CPSC 440: Machine Learning

Fully-Convolutional Networks
Winter 2022
Last Time: Multi-Label Classification

• Consider **multi-label classification**:
 – “Which of the ‘k’ objects are in this image?”

\[
X = \begin{bmatrix}
X_1 \\
\vdots \\
X_n
\end{bmatrix}
\]

\[
Y = \begin{bmatrix}
Y_1 \\
\vdots \\
Y_k
\end{bmatrix}
\]

• We considered an encoding-decoding approach:
 – Fewer parameters than independent classifiers.
 – Captures dependencies through shared hidden layer.

http://image-net.org/challenges/LSVRC/2013/
Motivation: Pixel Classification

• Suppose we want to assign a **binary label to each pixel** in an image:
 – Tumour vs. non-tumour, pedestrian vs. non-pedestrian, and so on.

• How can we use CNNs for this problem?

https://www.youtube.com/watch?v=YbNml6hSNKw
Naïve Approach: Sliding Window Classifier

• Train a CNN that predicts pixel label given its neighbourhood.

 – Advantages:
 • Turns pixel labeling into image classification.
 • Can be applied to images of different sizes.

 – Disadvantage: this is slow.
 • (Cost of applying CNN) * (number of pixels in the image).
Encoding-Decoding for Pixel Classification

• Similar to multi-label, could use CNN to generate an image encoding.
 – With output layer making a prediction at each pixel.

 • Much-faster classification.
 – Small number of “global” convolutions, instead of repeated “local” convolutions.
 • But, the encoding has mixed up all the space information.
 – Due to fully-connected layers.
 – Fully-connected layer needs to learn “how to put the image together”.

 • And images must be the same size.
Fully-Convolutional Networks

- **Fully-convolutional networks (FCNs):**
 - CNNs with no fully-connected layers (only convolutional and pooling).

- Maintains **fast classification** of the encoding-decoding approach.
- **Same parameters used across space** at all layers.
 - This allows using the network on **inputs of different sizes**.
 - Needs **upsampling layer(s)** to get back to image size.
- **FCNs quickly achieved state of the art** results on many tasks.

Traditional Upsampling Methods

• In upsampling, we want to **go from a small image to a bigger image**.
 – This requires **interpolation**: guessing “what is inbetween the pixels”.

• Classic upsampling operator is **nearest neighbours interpolation**:
 – But this creates **blocky/pixelated images**.

• Another classic method is **bilinear interpolation**:
 – Weighted combination of corners:
 – More smooth methods include “bicubic” and “splines”.

• In FCNs, we **learn the upsampling/interpolation operator**.
Upsampling with Transposed Convolution

- FCN Upsampling layer is implemented with a **transposed convolution**.
 - Sometimes called “deconvolution” in ML or “fractionally-strided convolution”.
 - But not related to deconvolution in signal processing.

 Figure 3. Illustration of deconvolution and unpooling operations.

- Convolution generates **1 pixel by taking weighted combination of several pixels**.
 - And we learn the weights.
- Transposed convolution **several pixels by weighting 1 pixel**.
 - And we learn the weights.
 - This generates overlapping regions, which get added together to make final image.
Upsampling with Transposed Convolution

The diagrams illustrate how transposed convolution works, with each input (blue) giving a 3x3 region, and these regions overlap so we take a weighted combination at each pixel to give the final result.

Table

<table>
<thead>
<tr>
<th>Input</th>
<th>Kernel</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3</td>
<td>0 1 0 0 2 3</td>
<td>0 0 1 0 4 6 0 3 6 9</td>
</tr>
</tbody>
</table>

Explanation

- **Convolution**
 - Each output (green) is a weighted combination of one 3x3 region.

- **Transposed Convolution**
 - Each input (blue) gives a 3x3 region. These regions overlap, so we take a weighted combination at each pixel to give the final result.

Animations

- [here](https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba)
- [here](https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba)
Why is it called “transposed” convolution?

• We can write the convolution operator as a matrix multiplication, \(z = Wx \).

\[
\begin{bmatrix}
1 & 2 & 3 \\
6 & 5 & 3 \\
1 & 4 & 1
\end{bmatrix} \ast \begin{bmatrix}
1 & 2 \\
2 & 1
\end{bmatrix} = \begin{bmatrix}
22 & 21 \\
22 & 20
\end{bmatrix}
\]

• In transposed convolution, non-zero pattern of ‘\(W \)’ is transposed from convolution.
 – You can implement transposed convolution as a convolution.

\[
\begin{bmatrix}
1 & 2 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \ast \begin{bmatrix}
1 & 4 & 4 \\
4 & 13 & 10 \\
4 & 10 & 4
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 2 & 1 \\
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{bmatrix} \ast \begin{bmatrix}
1 \\
2 \\
2 \\
4 \\
13 \\
10 \\
4
\end{bmatrix} = \begin{bmatrix}
1 \\
4 \\
4 \\
10 \\
13 \\
10 \\
4
\end{bmatrix}
\]

• In this example the filter is the same, but does not need to be:
 – Transposed convolution is not the “reverse” of convolution (it only “reverses” the size).

Increasing Resolution: FCN Skip Connections

- Convolutions and pooling lose a lot of information.
- Original FCN paper considered adding skip connections to help upsampling:
 - Allows using high-resolution information from earlier layers.
 - They first trained the low-resolution FCN-32, then FCN-16, then FCN-8.
 - “First learn to encode at a low resolution”, then slowly increase resolution.
 - Parameters of transposed convolutions initialized to simulate “bilinear interpolation”.

