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Admin

• Assignment 1 grades available on Gradescope.
– Can ask TAs to look at issues on Gradescope, ask me on Piazza if cannot resolve.

• Assignment 2 due Friday.
– Hopefully you have started already.

• Assignment 3 will be due 4 weeks after that.
– 3 weeks of class plus reading week.
– “Project proposal” will be included as part of Assignment 3.

• Please take reasonable precautions:
– Spread out through room.
– Wear mask properly.
– Do not come to class if you feel sick.

• I am going to try to broadcast/record lectures via Zoom, but no promises.
– I probably will not follow the chat. Please keep it civil.



Last Time: Monte Carlo Methods
• Monte Carlo approximates expectation of random functions:

– Approximation is average of function ‘g’ applied to samples from ‘p’:

• Can approximate a wide variety of quantities by changing ‘g’:
– Mean: g(x) = x.
– Probability of event ‘A’: g(x) = I[“A happened”].
– CDF: g(x) = I[x ≤ c].

• This is useful when:
– You know how to sample from p(x).
– You do not know how to efficiently compute 𝔼[g(x)].
– Are patient because it converges really slowly.



Monte Carlo for Snakes and Ladders

• Consider the children’s game “Snakes and Ladders”:

– Start on ‘1’, roll di, move marker, go up/down on ladder/snake, end at 100.

– No decisions, so you can simulate the game.

• How many turns does it take for this game to end?

– Simulate game many times, count number of turns.

– Compute average number of turns.

• Probability and cumulative probability:

https://www.datagenetics.com/blog/november12011/



Conditional Probabilities with Monte Carlo
• We often want to compute conditional probabilites.

– “What is the probability that the game will go more than 100 turns,  if it already went 50 turns?”

• A Monte Carlo approach for estimating p(A | B):
– Generate a large number of samples.
– Use Monte Carlo estimate of p(A, B) and p(B) to approximate conditional:

• Frequency of first event in samples consistent with the second event.
– This is the MLE for a binary variable that is ‘1’ when ‘A’ happens, conditioned on ‘B’ happening.

• This is a special case of rejection sampling (general case later).
– Unfortunately, if ‘B’ is rare then most samples are “rejected” (ignored).
– The conditional probability demo here has a good visualization of this.

https://seeing-theory.brown.edu/compound-probability/index.html


Next Topic: MLE and MAP for Categorical



MLE for Categorical Distribution

• Now we will consider how to train a categorical model (“learning”).
– Goal is to go from samples to an estimate of parameters 𝜃1, 𝜃2, … , 𝜃𝑘:

• As before we will first consider maximum likelihood estimation:

– In this case the MLE is given by 𝜃𝑐 =
𝑛𝑐

𝑛
(nc is number ‘c’ examples).

• If “34% of your samples are LIB, your guess for 𝜃𝐿𝐼𝐵=0.34”.
• As with Bernoulli, the derivation of the MLE is not as a simple as the result.

Party?

LIB

CPC

NDP

LIB

GRN

X = 

p(x = LIB) = 0.34, p(x=NDP) = 0.34,
p(x = CPC) = 0.27, p(x=GRN) = 0.03,
p(x = PPC) = 0.02.



Derivation of MLE (that does not work)

• Last time we showed that the likelihood has the form:

• Let’s take the log:

• Take the derivative for a particular 𝜃𝑐:

• Set derivative equal to zero:

• Now what?



Derivation of MLE: Handling “Sum to 1”

• “Set derivative of log-likelihood equal to 0” does not work.
– Because of constraint that the 𝜃𝑐 must sum to 1, derivative is not zero at MLE.

• Approaches used in textbooks to enforce constraints:
– Use “Lagrange multipliers” and find stationary point of “Lagrangian”.

– Define 𝜃𝑘 = 1 − σ𝑐=1
𝑘−1𝜃𝑐 to make it unconstrained.

– See StackExchange thread here.

• We will take a different approach to make it unconstrained:
1. Use a unnormalized parameterization ෨𝜃𝑐 that do not have constraints.

2. Compute the MLE for the ෨𝜃𝑐 by setting log-likelihood derivative zero.

3. Convert from the ෨𝜃𝑐 parameters to our usual 𝜃𝑐 parameters by normalizing.

https://math.stackexchange.com/questions/2725539/maximum-likelihood-estimator-of-categorical-distribution


Unconstrained Parameterization

• Consider categorical distribution with unnormalized parameters:

– To give non-negative probabilities, we require that ҧ𝜃𝑐 ≥ 0 for all ‘c’.

• The  normalized probability can then be written:

– The “normalizing constant” makes the probability sum to 1 across ‘c’ values.
• So we do not need to an explicit “sum to 1” constraint. 

– We convert from unnormalized to normalized by dividing by ‘Z’: 𝜃𝑐 =
෩𝜃𝑐

𝑍
.



Derivation of MLE (that does work)

• Using the unnormalized parameters in the likelihood gives::

• Let’s take the log:

• Take the derivative for a particular 𝜃𝑐:

• Set derivative equal to zero:

• Solve for ෨𝜃𝑐:



MAP Estimation and Dirichlet Prior

• As before, we may prefer to use a MAP estimate over the MLE.

