CPSC 440: Machine Learning

Bayesian Learning Winter 2022

Last Time: Bayesian Learning

- We contrasted the MAP vs Bayesian learning to making predictions:
 - For binary variable variables the two approaches can be written:

MAP: Find $\hat{G} \in \operatorname{argmax} \tilde{Z}_p(\hat{\Theta}|X)$ (compute $p(x = 1|\hat{\Theta})$

Bayestan:

$$p(x = 1 | X) = \int p(x = 1, 0 | X) d\theta$$

$$p(x = 1 | X) = \int p(x = 1, 0 | X) d\theta$$

$$p(x = 1 | \theta) p(\theta | X) d\theta$$

$$p(x = 1 | \theta) p(\theta | X) d\theta$$

- MAP makes predictions based only on the $\hat{\theta}$ with highest posterior.
- Bayesian method weights all possible θ by their posterior.
- We discussed conjugate priors for a given likelihood.
 - Prior and posterior come from same "family" of distributions.
 - Often makes inference easier.

Digression: Review of Independence

- Let A and B be random variables taking values $a \in \mathcal{A}$ and $b \in \mathcal{B}$.
- We say that A and B are independent if for all a and b we have:

p(a, b) = p(a)p(b)

- To denote independence of A and B we often use the notation: $A \perp B$
- The product of Bernoullis model assumes mutual independence:

Digression: Review of Independence

• For independent *A* and *B* we have:

$$p(a|b) = p(a,b) = p(a)p(b) = p(a)$$

- We can also use this as a more intuitive definition:
 - A and B are independent if for all a and b where $p(b) \neq 0$ we have:

$$p(a|b) = p(a)$$

- In words: "knowing b tells us nothing about a" (and vice versa: p(b | a)=p(b)).
- This will often simplify calculations.
- Useful fact that can help determine if variables are independent: $-A \perp B$ iff p(a, b) = f(a)g(b) for some functions f and g.

Digression: Review of Conditional Independence

• We say that A is conditionally independent of B given C if:

p(a, b | c) = p(a | c)p(b | c) for all 'a', 'b', and 'c' with $p(c) \neq 0$

Same as independence definition, but "knowing extra stuff" C.

• We can alternately use the more-intuitive definitions: $p(q \mid b, c) = p(q \mid c)$ or $p(b \mid a, c) = p(b \mid c)$

- "If you know *C*, then *also* knowing *B* would tell you nothing about *A*."

- We often write this as: $A \perp B \mid C$
- In naïve Bayes we assume $x_i \perp x_j \mid y$ for all 'i' and 'j'.
 - Which we saw makes inference and learning easy.

Standard ML Independence Assumptions (MEMORIZE)

- In machine learning we typically make a standard set of independence assumptions:
 - IID assumption: training examples are independent of each other.

- "If you see example xⁱ, it does not make seeing example x^j more likely."
 - I like to think of this as a conditional independence assumption, $x^i \perp x^k \mid D$ (they are independent conditioned on the hidden "data-generating process" D).
- Independence of data given parameters.

- "If we know the parameters, the examples are independent of each other"
 - Again, I find this more intuitive if you think of this as $x^i \perp x^k | \theta, D$.
- Independence of features 'X' and parameters 'w' in discriminative models.

- Discriminative models assume parameters are fixed, and 'w' just transforms them to 'y' (knowing 'X' without 'y' tells you nothing).
- Conditional independence of data and hyper-parameters, given parameters:

$$X \perp \propto, \beta \mid \Theta$$

- "Given the parameters, the hyper-parameters do not tell you anything more about the data.
- Later we will discuss the models that lead to these assumptions, and testing independence in a model.

Bayesian Approach for Bernoulli-Beta Model

- Consider probability that $x^{3} = 1$ after $x^{1} = 1$ and $x^{2} = 1$ with beta prior: $p(x^{3} = 1 \mid X, x, \beta) = \int_{\Theta} p(x^{3} = 1, 6 \mid X_{1}\alpha_{1}\beta) d\theta \qquad (marginalization rate)$ $\int_{\Theta} p(x^{3} = 1 \mid \Theta, X_{1}\alpha_{2}\beta) p(\Theta \mid X_{1}\alpha_{1}\beta) d\Theta \qquad (product rate)$ $= \int_{\Theta} p(x^{3} = 1 \mid \Theta) p(\Theta \mid X_{1}\alpha_{2}\beta) d\Theta \qquad ((undit limber in dependence))$ $= \int_{\Theta} p(x^{3} = 1 \mid \Theta) p(\Theta \mid X, \alpha_{2}\beta) d\Theta \qquad ((undit limber in dependence))$
- Now use that posterior is a beta with parameters $\tilde{\alpha}$ and $\tilde{\beta}$.

