CPSC 440: Machine Learning

Monte Carlo Approximation
Winter 2022

Last Time: Categoraical Density Estimation

 We considered density estimation with a categorical variable:
— Input: ‘n’ 11D samples of categorical values x%, x?, x3,..., X" from population.
— Output: model of probability that x=1, x=2, x=3,...,x=k.

e Categorical density estimation as a picture:

LIB
p(x = LIB) = 0.34, p(x=NDP) = 0.34,
X = CPC p(x = CPC) = 0.27, p(x=GRN) = 0.03,
NDP p(x = PPC) = 0.02.
LIB
GRN

 Example: polling for which political party people will support.
* For categorical variables, we do not assume there is an ordering.

Parameterization of Categorical Probabilities

 We typically parameterize using the categorical distribution:
— Sometimes called “multinoulli”.
— Has parameters 84, 0, ..., 8, when we have ‘k’ categories.
— Defines probabilities using:
~ = , Q,@b,« 6,, = :2 = L v = -
‘)(X l)) @, p()({Q,@z)m)@/() @2 ’ {?()(ke /@’) 61)‘)6)/()~0/(
%

— Because probabilities sum to 1, we require: >~ g = |
c= ¢

* One way to write this for a generic ‘x’:
(e D 7[< 7). Lle=()
olx19) =0 - ®

@566, ox_ 5 "

Inference Task: Union

. given 8, compute probabilities of unions:
— For example, p(x =LIB U x =NDP | 0).

* What fraction of votes would these parties their supporters voted together?

 We assume the categories are mutually exclusive.
— “You can only pick one.”

— This allows us to compute unions with addition:
* p(x=2Ux=3Ux=4|0)=0, + 05 + 0,.

e A variation on this task is computing p(x < c) for some value ‘c’.
— Easytodo:p(x<4)=06,+6, + 65+ 0,.
— We often want to do this even though the categories are unordered.
— We call p(x < c) the cumulative distribution function (CDF).

Inference Task: Decoding

: given 0, find ‘x’ that maximizes p(x | ®) (decoding).

* Probably the most relevant inference for the elections example:
— The decoding is “who wins the election”.

* Computing the decoding using “argmax” notation:
X € oty oles ¢ | @)
= ﬁrq?uvigcﬁ

— So the decoding is the category ‘c” where 6. is the largest.

Inference Task: Computing Dataset Probabilities

. given © and IID data, compute p(x?, x?,..., x" | ©).
— The likelihood of training/validation/testing data.

e Assuming ”independence of IID data given parameters”, we have:

f(2,'~ y ’O)“ " P I@) kf‘) is The /WJI//()V\,,/ l/'///Jn n[f

Gss l,«f N

- "I‘/’ T() W) 10d=R) (J £ ,
3 9, 67 . @k ’ IV‘J‘ w “ . : :
Jes p y Ny (4 "’]U/l/a/ (/'Q ff';(/luu)
_ i‘-.l.(x;:,) 2:[0‘:1) ‘.Z:/‘j(r“k) (Y,
© @ 0 6, 6,6,66,479, %)
N n - =1l
"@“6!]2”'@/(” ({\c—;?’][y:()>

* Where n, is “number of 1s”, n, is “number 2s”, and so on.
— Similar to the Bernoulli, the likelihood only depends on the counts.

Code for Categorical Likelihood

* We just showed that the categorical likelihood can be written:

] " _ N N -

]O(Y,Xz,,)y ’C)) = @l 6122.., @l(,\:« Nc .Ze.roi(l()

'F()r | In |’n

ncC XCk)) 4+
end
b Il for | logpte =0

* Will be very small for large ‘n’. For ¢ m 1K

Y L g. . a tv:u\w“ nc[&*logﬁ#d»m)
— Compute the log-likelihood in practice. ¢

 Runtime: O(n + k).
— If n >> k (many samples, few categories), this is O(n).
— If k >> n (many categories, few samples), you could also get O(n).

* By only tracking/summing over the classes with non-zero counts.

Inference Task: Sampling

. given 0,
generate samples of X’ distributed according to p(x | ©).
LIB

p(x = LIB) = 0.34, p(x=NDP) = 0.34, CPC
p(x = CPC) =0.27, p(x=GRN) = 0.03, NDP
p(x = PPC) =0.02.

LIB

GRN

* Notice that we are not “sampling a value for each of the classes”.

— Each sample will belong to one category.
* 34% of the samples should be LIB, 27% will be CPC, and so on.

