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Last Time: Bayesian Learning

• We contrasted the MAP vs Bayesian learning to making predictions:
– For binary variable variables the two approaches can be written:

– MAP makes predictions based only on the መ𝜃 with highest posterior.

– Bayesian method weights all possible 𝜃 by their posterior.

• We discussed conjugate priors for a given likelihood.
– Prior and posterior come from same “family” of distributions.

– Often makes inference easier.



Digression: Review of Independence

• Let 𝐴 and 𝐵 be random variables taking values 𝑎 ∈ 𝒜 and 𝑏 ∈ ℬ.

• We say that 𝐴 and 𝐵 are independent if for all 𝑎 and 𝑏 we have:

• To denote independence of 𝐴 and 𝐵 we often use the notation:

• The product of Bernoullis model assumes mutual independence:



Digression: Review of Independence

• For independent 𝐴 and 𝐵 we have:

• We can also use this as a more intuitive definition:
– 𝐴 and 𝐵 are independent if for all 𝑎 and 𝑏 where 𝑝 𝑏 ≠ 0 we have:

• In words: “knowing 𝑏 tells us nothing about 𝑎” (and vice versa: p(b | a)=p(b)).

• This will often simplify calculations.

• Useful fact that can help determine if variables are independent:
– 𝐴 ⊥ 𝐵 iff 𝑝 𝑎, 𝑏 = 𝑓 𝑎 𝑔(𝑏) for some functions 𝑓 and 𝑔.



Digression: Review of Conditional Independence

• We say that 𝐴 is conditionally independent of 𝐵 given 𝐶 if:

– Same as independence definition, but “knowing extra stuff” 𝐶.

• We can alternately use the more-intuitive definitions:

– “If you know 𝐶, then also knowing 𝐵 would tell you nothing about 𝐴.”

• We often write this as:

• In naïve Bayes we assume 𝑥𝑖 ⊥ 𝑥𝑗| 𝑦 for all ‘i’ and ‘j’.

– Which we saw makes inference and learning easy.



Standard ML Independence Assumptions (MEMORIZE)

• In machine learning we typically make a standard set of independence assumptions:
– IID assumption: training examples are independent of each other.

• “If you see example xi, it does not make seeing example xj more likely.”
– I like to think of this as a conditional independence assumption, 𝑥𝑖 ⊥ 𝑥𝑘| 𝒟 (they are independent conditioned on the hidden “data-generating process” 𝒟).

– Independence of data given parameters.

• “If we know the parameters, the examples are independent of each other”
– Again, I find this more intuitive if you think of this as 𝑥𝑖 ⊥ 𝑥𝑘| 𝜃, 𝒟.

– Independence of features ‘X’ and parameters ‘w’ in discriminative models.

• Discriminative models assume parameters are fixed, and ‘w’ just transforms them to ‘y’ (knowing ‘X’ without ‘y’ tells you nothing).

– Conditional independence of data and hyper-parameters, given parameters:

• “Given the parameters, the hyper-parameters do not tell you anything more about the data.

• Later we will discuss the models that lead to these assumptions, and testing independence in a model.



Bayesian Approach for Bernoulli-Beta Model

• Consider probability that x3= 1 after x1=1 and x2=1 with beta prior:

• Now use that posterior is a beta with parameters ෤𝛼 and ෨𝛽.



Bayesian Approach for Bernoulli-Beta Model

• The correct probability of seeing a “head” after 2 flips in Bernoulli-beta:

• With a uniform prior, (𝛼 = 𝛽 = 1), then p(x3 = 1 | x1=1, x2=1, 𝛼, 𝛽) = ¾.
– The MAP under a uniform prior (which is MLE) would be 𝜃 =1.

• It is less confident than MAP since it considers all possible 𝜃 values, not just the most likely.

• Looks like Laplace smoothing, but trusts data less for same 𝛼 and 𝛽.
– For other models, the difference between MAP and Bayes can be larger.



Effect of Prior in Bernoulli-Beta
• In Bayesian approach, hyper-parameters 𝛼 and 𝛽 can be thought of as “pseudo-counts”.

– The number of 0 and 1 outcomes you have in your imagination before you see any data.

• If we see 3 “heads” (x1=1,x2=1,x3=1), the probability of a 4th under different priors:
– Beta(1,1) prior is like seeing 1 imaginary head and 1 tail before flipping.

• Probability is 4/5, even though all 𝜃 values under this uniform prior “equally likely”.

– Beta(3,3) prior is like seeing 3 imaginary heads and 3 tails.
• Probability is 0.667. This is a stronger bias towards 0.5.

– Beta(100,1) prior is like seeing 100 imaginary heads and 1 tail.
• Probability is 0.990. This is a strong bias towards high 𝜃 values.

