_T | x_{1:T}, W, V, U) \).
 - Where each \(p(y_t | x_{1:T}, W, V, U) \) is given by softmax over \(\hat{y}_t \) values.
 - Conditioned on features and parameters, this assumes a “product of categoricals” model.
RNN Learning

• The objective function we use to train RNNs is the NLL:

\[f(w, v, u) = -\sum_{i=1}^{n} \sum_{t=1}^{T} \log p(y_t | x_{i:t}, w, v, u) \]

 – In the above I assume all sequences have the same length ‘T’.
 • But in practice you will often have sequences of different lengths.

• Computing gradient called “backpropagation through time” (BTT).
 – Equations are the same as usual backpropagation/chain-rule.
 • If you do it by hand, make sure to add all terms for tied parameters.
 – Automatic differentiation is commonly used.

• Usually trained with SGD.
 – Sample an example ‘i’ on each iteration, do BTT, update all parameters.
 – which has usual challenges.
RNN Learning – Extra Challenges

• Unfortunately, training RNNs presents some extra challenges:
 – Computing gradient requires a lot of memory for long sequences.
 • There are a lot intermediate calculations.
 • Make sure AD package handles matrix multiplication.
 – Parameter tieing often leads to vanishing/exploding gradient problems.
 • Consider a linear RNN and just consider the temporal ‘U’ updates:
 – $z^L = U^L z_0$.
 – For typical z_0, the quantity z^L either diverges exponentially or converges to zero exponentially.
 » If largest singular value of ‘U’ is > 1, $||z^L||$ increases exponentially with ‘L’.
 » If largest singular value of ‘U’ is < 1, $||z^L||$ converges to zero exponentially with ‘L’.
 – Usual SGD methods tend not to work well.
 • Often need to use optimizers like Adam or use gradient clipping:
 – If norm of gradient is larger than some threshold, “shrink” norm to threshold:
 \[
 g \leftarrow \frac{gu}{\|g\|} \quad \text{if } \|g\| > u
 \]
 • People are trying to explore initialization/keeping ‘U’ orthogonal.
 – So that all singular values are 1 (some positive and negative results on this).
Deep RNNs

• Instead of drawing this:

• We often use diagrams like this:
 – Up to some notation changes.
 – We connect everything in blocks connected by arrows.

• Deep RNNs add multiple hidden layers at each time:
Bi-Directional RNNs

• Sometimes later information later changes meaning:
 – "I've had a perfectly wonderful evening, but this wasn't it."
 • “Paraprosdokian”.
• Bi-directional RNNs have hidden layers running in both directions:
 – Use different parameters for the forward and backward directions.
Next Topic: Sequence to Sequence RNNs
Motivating Problem: Machine Translation

• Consider the problem of **machine translation**:
 – Input is **text from one language**.
 – Output is **text from another language** with the same meaning.

• A key difference with pixel labeling:
 – Input and output **sequences may have different lengths**.
 • We do not just “find the French word corresponding to the English word”.
 – We may not know the output length.
Sequence-to-Sequence RNNs

- **Sequence-to-sequence RNNs** encode and decode sequences:
 - Each **encoding step** has one word as input and no output.
 - Each **decoding step** outputs one word and has no input.
 - Encoding and decoding steps use different tied parameters.
 - Special "**BOS**" at end of input (says when encoding is done).
 - Special "**EOS**" at end of output (says when decoding is done).
Summary

- **Recurrent neural networks (RNNs):**
 - Neural networks for sequence prediction.
 - Have connections between hidden units at adjacent times.
 - Use parameter tying across time.
 - Allows sequences of different lengths.
 - Leads to vanishing and exploding gradients.

- **Sequence-to-Sequence RNNs:**
 - Encoding phase takes in one input at a time until we reach “BOS”.
 - Decoding phase outputs one output at a time until we output “EOS”.
 - Allows input and output sequences whose lengths differ.

- Next time: generating poetry.