CPSC 440: Machine Learning

Conjugate Priors
Winter 2022



Admin

Assignment 1 grades available on Gradescope.

— Can ask TAs to look at issues on Gradescope, ask me on Piazza if cannot resolve.
Assignment 2 due Friday.

— Hopefully you have started already.
Assignment 3 will be due 4 weeks after that.

— 3 weeks of class plus reading week.
— “Project proposal” will be included as part of Assignment 3.

Please take reasonable precautions:

— Spread out through room.

— Wear mask properly.

— Do not come to class if you feel sick.

| am going to try to broadcast/record lectures via Zoom, but no promises.
— | probably will not follow the chat. Please keep it civil.



Last Time: Monte Carlo Methods

* Monte Carlo approximates expectation of random functions:
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— Approximation is average of function ‘g’ applied to samples from “p’:

Elg()] ~ 3" g(a)
1=1

 (Can approximate a wide variety of quantities by changing ‘g’:
— Mean: g(x) = x.
— Probability of event ‘A’: g(x) = I[“A happened”].
— CDF: g(x) =[x < c].
* This is useful when:
— You know how to sample from p(x).
— You do not know how to efficiently compute E[g(x)].
— Are patient because it converges really slowly.



Monte Carlo for Snakes and Ladders

e Consider the children’s game “Snakes and Ladders”:
— Start on ‘1’, roll di, move marker, go up/down on ladder/snake, end at 100.

— No decisions, so you can simulate the game. % A EIFILIENE
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* How many turns does it take for this game to end? | b
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— Simulate game many times, count number of turns. -
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— Compute average number of turns. )Y ¢
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* Probability and cumulative probability:
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Cummulative probability of finishing
game in n-moves




Conditional Probabilities with Monte Carlo

 We often want to compute conditional probabilites.
— “What is the probability that the game will go more than 100 turns, if it already went 50 turns?”

* A Monte Carlo approach for estimating p(A | B):
— Generate a large number of samples.
— Use Monte Carlo estimate of p(A, B) and p(B) to approximate conditional:
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* Frequency of first event in samples consistent with the second event.
— This is the MLE for a binary variable that is ‘1’ when ‘A’ happens, conditioned on ‘B’ happening.

n

f I[ ”/1 OW\J 3 lM/LIJMJ“ )

* Thisis a special case of rejection sampling (general case later).
— Unfortunately, if ‘B’ is rare then most samples are “rejected” (ignored).
— The conditional probability demo here has a good visualization of this.


https://seeing-theory.brown.edu/compound-probability/index.html

Next Topic: MLE and MAP for Categorical



MLE for Categorical Distribution

* Now we will consider how to train a categorical model (“learning”).
— Goal is to go from samples to an estimate of parameters 84, 05, ..., O:

LIB
p(x = LIB) = 0.34, p(x=NDP) = 0.34,
X = cPC p(x = CPC) = 0.27, p(x=GRN) = 0.03,
NDP p(x = PPC) = 0.02.
LIB
GRN

 As before we will first c?\nsider maximum likelihood estimation:
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— In this case the MLE is given by 6. = % (n. is number ‘¢’ examples).

* If “34% of your samples are LIB, your guess for 8;;5=0.34".
* As with Bernoulli, the derivation of the MLE is not as a simple as the result.



Derivation of MLE (that does not work)

Last time we showed that the likelihood has the form:

X 16) =66, 0,
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Let’s take the log:
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Take the derivative for a particular 8,:
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Now what?



Derivation of MLE: Handling “Sum to 1”

e “Set derivative of log-likelihood equal to 0” does not work.
— Because of constraint that the 6. must sum to 1, derivative is not zero at MLE.

* Approaches used in textbooks to enforce constraints:
— Use “Lagrange multipliers” and find stationary point of “Lagrangian”.

— Define 8, = 1 — Y.*21 6. to make it unconstrained.
— See StackExchange thread here.

 We will take a different approach to make it unconstrained:
1. Use aunnormalized parameterization 6, that do not have constraints.
2. Compute the MLE for the éc by setting log-likelihood derivative zero.
3. Convert from the 6, parameters to our usual 6, parameters by normalizing.


https://math.stackexchange.com/questions/2725539/maximum-likelihood-estimator-of-categorical-distribution

Unconstrained Parameterization
* Consider categorical distribution with unnormalized parameters:
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— To give non-negative probabilities, we require that 8, = 0 for all ‘c’.
* The normalized probability can then be written:
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— The “normalizing constant” makes the probability sum to 1 across ‘c’ values.
* So we do not need to an explicit “sum to 1” constraint.

— We convert from unnormalized to normalized by dividing by Z2’: 6. = %.