=
$$\int_{\Theta} \Theta \operatorname{Beta}(\tilde{\alpha}, \tilde{\beta})$$
 (definition of bernulli and form of paterior)
= $E[\Theta]$ (expected value of Θ under pasterior distributy)
= $\frac{\tilde{\alpha}}{\tilde{\alpha} + \tilde{b}}$ (formula for expected value of Θ under beta)

Bayesian Approach for Bernoulli-Beta Model

• The correct probability of seeing a "head" after 2 flips in Bernoulli-beta:

$$\rho(x^{3}=1 | X_{j}\alpha_{j}B) = \int_{0}^{1} \rho(x^{3}-1, \Theta | X_{j}\alpha_{j}B) d\Theta$$
$$= \frac{\tilde{\alpha}}{\tilde{\alpha}+\tilde{\beta}} \quad (1_{a}s+ 2^{|i|}d_{\theta})$$
$$= \frac{n_{i}+\alpha}{(n_{i}+\alpha_{i})+(n_{0}+\tilde{\beta})}$$

- With a uniform prior, ($\alpha = \beta = 1$), then p(x³ = 1 | x¹=1, x²=1, α , β) = ³/₄.
 - The MAP under a uniform prior (which is MLE) would be $\theta = 1$.
 - It is less confident than MAP since it considers all possible θ values, not just the most likely.
- Looks like Laplace smoothing, but trusts data less for same α and β .
 - For other models, the difference between MAP and Bayes can be larger.

Effect of Prior in Bernoulli-Beta

- In Bayesian approach, hyper-parameters α and β can be thought of as "pseudo-counts".
 - The number of 0 and 1 outcomes you have in your imagination before you see any data.
- If we see 3 "heads" ($x^1=1, x^2=1, x^3=1$), the probability of a 4th under different priors:
 - Beta(1,1) prior is like seeing 1 imaginary head and 1 tail before flipping.
 - Probability is 4/5, even though all θ values under this uniform prior "equally likely".
 - Beta(3,3) prior is like seeing 3 imaginary heads and 3 tails.
 - Probability is 0.667. This is a stronger bias towards 0.5.
 - Beta(100,1) prior is like seeing 100 imaginary heads and 1 tail.
 - Probability is 0.990. This is a strong bias towards high θ values.
 - Beta(0.01,0.01) prior biases towards having an unfair coin (head or tail).
 - Probability is 0.997.
 - Called "improper" prior (does not integrate to 1), but posterior can be "proper".
- We might hope to use an "uninformative" prior to not bias results.
 - We saw that with the "uniform" prior, Beta(1,1), it biases towards 0.5.
 - See bonus for additional details on why "uninformative" can be hard/ambiguous/impossible/undesirable.

Motivation: Controlling Complexity

- For many application, we need complicated models.
- But complex models can overfit.
- So what should we do?
- In CPSC 340 we see two ways to reduce overfitting:
 - Model averaging (like in random forests).
 - Regularization (like in L2-regularized linear regression).
- Bayesian methods combine both of these.
 - Average over "models", weighted by posterior (which includes regularizer).
 - Recall that the regularizer corresponds to the negative logarithm of the prior.
 - This allows you fit extremely-complicated models without overfitting.

MAP vs Bayes for Categorical-Dirichlet

• MAP (regularized optimization) approach maximizes over parameters:

$$\widehat{(4)} \quad (\text{ orgman} \quad \sum p(\Theta | X) \widehat{\xi}$$

$$= \operatorname{avgman} \quad \sum p(X | \Theta) p(\Theta) \widehat{\xi} \quad (\text{ Bayns' subject } \text{ on the hyper products } X$$

$$x: (\widehat{(0)}) = \widehat{(0)}_{C}$$

• Bayesian approach predicts by integrating over possible parameters:

- Considers all possible Θ , and weights prediction by posterior for Θ .
 - Posterior contains regularizer, so this is averaging and regularizing.

