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Learning the Prior from Data?

• How do we tune the hyper-parameters in Bayesian methods?

• Adapting our usual validation set approach:
– Split into a training and validation set.
– For different hyper-parameter values:

• Compute some measure of “test error”.
– For density estimation, this could be the posterior predictive for the validation set given the training set.
– For supervised learning, you could make predictions on the validation set and measure validation set error.

– Choose the hyper-parameters with the highest value.

• Advantage:
– Directly tunes hyper-parameters to achieve good performance on new data.

• Disadvantage:
– Optimization bias: can start to overfit to the validation set.
– Slow! If you try 10 values for ‘k’ hyper-parameters, there are 10k values to try.



Learning the Prior from Data?
• Empirical Bayes:

– Optimize the likelihood of the data given the hyper-parameters.

• This is called the “marginal likelihood” or the “evidence” function.
– It can be computed by marginalizing over parameters.

– It is the denominator we ignore when we do MAP estimation: 𝑝 Θ 𝑋) =
𝑝 𝑋 Θ)𝑝 Θ Α)

𝑝 𝑋 Α)
.

• Empirical Bayes is also called “type II maximum likelihood” or “evidence maximization”.

– This is doing MLE for the hyper-parameters.

• Advantage:
– Fast! Might have a closed-form solution or allow using gradient descent (assuming conjugate prior).

• Disadvantage:
– It is not directly testing the performance on new data.
– Optimization bias: can start to overfit the marginal likelihood (could increase/decrease test performance).



Marginal Likelihood with Conjugate Priors

• Marginal likelihood has closed-form when using conjugate priors.

– It is proportional to ratio of posterior/prior normalizing constants.

• We will show this for the Bernoulli-Beta model:



Marginal Likelihood with Conjugate Priors

• For the Bernoulli-beta model we have marginal likelihood of:

– For other distributions the ratio might be multiplied by a constant.
• By similar argument, posterior predictive for new data with counts 𝑛1 and 𝑛0 is:

• Empirical Bayes maximizes marginal likelihood in terms of 𝛼 and 𝛽.
– More useful when we have many hyper-parameters.

– Could be used for categorical-Dirichlet model’s ‘k’ hyper-parameters.

– In some cases is equivalent to leave-one-out cross-validation.
• The most-extreme form of cross-validation (in a good way).



Learning Principles for Predicting “0 or 1 Next?”

• Maximum likelihood:

• MAP:

• Bayesian (no “learning”):

• Empirical Bayes:



Bayesian Hierarchy

• Maximum likelihood estimation can do weird things.
– Predict zero probability for events not seen in training.
– Pick a highly-unlikely model that exactly fits the training data.

• MAP estimation improves MLE by adding a prior on the paramters..
– But by only using one parameter estimate this leads to sub-optimal decisions.

• Bayesian inference over parameters makes optimal decisions.
– Avoids overfitting, and decisions follow rules of probability.

• No optimization bias because no optimization.

– But this relies on have a good choice of prior/hyper-parameters.

• Empirical Bayes uses data to find a good prior.
– Tends to be less sensitive to overfitting than regular MLE.
– But has an optimization bias: can still overfit the hyper-parameters.
– In my experience, more likely to “just be weird” than actual overfitting.

https://www.sweetsugarbelle.com/2013/01/that-funky-bandaid-color/



Bayesian Hierarchy

• To fix empirical Bayes issues:

– We can put a prior on the hyper-parameters.

– Sometimes called a “hyper-prior”, that has “hyper-hyper-parameters”.
• Seriously!

– But by only using one parameter estimate this leads to sub-optimal decisions.

• So use Bayesian inference over parameters and hyper-parameters:

– You would integrate over all values of the parameters and hyper-parameters.
• Unfortunately, we often do not have a “conjugate hyper-prior” for the prior.

– This avoids overfitting, but now we rely on having a good choice of hyper-prior.

• And then could consider empirical Bayes over hyper-hyper-parameters…

– This was one the hottest ML topics before deep learning came back.

https://en.wikipedia.org/wiki/Turtles_all_the_way_down
https://www.sweetsugarbelle.com/2013/01/that-funky-bandaid-color/



Next Topic: Hierarchical Bayes



Motivating Example: Medical Treatment

• Consider modeling probability that a medical treatment will work.
– But this probability depends on the hospital where treatment is given.

• So we have binary examples x1, x2,…,xn.
– We also have a number zi saying “what population it came from”.

• This is a common non-IID setting: examples are only IID within each group.

• Other examples:
– “What are the covid proportions for different cities?”
– “Which of my stores will sell over 100 units of product?”
– “What proportion of users will click my adds on different websites?”
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Independent Model for Each Group 

• We could consider a simple independent model for each group:

– Use a parameter 𝜃𝑗 for each hospital ‘j’.

– Fit each 𝜃𝑗 using only the data from hospital ‘j’.

• If we have ‘k’ hospitals, we solve ‘k’ IID learning problems.

• Problem: we may not have a lot of data for each hospital.

– Can we use data from a hospital with a lot of data to learn about others?

– Can we use data across many hospitals to learn with less data?

– Can we say anything about a hospital with no data?



Dependencies from Using a Common Prior

• Common approach: assume the 𝜃𝑗 are drawn from a common prior.

• This introduces a dependency between the 𝜃𝑗 values.
– For example, if 𝛼 = 5 and 𝛽 = 2:

• This is like we imagine seeing 5 extra “success” and 2 “failures” at each hospital.

• In this setting the 𝜃𝑗 are conditionally independent given 𝛼 and 𝛽.

– With a fixed prior, we cannot learn about one 𝜃𝑗 using data from another.

• So for a new hospital, the posterior over 𝜃𝑗 is the prior.

• In this setting, we want to learn the hyper-parameters.



Hierarchical Bayesian Modeling

• Consider using a hyper-prior:

– Treating hyper-parameters as random variables, can learn across groups.

• With empirical Bayes we get fixed estimates of 𝛼 and ෨𝛽.

– Learned prior gives better estimates of 𝜃𝑗 for groups with few examples.

– For a new hospital, posterior would default to the learned prior.

• With hierarchical Bayes we would integrate over the 𝜃𝑗s, 𝛼, and 𝛽.

– “Very Bayesian” to handle the unknown parameters/hyper-parameters.

– Hierarchical models almost always need approximations like Monte Carlo.



Discussion of Hierarchical Bayes

• Many practitioners really like Bayesian models.
– “Gosh darn, I love Bayesian ensemble methods!”

• From a domain expert I was collaborating with.

– Domain expertise can be incorporated into the design of [hyper-]priors.

– Can model various ways your data may not be IID.

– We will see some more Bayes tricks.

• Advantage is the nice mathematically framework:
– Write out all your prior knowledge of relationships between variables.

– Integrate over variables you do not know.

• Disadvantages:
– It can be hard to exactly encode your prior beliefs.

– The integrals get ugly very quickly (there is no “automatic integration”).



Summary

• Marginal likelihood:
– Probability of data given hyper-parameters (integrating over parameters).

• Empirical Bayes (“type II MLE” or “evidence maximization”).
– Tune hyper-parameters by optimizing marginal likelihood.
– Can be used to cheaply tune a huge number of hyper-parameters.

• If you can efficiently do/approximate the integrals.

• Hyper-priors:
– Putting a prior on the prior.
– Often needed to make empirical Bayes work, or in hierarchical Bayes.

• Hierarchical Bayes:
– Building models with multiple levels of priors.
– Often allows learning in non-standard scenarios.

• We considered the case of non-IID grouped data.

• Next Time: everyone’s favourite loss to take the gradient of.