– Often becomes more important as ‘k’ grows.

• More parameters to [over]fit.

• Most common prior for categorical is the Dirichlet distribution:

– Generalization of the beta distribution to ‘k’ classes.

• This is a distribution over Θ values:

– Since the Θ parameterize probabilities,
Dirichlet is a probability distribution over possible probability distributions.



Dirichlet Distribution

• Wikipedia’s visualizations of Dirichlet distribution for k=3:

• Can bias towards various types of probabilities.
https://en.wikipedia.org/wiki/Dirichlet_distribution
https://commons.wikimedia.org/wiki/Category:Dirichlet_distribution



MAP Estimation and Dirichlet Prior

• The MAP for categorical with Dirichlet prior is given by:

– Derivation is similar to the MLE derivation.

• Dirichlet has ‘k’ hyper-parameters 𝛼𝑐.

– We often set 𝛼𝑐 = 𝛼 for some constant 𝛼 (reduces to 1 hyper-parameter).

– This simplifies the MLE to:

– And with 𝛼 = 2 we get Laplace smoothing (“add 1 to count of each class”).



Posterior for Categorical Likelihood + Dirichlet Prior

• People use the Dirichlet because posterior has a simple form:

– This is another Dirichlet distribution with “updated” parameters 𝛼𝑐.

• Where 𝛼𝑐 = 𝑛𝑐 + 𝛼_𝑐.

• Again, make sure you understand why we can recognize this as a Dirichlet.
– The normalizing constant must be the normalizing constant for the Dirichlet.



Conjugate Priors

• We have now some examples of a convenient phenomenon:
– If we put a beta prior on a Bernoulli likelihood, posterior is beta.

• Same happens if you put beta prior on binomial/geometric, posterior is beta.

– If we put a Dirichlet prior on a categorical likelihood, posterior is Dirichlet.

• In these situations, we say the prior is conjugate to the likelihood.
– With conjugate priors, the prior and posterior come from the same “family”.

• The posterior will look like the prior with “updated” parameters.

• Many computations become easier when we use conjugate priors.
– Because we have an explicit formula for the posterior distribution.
– But not all distributions have conjugate priors.



Next Topic: Bayesian Learning



Problems with MAP

• With good hyper-parameters, MAP usually outperforms MLE.

• But MAP is still weird.
– Recall that we said that decoding can do weird things.

• The value with highest probability/PDF may not represent “typical” behavior.

– MAP is a decoding of the posterior.

• MAP is fine if you want to find parameters with highest probability,
but in ML usually the goal is to make predictions (or decisions).

– Our ultimate goal is not just to find the best parameters.

• You can show that MAP is a sub-optimal way to make predictions.



Example: “Two Heads” with “Fair vs. Unfair” Prior

• Suppose you have a Bernoulli variable and the following prior:
– p(𝜃 = 0.5) = 0.5 and p(𝜃 = 1) = 0.5.

• You think coin has 50% chance of being fair, 50% chance of “always landing head”.

• The first two coin flips are “head”.
– x1 = 1, x2= 1.

• What is the probability that the third flip will be a “head”?
– MAP approach:

– MAP predicts 100% chance of head.
• But the MAP “decoding” of the parameters is over-confident.

– There was a 1/4 chance of seeing two heads from the fair coin. 



Example: “Two Heads” with “Fair vs. Unfair” Prior

• Can compute correct probability using marginalization rule over 𝜃:

• The correct probability weights possible predictions by posterior.

– Assume x3 is independent of X once we know 𝜃:

– Use Bayes rule to compute posterior and get final answer:



Bayesian Approach to Machine Learning

• MAP predicted 100% chance that third coin would be a head.
– But the correct value was only 90% (obtained by marginalizing over 𝜃).

• “Compute correct probability by marginalizing over parameters” is 
called the Bayesian approach to machine learning.
– MAP approach optimizes posterior over parameter values.

• Searches for the single “best” parameter value according to posterior.

– Bayesian approach marginalizes posterior over parameter values.
• Considers all possible parameter values, but upweighting ones with high posterior.

• MAP and Bayes are similar if posterior is “concentrated” at one 𝜃.
– But if there are many reasonable 𝜃, Bayes can be much better.



Summary

• MLE for categorical distribution:
– Write using unnormalized parameters and normalizing constant ‘Z’.

• Dirichlet distribution:
– “Probability distribution over discrete probability distributions”.
– When used as prior for categorical, posterior is also Dirichlet.
– MAP estimate with Dirichlet prior gives generalization of Laplace smoothing.

• Conjugate prior:
– Prior for a particular likelihood such that posterior is in same “family”.

• Bayesian learning:
– Use marginalization rule to consider all possible parameters.

• Unlike MLE/MAP which optimize to find “best” parameters.

– The correct way to combine likelihood with prior.

• Next time: better way to reduce overfitting than averaging or regularization?