– Beta(0.01,0.01) prior biases towards having an unfair coin (head or tail).
• Probability is 0.997. 
• Called “improper” prior (does not integrate to 1), but posterior can be “proper”.

• We might hope to use an “uninformative” prior to not bias results.
– We saw that with the “uniform” prior, Beta(1,1), it biases towards 0.5.
– See bonus for additional details on why “uninformative” can be hard/ambiguous/impossible/undesirable.



Motivation: Controlling Complexity

• For many application, we need complicated models.

• But complex models can overfit.

• So what should we do?

• In CPSC 340 we see two ways to reduce overfitting:
– Model averaging (like in random forests).

– Regularization (like in L2-regularized linear regression).

• Bayesian methods combine both of these.
– Average over “models”, weighted by posterior (which includes regularizer).

• Recall that the regularizer corresponds to the negative logarithm of the prior.

– This allows you fit extremely-complicated models without overfitting.



MAP vs Bayes for Categorical-Dirichlet
• MAP (regularized optimization) approach maximizes over parameters:

• Bayesian approach predicts by integrating over possible parameters:

• Considers all possible Θ, and weights prediction by posterior for Θ.
– Posterior contains regularizer, so this is averaging and regularizing.



Ingredients of Bayesian Inference (MEMORIZE)

1. Likelihood 𝑝 𝑋 Θ)
– Probability of seeing data given parameters.

2. Prior p(Θ | Α).
– Belief that parameters are correct before we have seen data.

3. Posterior p(Θ | 𝑋, Α).
– Probability that parameters are correct after we have seen data.

– MAP maximizes, but Bayesian approach uses the whole distribution.

4. Posterior predictive 𝑝 ෨𝑋 𝑋, Α) (NEW).
– Probability of new data ෨𝑋 given old data 𝑋, integrating over parameters.

• Specifically, we integrate the likelihood of ෨𝑋 times the posterior of 𝜃 given 𝑋.

– Bayesian approach uses this distribution for inference.



Bayesian Approach: Discussion

• Our previous “learn then predict” approaches (MLE and MAP):
– Optimize parameters 𝜃 (learning).

– Do inference with the parameter estimate መ𝜃 (inference).

• Bayesian approach doesn’t have a separate “learning phase”.
– There is no optimization of the parameter 𝜃.

– You just skip to doing inference with the posterior predictive.
• Consider all parameters 𝜃.

• In practice, it often still looks like “learn then predict”.
– Characterize the form of the posterior (“learning”).

– Make predictions by doing integrals with the posterior (inference).



Bayesian Approach: Discussion

• The Bayesian approach is the optimal way to use the prior.
– It is what the rules of probability say we should do.

• Though if the prior is mis-leading, Bayesian approach can be harmful.
– Bayesian approach historically criticized since it requires “subjective” prior.
– But all models are based on “subjective” assumptions, sometime hidden!

• As we see more data, Bayesian posterior concentrates on MLE.
– MLE/MAP/Bayes usually agree as the data size increase.

• Real problem with the Bayesian approach is that integrals are hard.
– Posterior and posterior predictive only have a nice form with conjugate priors.

• Otherwise, you need to use methods like Monte Carlo or “variational” methods for inference.



Monte Carlo for Bayesian Inference

• Bayesian inference tasks usually involve integral parameters.
– Where we compute some function ‘g’ times the posterior.

– For example, if 𝑔 𝜃 = 𝑝 ෤𝑥 𝜃) we get the posterior predictive.

• If you can sample from the posterior, you can use Monte Carlo:
1. Generate samples 𝜃1, 𝜃2,…,𝜃𝑡.

2. Approximate the integral by:

• Sampling from the posterior is easy with standard conjugate priors.
– We will discuss how to sample from continuous distributions later.



Summary

• Conditional independence of A and B [given C].
– “Knowing A tells you nothing about B [if you also know C]”.

– Independence assumptions often simplify computations.

– In ML we make a standard set of independence assumptions.
• Data and hyper-parameters are independent given parameters.

• Bayesian learning.
– Do inference with the posterior predictive (no “learning” phase).

– Can be viewed as regularizing and averaging (harder to overfit).

– Involves solving unpleasant integrals (unless you have a conjugate prior).

• Next time: putting a prior on the prior and relaxing IID.



Uninformative Priors and Jeffreys Priors

• We might want to use an uninformative prior to not bias results.
– But this is often hard/impossible to do.

• We might think the uniform distribution, Beta(1,1), is uninformative.
– But posterior will be biased towards 0.5 compared to MLE.

– And if you use a different parameterization it won’t stay uniform.

• We might think to use “pseudo-count” of 0, Beta(0,0), as uninformative.
– But posterior isn’t a probability until we see at least one head and one tail.

• Some argue that the “correct” uninformative prior is Beta(0.5,0.5).
– This prior is invariant to the parameterization, which is called a Jeffreys prior.


