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Last Time: Bayesian Learning

* We contrasted the MAP vs Bayesian learning to making predictions:
— For binary variable variables the two approaches can be written:
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— MAP makes predictions based only on the 8 with highest posterior.
— Bayesian method weights all possible 6 by their posterior.
* We discussed conjugate priors for a given likelihood.

— Prior and posterior come from same “family” of distributions.
— Often makes inference easier.
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Digression: Review of Independence

Let A and B be random variables taking valuesa € A and b € B.

We say that A and B are independent if for all a and b we have:
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To denote independence of A and B we often use the notation:
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The product of Bernoullis model assumes mutual independence:

X, | X, For all 5" gud )
\/—\/\_/
+‘ns Vs “" ’I"'\.\Iwc.,“ rw"



Digression: Review of Independence

* For independent 4 and B we have:
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* We can also use this as a more intuitive definition:
— A and B are independent if for all a and b where p(b) # 0 we have:

r)(u“)’f(“)

* In words: “knowing b tells us nothing about a” (and vice versa: p(b | a)=p(b)).
* This will often simplify calculations.

e Useful fact that can help determine if variables are independent:
— A 1L Biffp(a,b) = f(a)g(b) for some functions f and g.



Digression: Review of Conditional Independence

We say that A is conditionally independent of B given C if:
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— Same as independence definition, but “knowing extra stuff” C.
We can alternately use the more-intuitive definitions:
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— “If you know C, then also knowing B would tell you nothing about A.”

We often write thisas: A [ B | C

In naive Bayes we assume x; L x;| y for all " and "

— Which we saw makes inference and learning easy.



Standard ML Independence Assumptions (MEMORIZE)

In machine learning we typically make a standard set of independence assumptions:
— 1ID assumption: training examples are independent of each other.
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e “If le x|, it d k i le xJ likely.”
you see example x!, it does not make seeing example x' more likely.
— 1 like to think of this as a conditional independence assumption, x! L x¥| D (they are independent conditioned on the hidden “data-generating process” D).

— Independence of data given parameters. 4
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* “If we know the parameters, the examples are independent of each other”
— Again, | find this more intuitive if you think of this as x! L x¥| 8, D.

— Independence of features ‘X’ and parameters ‘w’ in discriminative models.
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* Discriminative models assume parameters are fixed, and ‘w’ just transforms them to ‘y’ (knowing ‘X’ without ‘y’ tells you nothing).
— Conditional independence of data and hyper-parameters, given parameters:
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* “Given the parameters, the hyper-parameters do not tell you anything more about the data.
Later we will discuss the models that lead to these assumptions, and testing independence in a model.



Bayesian Approach for Bernoulli-Beta Model

* Consider probability that x3= 1 after x'=1 and x?=1 with beta prior:
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* Now use that posterior is a beta with parameters & and f.
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Bayesian Approach for Bernoulli-Beta Model

* The correct probability of seeing a “head” after 2 flips in Bernoulli-beta:
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e With a uniform prior, (¢ = f = 1), then p(x3 =1 | x!=1, x’=1, a, B) = %.
— The MAP under a uniform prior (which is MLE) would be 6 =1.

* Itis less confident than MAP since it considers all possible 6 values, not just the most likely.

* Looks like Laplace smoothing, but trusts data less for same a and .
— For other models, the difference between MAP and Bayes can be larger.



Effect of Prior in Bernoulli-Beta

* In Bayesian approach, hyper-parameters a and 8 can be thought of as “pseudo-counts”.
— The number of 0 and 1 outcomes you have in your imagination before you see any data.

* |If we see 3 “heads” (x!=1,x?=1,x3=1), the probability of a 4" under different priors:
— Beta(1,1) prior is like seeing 1 imaginary head and 1 tail before flipping.
* Probability is 4/5, even though all 8 values under this uniform prior “equally likely”.

— Beta(3,3) prior is like seeing 3 imaginary heads and 3 tails.
* Probability is 0.667. This is a stronger bias towards 0.5.

— Beta(100,1) prior is like seeing 100 imaginary heads and 1 tail.
* Probability is 0.990. This is a strong bias towards high 6 values.

— Beta(0.01,0.01) prior biases towards having an unfair coin (head or tail).
* Probability is 0.997.
* Called “improper” prior (does not integrate to 1), but posterior can be “proper”.

