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Last Time: Hierarchical Bayes

• We discussed a hierarchical Bayesian model for non-IID data:

• Example are IID within their group ‘z’.
• But we have a shared prior across the groups.

– Allows predictions for new groups or groups with few examples.

• And we are often interested in learning the hyper-parameters.
– Allows learning from data across groups.

• We talked about empirical Bayes:
– Optimize marginal likelihood to set hyper-parameters.
– Often need a hyper-prior to avoid weird results.

• Or we can take Bayesian approach:
– Integrate over parameters and hyper-parameters (usually with Monte Carlo).



https://www.frontiersin.org/articles/10.3389/fenvs.2021.491636/full



Discussion of Hierarchical Bayes

• “We finally have an elegant mathematical way to do…”

– Frequently used as a justification for hierarchical Bayesian methods.

– We will see some influential and/or neat examples later in the course.

• But often you can find a simple less-elegant solution:

– 340 slide giving features addressing similar issues to hospital example.

• Just features and gradients,
no hyper-priors or integrals.



Next Topic: Multi-Class Classification



Multi-Class Classification

• Consider classification with categorical features and labels:

• Recall our previous binary classification methods:
– Naïve Bayes.

– Tabular probabilities.

– Logistic regression.

– Neural networks.

Diagnosis

Cold

Pneumonia

Covid

Covid

Cold

X = y = 

Cough Fever Shortness

1 Low 0

1 High 1

0 High 0

0 Low 0

1 Medium 0



Product of Categoricals and Multi-Class Naïve Bayes

• We could consider multivariate categorical density estimation:
– Input: ‘n’ IID samples of categorical vectors x1, x2, x3,…, xn from population.
– Output: model giving probability for any assignment of values x1,x2,…,xd.

• Similar to product of Bernoullis, we could use product of categoricals:
– Assums xj are mutually independent (strong assumption, easy computation).

– We have a parameter 𝜃𝑗𝑐 representing probability that features ‘j’ is in category ‘c’.

• If we use product of categoricals within a generative classifier for modeling p(x,y).
– We get a version of naïve Bayes for categorical data.
– If we used posterior predictive for predictions we would get a “Bayesian naïve Bayes” method.

• It is called naïve “Bayes” because it uses Bayes rule, not because it uses Bayesian inference.

X = 

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6 SNP 7 SNP 8 SNP 9

A C C T T T A G C

A C C G T T A G G

A C C T T T A G C

A A C T T T C G G

p(x1 = A, x2 = C, x3 = C, x4 = T, x5 = T, x6 = T, x7 = A, x8 = G, x9 = C) = 0.11 



Multi-Class Naïve Bayes on MNIST Digits

• Consider fitting multi-class naïve Bayes to binarized MNIST digits.

– Visualizing the conditional Bernoulli parameter for each class:

– The class probabilities are all ~1/10.

– Generating a sample from each class:



Tabular Probabilities for Categorical Data

• Tabular parameterization (2-features and 3-categories per feature/label):
– p(y = 1 | x1 = 1, x2 = 1) = 𝜃111.

– p(y = 2 | x1 = 1, x2 = 1) = 𝜃211.

– p(y = 3 | x1 = 1, x2 = 1) = 𝜃311.

– p(y = 1 | x1 = 1, x2 = 0) = 𝜃110.

– p(y = 2 | x1 = 1, x2 = 0) = 𝜃210.

– p(y = 3 | x1 = 1, x2 = 0) = 𝜃310.

– …. (enumerate all combinations of labels and features).
• Could reduce parameters by define 𝜃311 = 1 − 𝜃111 − 𝜃211 because of “sum to 1” over ‘y’ values.

• MLE has simple closed-form solution: መ𝜃111 = 𝑛111/𝑛11.
– (number of times y=1 when x1=1 and x2=1)/(number of times x1=1 and x2=1).

– Can add a Dirichlet prior and do MAP.

– Could integrate over Θ to do Bayesian inference.



Decision Theory

• We may also have a cost for different predictions:

• In the above example:

– Cost for correct prediction is zero.

– Cost for missing pneumonia is high.

– Cost for falsely declaring pneumonia or covid is relatively high.

• Need to take antibiotics or isolate.

Predict\True Cold Pneumonia Covid

Cold 0 15 2

Pneumonia 10 0 5

Covid 5 15 0



Decision Theory

• We may also have a cost for different predictions:

• Instead of most probable label, take ො𝑦 minimizing expected cost:

– 𝔼[𝐶 ො𝑦, ෤𝑦 ] = σ𝑐 𝑝 ෤𝑦 = 𝑐 ෤𝑥, ෡Θ)𝐶(ො𝑦, 𝑐).

• Probability that true label is ‘c’, times cost of predicting ො𝑦 when true label is ‘c’.
– Marginalized over possible values of ‘c’.

• In the above example, if all probabilities are equal then you predict pneumonia.
– Mis-diagnosing as pneumonia has the smallest “cost” in this example.

Predict\True Cold Pneumonia Covid

Cold 0 15 2

Pneumonia 10 0 5

Covid 5 15 0



Bayesian Decision Theory

• Unfortunately, we get sub-optimal decisions using MLE/MAP ෡Θ.

– Relying on decoding (“point estimate”) can miss important information.

• Bayesian decision theory gives optimal actions:

– Minimize expected cost using posterior predictive estimate for class ‘c’.

• 𝔼[𝐶 ො𝑦, ෤𝑦 ] = σ𝑐 𝑝 ෤𝑦 = 𝑐 ෤𝑥, 𝑋, 𝑦, Α)𝐶( ො𝑦, 𝑐).



Linear Parameterization of Conditionals

• Tabular parameterization will overfit when you have many features.