Inference Task: Sampling

* Recall we assume we can sample uniformly between 0 and 1.

— And we want to turn this into a sample over the ‘k’ categories.

* Sampling from categorical distribution with ® = {0.4,0.2,0.3,0.1}:
— Generate a uniform sample ‘u’.
— If u< 0.4, return 1 (like sampling from a Bernoulli with 8 = 0.4).
— If u> 0.4 but less than 0.6, return 2 (like sampling Bernoulli with 8 = 0.2).
— If u> 0.6 but less than 0.9, return 3 (like sampling Bernoulli with 8 = 0.3).
— If u> 0.9, return O (like sampling Bernoulli with 6 =0.1).

Inference Task: Sampling

* Formally, the sampler “returns the ‘¢’ such that p(x < c-1) < u < p(x < c)”.
— Where the CDF for categorical is p(x <c)=60,; + 0, + -+ 6..

 Sampling from a categorical distribution with ‘k’ categories:
1. Generate ‘U’ uniformly on the interval between 0 and 1.
2. Ifu<p(x<1),returnl.
3. Ifu<p(x<2),return 2.
4. Ifu<p(x<3), return 3.
5.

* Runtime:
— If you compute p(x < c) from scratch at each step, costs O(k?).

— If you use that p(x < c) = p(x < c-1) + 6_c, costs O(k).

Inference Task: Sampling

In code: wxrand()

C Dc = 0 function sampleDiscrete(p)

-?ol ¢ n l‘k
chDte += ka"nf(,)
iF u< COF
rotom C

n {n“

findfirst(cumsum(p[:]).> rand())

Calling this function each time costs O(k).

You can go faster if you have CDF values stored.
— In this case, do a binary search for the ‘c’ such that p(x < c-1) < u < p(x < c).
Using this faster procedure, it costs O(k + t log k) to generate ‘t’ samples.

— O(k) to compute all the CDFs.
— O(log k) to do a binary search to generate each sample.

Next Topic: Monte Carlo Approximation

Motivation: Probabilistic Inference

* Given a probabilistic model, we often want to make inferences:
— Marginals: what is the probability that x; = c?
— Conditionals: what is the probability that x; = c given x, = ¢'?

* This is simple for the models we have seen so far.
— For Bernoulli/categorical, computing probabilities is straightforward.
— For multivariate models, we assumed everything was independent.

* Perhaps conditioned on a label or the final hidden layer of a neural network.

* For many models, inference has no closed form or is NP-hard.

— For these problems, we often use Monte Carlo approximations.

Monte Carlo: Marginalization by Sampling

* A basic Monte Carlo method for estimating probabilities of events:
— Generate a large number of samples x' from the model:

X =

b—ll—lool

happened in the samples:

plre =1) ~ 3/4
plxs =0)~0/4

* Monte Carlo methods are the second most important type of ML algorithms.

— Originally developed to build better atomic bombs ®
* Runs physics simulator to “sample”, then see if it leads to a chain reaction.

Monte Carlo for Approximating Probabilities

* Monte Carlo estimate of the probability of an event A:

number of samples where A happened

number of samples
* You can think of this as the MLE for a binary variable:

— The binary variable is ‘1’ for samples where ‘A’ happened, ‘0’ otherwise.

e Approximating probability of a pair of independent dice rolling a sum of 7:
— Roll two dice, check if the sum is 7.
— Roll two dice, check if the sum is 7.
— Roll two dice, check if the sum is 7.
— Roll two dice, check if the sum is 7.
— Roll two dice, check if the sum is 7.

— Monte Carlo estimate: fraction of samples where sum is 7.

Monte Carlo for Approximating Probabilities

e Recall our motivating problem:
— Building a model of voters among categories (LIB, CPC, NDP, GRN, PPC).

* You might consider the following inference problem:

— In 100 samples, what the probability that n;,; > max{nc, Nypp Nerny Nepct?
* “What is the probability that LIBs win the election again?”

* You can do some math to figure out the answer, or do Monte Carlo:
— Generate 100 samples, check who won.
— Generate 100 samples, check who won.

— Approximate probability by fraction of times they won.

Monte Carlo for Inequalities

* Consider probability that a variable is above a threshold.
— Probability that a beta variable is above 0.7.
— Probability that a standard normal variable is above -1.2.

 Monte Carlo estimate for p(x < 1) for some threshold :
— Fraction of samples that are above the threshold.

