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Learning the Prior from Data?

How do we tune the hyper-parameters in Bayesian methods?

Adapting our usual validation set approach:
— Split into a training and validation set.

— For different hyper-parameter values:

* Compute some measure of “test error”.
— For density estimation, this could be the posterior predictive for the validation set given the training set.
— For supervised learning, you could make predictions on the validation set and measure validation set error.

— Choose the hyper-parameters with the highest value.

Advantage:
— Directly tunes hyper-parameters to achieve good performance on new data.

Disadvantage:
— Optimization bias: can start to overfit to the validation set.
— Slow! If you try 10 values for ‘k’ hyper-parameters, there are 10* values to try.



Learning the Prior from Data?

* Empirical Bayes:
— Optimize the likelihood of the data given the hyper-parameters.
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* This is called the “marginal likelihood” or the “evidence” function.

— It can be computed by marginalizing over parameters.
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— Itis the denominator we ignore when we do MAP estimation: p(0 | X) = %
* Empirical Bayes is also called “type [l maximum likelihood” or “evidence maximization”.

— This is doing MLE for the hyper-parameters.

 Advantage:
— Fast! Might have a closed-form solution or allow using gradient descent (assuming conjugate prior).
* Disadvantage:

— Itis not directly testing the performance on new data.
— Optimization bias: can start to overfit the marginal likelihood (could increase/decrease test performance).



Marginal Likelihood with Conjugate Priors

 Marginal likelihood has closed-form when using conjugate priors.

— It is proportional to ratio of posterior/prior normalizing constants.

e We will show this for the Bernoulli- Beta model:
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Marginal Likelihood with Conjugate Priors

* For the Bernoulli-beta model we have marginal likelihood of:
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* Empirical Bayes maximizes marginal likelihood in terms of @ and f.
— More useful when we have many hyper-parameters.
— Could be used for categorical-Dirichlet model’s ‘k’ hyper-parameters.

— In some cases is equivalent to leave-one-out cross-validation.
* The most-extreme form of cross-validation (in a good way).



Learning Principles for Predicting “O or 1 Next?”

Maximum likelihood:
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Empirical Bayes:
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Bayesian Hierarchy

Maximum likelihood estimation can do weird things.
— Predict zero probability for events not seen in training.
— Pick a highly-unlikely model that exactly fits the training data.

MAP estimation improves MLE by adding a prior on the paramters..
— But by only using one parameter estimate this leads to sub-optimal decisions.

Bayesian inference over parameters makes optimal decisions.

— Avoids overfitting, and decisions follow rules of probability.
* No optimization bias because no optimization.

— But this relies on have a good choice of prior/hyper-parameters.

Empirical Bayes uses data to find a good prior.

— Tends to be less sensitive to overfitting than regular MLE.

— But has an optimization bias: can still overfit the hyper-parameters.

— In my experience, more likely to “just be weird” than actual overfitting. o ‘/(
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Bayesian Hierarchy

* To fix empirical Bayes issues:

— We can put a prior on the hyper-parameters. < 2
— Sometimes called a “hyper-prior”, that has “hyper-hyper-parameters”. SR
e Seriously!
— But by only using one parameter estimate this leads to sub-optimal decisions.
* So use Bayesian inference over parameters and hyper-parameters:

— You would integrate over all values of the parameters and hyper-parameters.

* Unfortunately, we often do not have a “conjugate hyper-prior” for the prior.

— This avoids overfitting, but now we rely on having a good choice of hyper-prior.

* And then could consider empirical Bayes over hyper-hyper-parameters...
— This was one the hottest ML topics before deep learning came back.




Next Topic: Hierarchical Bayes



Motivating Example: Medical Treatment

* Consider modeling probability that a medical treatment will work.
— But this probability depends on the hospital where treatment is given.

* So we have binary examples x1, x?,...,x".

— We also have a number z' saying “what population it came from”.
* This is a common non-IID setting: examples are only IID within each group.
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 Other examples:
— “What are the covid proportions for different cities?”
— “Which of my stores will sell over 100 units of product?”
— “What proportion of users will click my adds on different websites?”



Independent Model for Each Group

 We could consider a simple independent model for each group:

— Use a parameter 6; for each hospital J'.
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— Fit each 6; using only the data from hospital J'.

* If we have ‘k’ hospitals, we solve ‘k’ IID learning problems.

* Problem: we may not have a lot of data for each hospital.
— Can we use data from a hospital with a lot of data to learn about others?
— Can we use data across many hospitals to learn with less data?
— Can we say anything about a hospital with no data?



Dependencies from Using a Common Prior

Common approach: assume the 6; are drawn from a common prior.
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This introduces a dependency between the 6; values.

— For example, ifa = 5and f = 2:
* This is like we imagine seeing 5 extra “success” and 2 “failures” at each hospital.

In this setting the 0; are conditionally independent given a and (.

— With a fixed prior, we cannot learn about one 6; using data from another.

* So for a new hospital, the posterior over 6; is the prior.

In this setting, we want to learn the hyper-parameters.



Hierarchical Bayesian Modeling

e Consider using a hyper-prior:
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— Treating hyper-parameters as random variables, can learn across groups.

* With empirical Bayes we get fixed estimates of & and ﬁ
— Learned prior gives better estimates of 6; for groups with few examples.
— For a new hospital, posterior would default to the learned prior.

* With hierarchical Bayes we would integrate over the 6;s, a, and (.

— “Very Bayesian” to handle the unknown parameters/hyper-parameters.
— Hierarchical models almost always need approximations like Monte Carlo.



Discussion of Hierarchical Bayes

* Many practitioners really like Bayesian models.

— “Gosh darn, | love Bayesian ensemble methods!”
 From a domain expert | was collaborating with.

— Domain expertise can be incorporated into the design of [hyper-]priors.
— Can model various ways your data may not be IID.
— We will see some more Bayes tricks.

* Advantage is the nice mathematically framework:
— Write out all your prior knowledge of relationships between variables.
— Integrate over variables you do not know.

* Disadvantages:

— It can be hard to exactly encode your prior beliefs.
— The integrals get ugly very quickly (there is no “automatic integration”).



Summary

Marginal likelihood:

— Probability of data given hyper-parameters (integrating over parameters).

Empirical Bayes (“type Il MLE” or “evidence maximization”).
— Tune hyper-parameters by optimizing marginal likelihood.

— Can be used to cheaply tune a huge number of hyper-parameters.
* If you can efficiently do/approximate the integrals.

Hyper-priors:

— Putting a prior on the prior.

— Often needed to make empirical Bayes work, or in hierarchical Bayes.
Hierarchical Bayes:

— Building models with multiple levels of priors.

— Often allows learning in non-standard scenarios.
* We considered the case of non-IID grouped data.

Next Time: everyone’s favourite loss to take the gradient of.



