
CPSC 440: Machine Learning

Monte Carlo Approximation

Winter 2022



Last Time: Categoraical Density Estimation

• We considered density estimation with a categorical variable:
– Input: ‘n’ IID samples of categorical values x1, x2, x3,…, xn from population.

– Output: model of probability that x=1, x=2, x=3,…,x=k.

• Categorical density estimation as a picture:

• Example: polling for which political party people will support.

• For categorical variables, we do not assume there is an ordering.

Party?

LIB

CPC

NDP

LIB

GRN

p(x = LIB) = 0.34, p(x=NDP) = 0.34,
p(x = CPC) = 0.27, p(x=GRN) = 0.03,
p(x = PPC) = 0.02.

X = 



Parameterization of Categorical Probabilities 

• We typically parameterize using the categorical distribution:

– Sometimes called “multinoulli”.

– Has parameters 𝜃1, 𝜃2, … , 𝜃𝑘 when we have ‘k’ categories.

– Defines probabilities using:

– Because probabilities sum to 1, we require:

• One way to write this for a generic ‘x’:



Inference Task: Union

• Inference task : given 𝜃, compute probabilities of unions:
– For example, p(x = LIB ∪ x = NDP | Θ).

• What fraction of votes would these parties their supporters voted together?

• We assume the categories are mutually exclusive.
– “You can only pick one.”

– This allows us to compute unions with addition:
• p(x = 2 ∪ x = 3 ∪ x = 4 | Θ) = 𝜃2 + 𝜃3 + 𝜃4.

• A variation on this task is computing p(x ≤ c) for some value ‘c’.
– Easy to do: p(x ≤ 4) = 𝜃1 + 𝜃2 + 𝜃3 + 𝜃4.

– We often want to do this even though the categories are unordered.

– We call p(x ≤ c) the cumulative distribution function (CDF).



Inference Task: Decoding

• Inference task: given 𝜃, find ‘x’ that maximizes p(x | Θ) (decoding).

• Probably the most relevant inference for the elections example:

– The decoding is “who wins the election”.

• Computing the decoding using “argmax” notation:

– So the decoding is the category ‘c’ where 𝜃𝑐 is the largest.



• Inference task : given Θ and IID data, compute p(x1, x2,..., xn | Θ).
– The likelihood of training/validation/testing data.

• Assuming “independence of IID data given parameters”, we have:

• Where n1 is “number of 1s”, n2 is “number 2s”, and so on.
– Similar to the Bernoulli, the likelihood only depends on the counts.

Inference Task: Computing Dataset Probabilities 



Code for Categorical Likelihood

• We just showed that the categorical likelihood can be written:

• Will be very small for large ‘n’.

– Compute the log-likelihood in practice.

• Runtime: O(n + k).

– If n >> k (many samples, few categories), this is O(n).

– If k >> n (many categories, few samples), you could also get O(n).

• By only tracking/summing over the classes with non-zero counts. 



Inference Task: Sampling

• Inference task: given Θ, 
generate samples of ‘x’ distributed according to p(x | Θ).

• Notice that we are not “sampling a value for each of the classes”.

– Each sample will belong to one category.

• 34% of the samples should be LIB, 27% will be CPC, and so on. 

Party?

LIB

CPC

NDP

LIB

GRN

p(x = LIB) = 0.34, p(x=NDP) = 0.34,
p(x = CPC) = 0.27, p(x=GRN) = 0.03,
p(x = PPC) = 0.02.



• Recall we assume we can sample uniformly between 0 and 1.

– And we want to turn this into a sample over the ‘k’ categories.

• Sampling from categorical distribution with Θ = {0.4, 0.2, 0.3, 0.1}:

– Generate a uniform sample ‘u’.

– If u < 0.4, return 1 (like sampling from a Bernoulli with 𝜃 = 0.4).

– If u > 0.4 but less than 0.6, return 2 (like sampling Bernoulli with 𝜃 = 0.2).

– If u > 0.6 but less than 0.9, return 3 (like sampling Bernoulli with 𝜃 = 0.3).

– If u > 0.9, return 0 (like sampling Bernoulli with 𝜃 = 0.1).

Inference Task: Sampling



Inference Task: Sampling

• Formally, the sampler “returns the ‘c’ such that p(x ≤ c-1) < u < p(x ≤ c)”.
– Where the CDF for categorical is p(x ≤ c) = 𝜃1 + 𝜃2 +⋯+ 𝜃𝑐.

• Sampling from a categorical distribution with ‘k’ categories:
1. Generate ‘u’ uniformly on the interval between 0 and 1.
2. If u ≤ p(x ≤ 1), return 1.
3. If u ≤ p(x ≤ 2), return 2.
4. If u ≤ p(x ≤ 3), return 3.
5. …

• Runtime:
– If you compute p(x ≤ c) from scratch at each step, costs O(k2).
– If you use that p(x ≤ c) = p(x ≤ c-1) + 𝜃_𝑐, costs O(k).