Monte Carlo Method for the Mean

* A Monte Carlo approximation of the mean:

— Approximate the mean by the mean of the samples.
"=

* A Monte Carlo approximation of expected value of x?:

— Approximate E[x?] by the average value of x? on the samples.

* A Monte Carlo approximation of the expected value of function ‘g’.

— Approximate [E[g(x)] by the average value of g(x) on the samples.

Monte Carlo Method: Definition

Monte Carlo approximates expectation of random functions:

Elg()] = 3 g(@)p(z) or Elg(x)] = / a(w)p(a)ds

IBEX N /
-

_ gl
continuous x

Vo

discrete x

Computing mean is a special case, if we use g(x) = x.

Computing probability of an event ‘A’ is also a special case:
— Set g(x) = I[“A happened in sample x”], indicator function for event ‘A’

Monte Carlo methods generate ‘n’ samples x' from p(x) and then use:

Summary of Monte Carlo Theory

Let u = E[g(x)], the value we want to compute.
— And assume variance of the samples g2 is bounded (“not infinite”).

With IID samples, Monte Carlo gives an unbiased approximation of p.
— Expected value of Monte Carlo estimate, averaged over samplings, is (.

Monte Carlo estimate “converges” to u as sample size ‘n’ goes to co.
— Estimate get arbitrarily close to u as your number of samples gets large.

Expected squared error between estimate and i is 02 /n with ‘n’ samples.
— This is the speed at which you converge to u as you increase ‘n’.

Monte Carlo can be written as a special case of SGD.
— See the post-lecture bonus slides for some details on all of the above.

Summary

Categorical distribution:

— Probability over unordered categories, where p(x=c |) = 6...
Inference in categorical models:

— CDF, decoding, likelihood, sampling.

Monte Carlo methods:

— Approximate expectations of random functions.
— Generate a set of IID samples.
— Take average value of function value applied to each sample.

Next time: why we are doing everything wrong to make decisions.

Law of the Unconscious Statistician

@ We use these identities to define the expectation of a function ¢ applied to a
random variable z,

Slo(w) = 3 o@p(@) o Elg@)]= [o@pla)dr

reX
.

V—

_J/ V
continuous x

discrete x

@ The transformation from expectation to sum/integral is known as the “law of the
unconsciuos statistician” .

o It's usually taken as being true, but it's proof is a bit of a pain.

Unbiasedness of Monte Carlo Methods

o Let u =E|g(x)| be the value we want to approximate (not necessarily mean).

@ The Monte Carlo estimate is an unbiased approximation of p,

1<] 1S
E | — 91 = —E ¢ I ity of £
2 2 0(a| = 7B [3ogle!) (inearity of E)
1 — . .
== Z]E[g(:z:“)] (linearity of E)
i=1
1y “is 11D with
_EZM (z* is with mean p)
i=1

@ The law of large numbers says that:
o Unbiased approximators “converge” (probabilistically) to expectation as n — oc.
e So the more samples you get, the closer to the true value you expect to get.

Rate of Convergence of Monte Carlo Methods

@ Let f be the squared error in a 1D Monte Carlo approximation,

flzl 22, ..., 2" = (:L Zg(:ﬁz) — u) .

o If variance is bounded, error with n samples is O(1/n),

T 2 T
1 - 1 -
E |:(— Zg(a{‘) — ;L) :| = Var | — Zg(m"’)] (unbiased and def'n of variance)
n 1=1 n =1
1 ik .
= —5 Var > g(x'b)] (Var(azx) = o®Var(z))
n=1l
1 <& ;
= 5> Varlg(@) (D)
=1
1 ¢~ o_0° i - 2
:—220 = —. (" is IID with var o)
n 1=1 n

o Similar O(1/n) argument holds for d > 1 (notice that faster for small o?).

Monte Carlo as a Stochastic Gradient Method

@ Monte Carlo approximation as a stochastic gradient method with a; = 1/(i 4+ 1),

w" = wn—l o Ofn_1(’wn_1 o a,:’L)
= (1— an_l)w”_l + a1
n—1 ,1,1;
= w + —Z
n n
— 1 — 2 1 : 1 .
_ UL n wn—? + xz—l 4+ gt
n n—1 n—1 n
n— 2 1, . -
_ ,w'n,—2 4 = (x?,—l + ZCQ’)
n n
n—3 1

_ w3 4 = (272 4 2! 4 5f)

n
n
= — €T .
n <
1=1