– If each features has ‘k’ categories and ‘y’ has ‘k’ categories:

• Total number of parameters is kd+1.

– Fully-expressive, but really only useful with a small number of features.

• Similar to logistic regression:

– We can use parameterizations based on linear combinations of features.

• Have a weight wc for each class ‘c’, giving zc = wc
Tx for each class ‘c’.

– Allows us to have continuous features.

• To turn these into a probability, we typically use functions of the form:



But first…

• How do we use categorical features in regression models?

• Standard approach is to convert to a set of binary features:
– “1 of k” (“one hot”) encoding.

– What if you get a new category in the test data?
• Common approach: set all three variables to 0.

Age City Income

23 Van 22,000.00

23 Bur 21,000.00

22 Van 0.00

25 Sur 57,000.00

19 Bur 13,500.00

22 Van 20,000.00

Age Van Bur Sur Income

23 1 0 0 22,000.00

23 0 1 0 21,000.00

22 1 0 0 0.00

25 0 0 1 57,000.00

19 0 1 0 13,500.00

22 1 0 0 20,000.00



Softmax Function and Unnormalized Probabilities

• We want to map from the ‘k’ real values of zc to probabilities.

– To do this, we typically use the softmax function:

• This is similar to when we used unnormalized probabilities:

– We converted unnormalized (but positive) values ෨𝜃𝑐 to probabilities.

– Softmax is similar but uses exponentiation since the zc may be negative.

• You could use other operations, but exponential function has many nice properties.



Softmax Function and Binary Logistic Regression

• We want to map from the ‘k’ real values of zc to probabilities.

– To do this, we typically use the softmax function:

• We obtain the sigmoid function as a special case:

– With two classes and z2=0:

– So linearly-parameterized softmax generalizes logistic regression.



Inference in Multi-Class Logistic Regression

• Using zc = wc
Tx in the softmax function as probabilities gives:

– This is the likelihood for multi-class logistic regression.

• To do inference in the model, first compute the zc = wc
Tx values:

– Cost of this is O(dk): need to do ‘k’ dot products with ‘d’ elements.

• Plug the zc values into softmax to get probabilities.

– And then you can do inference as if it was a categorical distribution.



Review: Softmax Loss and its Gradient

• Take negative log-likelihood (‘n’ IID examples) to obtain softmax NLL:

– Softmax loss is equivalent to what people call the cross-entropy.

– This is a convex and differentiable, so we can use gradient descent. 
• Convexity of the second term may not be obvious.

– We often add a regularizer such as an L2-regularizer.

• The gradient has a special form:

• If you do not like probabilities,
can alternately use multi-class SVM losses (“discriminant function”).



Next Topic: Neural Networks for Multi-Class



Multi-Class Linear Classification

• We are now discussing multi-class classification:

• For example, classify image as “cat”, “dog”, or “person”.

– There is one correct label.

https://www.youtube.com/watch?v=tntOCGkgt98



Previously: Multi-Label Classification

• We previously saw neural networks for multi-label classification:

• Which of the ‘k’ objects are in this image?

– There may be more than one “correct” class label.

http://image-net.org/challenges/LSVRC/2013/



Neural Network for Multi-Label Classification
• Multi-label classification a neural network:

– Input is connected to a hidden layer.
– Hidden layer is connected to multiple output units.

– We convert to probabilities for each label using sigmoid element-wise:

– We predict by maximizing p(yc | x, W, V) for yc = +1 and yc = -1 for each ‘c’ (predict each class).
– We train by minimizing sum of negative logs of these probabilities over ‘c’.



Neural Network for Multi-Class Classification
• Multi-class classification a neural network:

– Input is connected to a hidden layer (same as multi-label).
– Hidden layer is connected to multiple output units (same as multi-label).

– We convert to probabilities for each class using softmax to the ො𝑦𝑐 values.

– We predict by maximizing p(y | x, W, V) over all each ‘c’ (one prediction across classes).
– We train by minimizing negative log of this probability (summing across examples).



Discussion: Multi-Class Neural Networks

• Binary versus multi-label versus multi-class neural networks:
– Network can be the same except for the last layer (same encoding steps).

• Training issues/challenges/tricks are the same. 

– We often only need to change last layer for new problems.
• You can pre-train multi-class neural network on multi-label (or go in the opposite direction).

• As in Part 1, we can consider convolutional neural networks:

• For pixel labeling, we can again use fully-convolutional networks.

– Each pixel comes from one class, but we can recognize multiple labels in same image.
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Convolution ReLU Pool Convolution ReLU Pool Convolution ReLU
Up-

sample



Summary
• Multi-class classification:

– Supervised learning with categorical labels.

• Tabular probabilities for conditional categorical features/labels:
– One parameter for each combination of label and features.
– Fully-expressive but has an exponential number of parameters.

• Bayesian decision theory:
– Given a cost function, optimize expected cost under posterior predictive.

• Softmax function:
– Converts ‘k’ real numbers into a probability.

• Multi-class logistic regression:
– Take linear combination for each class, use softmax to get a probability.
– Differentiable, convex, and MLE “matches probabilities to labels”.

• Multi-class neural networks:
– Same as binary and multi-label neural networks, just use categorical likelihood is last layer.

• Next time: are CNNs learning something sensible?



Softmax NLL vs. Cross-Entropy

• Multi-class objective often written as minimizing cross-entropy:

• The indicator function is zero except for true label yi:

• When we plug in the softmax likelihood, we get the softmax NLL.

– So cross-entropy is the softmax NLL with extra terms that do nothing.

• Cross-entropy would make more sense if training data had “soft” assignments to 
classes.



Loss vs. Objective vs. Error vs. Cost