 We might hope to use an “uninformative” prior to not bias results.
— We saw that with the “uniform” prior, Beta(1,1), it biases towards 0.5.
— See bonus for additional details on why “uninformative” can be hard/ambiguous/impossible/undesirable.



Motivation: Controlling Complexity

For many application, we need complicated models.
But complex models can overfit.
So what should we do?

In CPSC 340 we see two ways to reduce overfitting:
— Model averaging (like in random forests).
— Regularization (like in L2-regularized linear regression).

Bayesian methods combine both of these.

— Average over “models”, weighted by posterior (which includes regularizer).
* Recall that the regularizer corresponds to the negative logarithm of the prior.

— This allows you fit extremely-complicated models without overfitting.



MAP vs Bayes for Categorical-Dirichlet

 MAP (regularized optimization) approach maximizes over parameters:
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— Posterior contains regularizer, so this is
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Ingredients of Bayesian Inference (MEMORIZE)

1. Likelihood p(X | ©)
— Probability of seeing data given parameters.
2. Priorp(0@ | A).
— Belief that parameters are correct before we have seen data.
3. Posteriorp(0 | X,A).
— Probability that parameters are correct after we have seen data.
— MAP maximizes, but Bayesian approach uses the whole distribution.

4. Posterior predictive p(X | X, A) (NEW).

— Probability of new data X given old data X, integrating over parameters.
« Specifically, we integrate the likelihood of X times the posterior of 8 given X.

— Bayesian approach uses this distribution for inference.



Bayesian Approach: Discussion

e Our previous “learn then predict” approaches (MLE and MAP):
— Optimize parameters 6 (learning).
— Do inference with the parameter estimate 8 (inference).

* Bayesian approach doesn’t have a separate “learning phase”.
— There is no optimization of the parameter 6.

— You just skip to doing inference with the posterior predictive.
* Consider all parameters 6.

* |n practice, it often still looks like “learn then predict”.
— Characterize the form of the posterior (“learning”).
— Make predictions by doing integrals with the posterior (inference).



Bayesian Approach: Discussion

The Bayesian approach is the optimal way to use the prior.
— It is what the rules of probability say we should do.

Though if the prior is mis-leading, Bayesian approach can be harmful.
— Bayesian approach historically criticized since it requires “subjective” prior.
— But all models are based on “subjective” assumptions, sometime hidden!

As we see more data, Bayesian posterior concentrates on MLE.
— MLE/MAP/Bayes usually agree as the data size increase.

Real problem with the Bayesian approach is that integrals are hard.

— Posterior and posterior predictive only have a nice form with conjugate priors.
* Otherwise, you need to use methods like Monte Carlo or “variational” methods for inference.



Monte Carlo for Bayesian Inference

e Bayesian inference tasks usually involve integral parameters.
— Where we compute some function ‘g’ times the posterior.
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— For example, if g(8) = p(X | 8) we get the posterior predictive. o Vorlny,

* |f you can sample from the posterior, you can use Monte Carlo:

1. Generate samples 61, 6%,...,0¢.

2. Approximate the integral bylzt
t 15

 Sampling from the posterior is easy with standard conjugate priors.
— We will discuss how to sample from continuous distributions later.
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Summary

e Conditional independence of A and B [given C].
— “Knowing A tells you nothing about B [if you also know C]”.
— Independence assumptions often simplify computations.

— In ML we make a standard set of independence assumptions.
* Data and hyper-parameters are independent given parameters.

* Bayesian learning.
— Do inference with the posterior predictive (no “learning” phase).
— Can be viewed as regularizing and averaging (harder to overfit).
— Involves solving unpleasant integrals (unless you have a conjugate prior).

* Next time: putting a prior on the prior and relaxing IID.



Uninformative Priors and Jeffreys Priors

We might want to use an uninformative prior to not bias results.
— But this is often hard/impossible to do.

We might think the uniform distribution, Beta(1,1), is uninformative.
— But posterior will be biased towards 0.5 compared to MLE.
— And if you use a different parameterization it won’t stay uniform.

We might think to use “pseudo-count” of 0, Beta(0,0), as uninformative.
— But posterior isn’t a probability until we see at least one head and one tail.

Some argue that the “correct” uninformative prior is Beta(0.5,0.5).
— This prior is invariant to the parameterization, which is called a Jeffreys prior.