Inference Task: Sampling

• In code:

• Calling this function each time costs O(k).

• You can go faster if you have CDF values stored.
– In this case, do a binary search for the ‘c’ such that p(x ≤ c-1) < u < p(x ≤ c).

• Using this faster procedure, it costs O(k + t log k) to generate ‘t’ samples.
– O(k) to compute all the CDFs.
– O(log k) to do a binary search to generate each sample.



Next Topic: Monte Carlo Approximation



Motivation: Probabilistic Inference

• Given a probabilistic model, we often want to make inferences:

– Marginals: what is the probability that xj = c?

– Conditionals: what is the probability that xj = c given xj’ = c’?

• This is simple for the models we have seen so far.

– For Bernoulli/categorical, computing probabilities is straightforward.

– For multivariate models, we assumed everything was independent.

• Perhaps conditioned on a label or the final hidden layer of a neural network.

• For many models, inference has no closed form or is NP-hard.

– For these problems, we often use Monte Carlo approximations.



Monte Carlo: Marginalization by Sampling

• A basic Monte Carlo method for estimating probabilities of events:
– Generate a large number of samples xi from the model:

– Compute frequency that the event happened in the samples:

• Monte Carlo methods are the second most important type of ML algorithms.
– Originally developed to build better atomic bombs 

• Runs physics simulator to “sample”, then see if it leads to a chain reaction.



Monte Carlo for Approximating Probabilities

• Monte Carlo estimate of the probability of an event A:

• You can think of this as the MLE for a binary variable:
– The binary variable is ‘1’ for samples where ‘A’ happened, ‘0’ otherwise.

• Approximating probability of a pair of independent dice rolling a sum of 7:
– Roll two dice, check if the sum is 7.

– Roll two dice, check if the sum is 7.

– Roll two dice, check if the sum is 7.

– Roll two dice, check if the sum is 7.

– Roll two dice, check if the sum is 7.

– …

– Monte Carlo estimate: fraction of samples where sum is 7.



Monte Carlo for Approximating Probabilities

• Recall our motivating problem:

– Building a model of voters among categories (LIB, CPC, NDP, GRN, PPC).

• You might consider the following inference problem:

– In 100 samples, what the probability that nLIB > max{nCPC, nNDP, nGRN, nPPC}?

• “What is the probability that LIBs win the election again?”

• You can do some math to figure out the answer, or do Monte Carlo:

– Generate 100 samples, check who won.

– Generate 100 samples, check who won.

– …

– Approximate probability by fraction of times they won.



Monte Carlo for Inequalities

• Consider probability that a variable is above a threshold.

– Probability that a beta variable is above 0.7.

– Probability that a standard normal variable is above -1.2.

• Monte Carlo estimate for p(x ≤ 𝜏) for some threshold 𝜏: 

– Fraction of samples that are above the threshold.



Monte Carlo Method for the Mean

• A Monte Carlo approximation of the mean:

– Approximate the mean by the mean of the samples.

• A Monte Carlo approximation of expected value of x2:

– Approximate 𝔼[x2] by the average value of x2 on the samples.

• A Monte Carlo approximation of the expected value of function ‘g’.

– Approximate 𝔼[g(x)] by the average value of g(x) on the samples.



Monte Carlo Method: Definition

• Monte Carlo approximates expectation of random functions:

• Computing mean is a special case, if we use g(x) = x.
• Computing probability of an event ‘A’ is also a special case:

– Set g(x) = I[“A happened in sample x”], indicator function for event ‘A’.

• Monte Carlo methods generate ‘n’ samples xi from p(x) and then use:

• a



Summary of Monte Carlo Theory

• Let 𝜇 = 𝔼[𝑔 𝑥 ], the value we want to compute.
– And assume variance of the samples 𝜎2 is bounded (“not infinite”).

• With IID samples, Monte Carlo gives an unbiased approximation of 𝜇.
– Expected value of Monte Carlo estimate, averaged over samplings, is 𝜇.

• Monte Carlo estimate “converges” to 𝜇 as sample size ‘n’ goes to ∞.
– Estimate get arbitrarily close to 𝜇 as your number of samples gets large.

• Expected squared error between estimate and 𝜇 is 𝜎2/n with ‘n’ samples.
– This is the speed at which you converge to 𝜇 as you increase ‘n’.

• Monte Carlo can be written as a special case of SGD.
– See the post-lecture bonus slides for some details on all of the above.



Summary

• Categorical distribution:

– Probability over unordered categories, where p(x = c | Θ) = 𝜃𝑐.

• Inference in categorical models:

– CDF, decoding, likelihood, sampling.

• Monte Carlo methods:

– Approximate expectations of random functions.

– Generate a set of IID samples.

– Take average value of function value applied to each sample.

• Next time: why we are doing everything wrong to make decisions.