Derivation of MLE (that does work)

Using the unnormalized parameters in the likelihood gives::
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MAP Estimation and Dirichlet Prior

* As before, we may prefer to use a MAP estimate over the MLE.

— Often becomes more important as ‘k’ grows.

* More parameters to [over]fit.

* Most common prior for categorical is the Dirichlet distribution:
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— Generalization of the beta distribution to ‘k’ classes.

 This is a distribution over ® values:

— Since the ® parameterize probabilities,
Dirichlet is a probability distribution over possible probability distributions.



Dirichlet Distribution

* Wikipedia’s visualizations of Dirichlet distribution for k=3:

* Can bias towards various types of probabilities. Cal o epar



MAP Estimation and Dirichlet Prior

* The MAP for categorical with Dirichlet prior is given by:
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— Derivation is similar to the MLE derivation.

* Dirichlet has k" hyper-parameters «,.

— We often set a,. = a for some constant a (reduces to 1 hyper-parameter).

— This simplifies the MLE to:
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— And with & = 2 we get Laplace smoothing (“add 1 to count of each class”).



Posterior for Categorical Likelihood + Dirichlet Prior

* People use the Dirichlet because posterior has a simple form:
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— This is another Dirichlet distribution with “updated” parameters a..
* Wherea, =n, + a_c.
e Again, make sure you understand why we can recognize this as a Dirichlet.

— The normalizing constant must be the normalizing constant for the Dirichlet.
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Conjugate Priors

* We have now some examples of a convenient phenomenon:

— If we put a beta prior on a Bernoulli likelihood, posterior is beta.
« Same happens if you put beta prior on binomial/geometric, posterior is beta.

— |f we put a Dirichlet prior on a categorical likelihood, posterior is Dirichlet.

* In these situations, we say the prior is conjugate to the likelihood.
— With conjugate priors, the prior and posterior come from the same “family”.
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* The posterior will look like the prior with “updated” parameters.

* Many computations become easier when we use conjugate priors.
— Because we have an explicit formula for the posterior distribution.
— But not all distributions have conjugate priors.



Next Topic: Bayesian Learning



Problems with MAP

With good hyper-parameters, MAP usually outperforms MLE.

But MAP is still weird.

— Recall that we said that decoding can do weird things.
* The value with highest probability/PDF may not represent “typical” behavior.

— MAP is a decoding of the posterior.

MAP is fine if you want to find parameters with highest probability,
but in ML usually the goal is to make predictions (or decisions).

— Our ultimate goal is not just to find the best parameters.

You can show that MAP is a sub-optimal way to make predictions.



Example: “Two Heads” with “Fair vs. Unfair” Prior

* Suppose you have a Bernoulli variable and the following prior:
— p(@=0.5)=0.5and p(f =1) =

* You think coin has 50% chance of being fair, 50% chance of “always landing head”.

* The first two coin flips are “head”.
— xt=1, x2=1.

 What is the probability that the third flip will be a “head”?
— MAP approach: ) FMJ é 3 a/cjyvm\( Zr, §
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— MAP predicts 100% chance of head.

* But the MAP “decoding” of the parameters is over-confident.
— There was a 1/4 chance of seeing two heads from the fair coin.



Example: “Two Heads” with “Fair vs. Unfair” Prior

 Can compute correct probability using marginalization rule over 6:
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* The correct probability weights possible predictions by posterior.
— Assume x3 is independent of X once we know 6: /)(X < @)() f(’( / 7

— Use Bayes rule to compute posterior and get final answer:
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Bayesian Approach to Machine Learning

* MAP predicted 100% chance that third coin would be a head.
— But the correct value was only 90% (obtained by marginalizing over 8).

 “Compute correct probability by marginalizing over parameters” is
called the Bayesian approach to machine learning.

— MAP approach optimizes posterior over parameter values.
* Searches for the single “best” parameter value according to posterior.

— Bayesian approach marginalizes posterior over parameter values.
* Considers all possible parameter values, but upweighting ones with high posterior.

* MAP and Bayes are similar if posterior is “concentrated” at one 4.
— But if there are many reasonable 6, Bayes can be much better.



Summary

MILE for categorical distribution:

— Write using unnormalized parameters and normalizing constant Z’.
Dirichlet distribution:

— “Probability distribution over discrete probability distributions”.

— When used as prior for categorical, posterior is also Dirichlet.

— MAP estimate with Dirichlet prior gives generalization of Laplace smoothing.
Conjugate prior:

— Prior for a particular likelihood such that posterior is in same “family”.
Bayesian learning:

— Use marginalization rule to consider all possible parameters.
* Unlike MLE/MAP which optimize to find “best” parameters.

— The correct way to combine likelihood with prior.

Next time: better way to reduce overfitting than averaging or regularization?