(STELGE) (mean of Dirichlet posterior)

Ingredients of Bayesian Inference (MEMORIZE)

- **1.** Likelihood $p(X \mid \Theta)$
 - Probability of seeing data given parameters.
- **2.** Prior $p(\Theta | A)$.
 - Belief that parameters are correct before we have seen data.
- **3.** Posterior $p(\Theta | X, A)$.
 - Probability that parameters are correct after we have seen data.
 - MAP maximizes, but Bayesian approach uses the whole distribution.
- 4. Posterior predictive $p(\tilde{X} \mid X, A)$ (NEW).
 - Probability of new data \tilde{X} given old data X, integrating over parameters.
 - Specifically, we integrate the likelihood of \tilde{X} times the posterior of θ given X.
 - Bayesian approach uses this distribution for inference.

Bayesian Approach: Discussion

- Our previous "learn then predict" approaches (MLE and MAP):
 - Optimize parameters θ (learning).
 - Do inference with the parameter estimate $\hat{\theta}$ (inference).
- Bayesian approach doesn't have a separate "learning phase".
 - There is no optimization of the parameter θ .
 - You just skip to doing inference with the posterior predictive.
 - Consider all parameters θ .
- In practice, it often still looks like "learn then predict".
 - Characterize the form of the posterior ("learning").
 - Make predictions by doing integrals with the posterior (inference).

Bayesian Approach: Discussion

- The Bayesian approach is the optimal way to use the prior.
 - It is what the rules of probability say we should do.
- Though if the prior is mis-leading, Bayesian approach can be harmful.
 - Bayesian approach historically criticized since it requires "subjective" prior.
 - But all models are based on "subjective" assumptions, sometime hidden!
- As we see more data, Bayesian posterior concentrates on MLE.
 MLE/MAP/Bayes usually agree as the data size increase.
- Real problem with the Bayesian approach is that integrals are hard.
 - Posterior and posterior predictive only have a nice form with conjugate priors.
 - Otherwise, you need to use methods like Monte Carlo or "variational" methods for inference.

Monte Carlo for Bayesian Inference

- Bayesian inference tasks usually involve integral parameters.
 - Where we compute some function 'g' times the posterior.

$$\int_{\Theta} g(\Theta) \rho(\Theta \mid X, \alpha, \beta) d\Theta = E_{\Theta \mid X, \alpha, \beta} \left[g(\Theta) \right]$$

- For example, if $g(\theta) = p(\tilde{x} \mid \theta)$ we get the posterior predictive.

- If you can sample from the posterior, you can use Monte Carlo:

 - 1. Generate samples θ^1 , θ^2 ,..., θ^t . 2. Approximate the integral by: $t = \eta(\Theta^i)$
- Sampling from the posterior is easy with standard conjugate priors. - We will discuss how to sample from continuous distributions later.

Summary

- Conditional independence of A and B [given C].
 - "Knowing A tells you nothing about B [if you also know C]".
 - Independence assumptions often simplify computations.
 - In ML we make a standard set of independence assumptions.
 - Data and hyper-parameters are independent given parameters.
- Bayesian learning.
 - Do inference with the posterior predictive (no "learning" phase).
 - Can be viewed as regularizing and averaging (harder to overfit).
 - Involves solving unpleasant integrals (unless you have a conjugate prior).
- Next time: putting a prior on the prior and relaxing IID.

Uninformative Priors and Jeffreys Priors

- We might want to use an uninformative prior to not bias results.
 But this is often hard/impossible to do.
- We might think the uniform distribution, Beta(1,1), is uninformative.
 - But posterior will be biased towards 0.5 compared to MLE.
 - And if you use a different parameterization it won't stay uniform.
- We might think to use "pseudo-count" of 0, Beta(0,0), as uninformative.
 - But posterior isn't a probability until we see at least one head and one tail.
- Some argue that the "correct" uninformative prior is Beta(0.5,0.5).
 - This prior is invariant to the parameterization, which is called a Jeffreys prior.