Increasing Resolution: Deconvolution Networks

- Alternate resolution-increasing method is deconvolution networks:
 - Includes transposed convolution layers and unpooling layers.
 - Store the max pooling argmax values.
 - Restores “where” activation happened.
 - Still loses the “non-argmax” information.

https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba
Increasing Resolution: U-Nets

• Another popular variant is u-nets:

• Decoding has connections to same-resolution encoding step.
Source of Labels

• Labeling every pixel takes a long time.

• Where we get the labels from?
 – Domain expert (medical images).
 – Grad students or paid labelers (ImageNet).
 – Simulated environments.
 • High number of lower-quality examples.
 • Often a net gain with fine-tuning on real images.
 • Can get data at night, in fog, or dangerous situations.

Source of Labels

• Recent works recognize you do not need to label every pixel.
 – You can evaluate loss/gradient on a subset of labeled pixels.
 – Could have labeler click on a few pixels inside objects, and a few outside.
 • Many variations are possible, that let you label a lot of images in a short time.

• Penguin counting based “single pixel” labels in training data:
 – And some tricks to separate objects and remove false positives:

End of Part 1 (“Binary Variables”): Key Concepts

• We discussed **binary density estimation**.
 – Model the proportion of times a binary event happens.

• We discussed the **Bernoulli parameterization**.

• We discussed various **inference** tasks, given the parameter:
 – Compute probabilities, find **decoding**, generate **samples**.

• We discuss different **learning** strategies, given data:
 – Maximum likelihood estimation (MLE), maximum a posteriori (MAP).
 – Beta distribution as a prior gives a beta distribution as posterior (**∝**).

• We discussed modeling binary variables **conditioned** on features:
 – Tabular parameterization is flexible but has too many parameters.
 – Logistic regression is limited but has a linear number of parameters.
End of Part 1 ("Binary Variables"): Key Concepts

• We discussed multivariate binary density estimation.
 – Refined inference tasks when we have more than one random variable:
 • Joint probability, marginal probability, and conditional probability.
 – Product of Bernoullis assumes variables are independent.
 • Fast inference/learning but a strong assumption.

• We discussed generative classifiers:
 – Build a model of the joint probability of features and labels.
 • Compared to usual discriminative classifiers that model labels given features.
 – Naïve Bayes assumes features are independent given label.

• We discussed neural networks:
 – Model that learns the features and classifier simultaneously.
 – Alternate between linear and non-linear transformations (universal approximator).
 – Training is a non-convex problem, but SGD often works better than expected:
 • For large-enough networks we often find global, and SGD seems to have implicit regularization.
End of Part 1 (“Binary Variables”): Key Concepts

• We discussed deep learning with multiple hidden layers.
 – Biological motivations and efficient representation of some functions.
 – Vanishing gradient problem and modern solutions:
 • ReLU, skip connections, ResNets.

• We discussed automatic differentiation to generate gradient code.
 – Code that generates gradient code for you (using chain rule).

• We discussed convolutional neural networks (CNNs):
 – Include convolution layers that measure image features.
 – Include max pooling layers that highlight top features across space.
 – Reduces number of parameters and gives some spatial invariance.
End of Part 1 (“Binary Variables”): Key Concepts

- We discussed **autoencoders**:
 - Networks where the **output is the input**.
 - **Encodes** input into a bottleneck layer, then **decodes** back to input.
 - Non-linear dimensionality reduction.
 - **Denoising autoencoders** learn to enhance images.

- We discussed **multi-label classification**:
 - Where each training examples can have 0-k correct labels.
 - We discussed an encoding approach where the **classes shares hidden layers**.
 - Reduces parameters and captures dependencies between labels.
 - We discussed **pre-training** to learn new tasks with fewer labeled examples.

- We discussed **pixel labeling**:
 - **Fully-convolutional networks** maintain spatial information at all layers.
 - Requires upsampling to original image size.
 - Can label images of different sizes.
Next Topic: Categorical Variables
Motivating problem: Political Polling

• Want to know support for political parties among a voter group.
 – What percentage will vote the Liberal party? Conservative party? NDP?
 • What to know support for each party, since may want to attract voters?

• Where I live the last election results were:
 – 34.4% LIB
 – 33.5% NDP
 – 26.8% CPC
 – 2.9% GRN
 – 2.4% PPC

• We want to predict these quantities based on a sample (“poll”).
General Problem: Categorical Density Estimation

• This is a special case **density estimation** with a **categorical variable**:
 – Input: ‘n’ IID samples of categorical values $x^1, x^2, x^3,..., x^n$ from a population.
 – Output: model of probability that $x=1, x=2, x=3,...,x=k$.

• Categorical density estimation as a picture:

• We are going to revisit many of our previous concepts in this case.
 – Again building up to more-complicated cases.
 • And introducing some concepts that we skipped in Part 1.
Other Applications of Categorical Density Estimation

• Other applications where categorical density estimation is useful:
 – What portion of my clients use cash, credit, or debit?
 – Prevalence of different blood types.
 – Probability of having different types of cancers.
 – Probability of seeing different words (natural language processing).

• For categorical variables, we do not assume there is an ordering.
 – Category 4 is not “closer” to category 3 than it is to category 1.
Ordinal Variables

• Categorical variables with an ordering are called **ordinal**:
 – Dice (1, 2, 3, 4, 5, 6).
 • Though I may use dice to illustrate categorical ideas.
 – Survey results (“strongly disagree”, “disagree”, “neutral”,…).
 – Ratings (1 star, 2 star,...).
 – Tumour grading (Grade I, Grade II, Grade III, Grad IV).

• **We will not cover ordinal variables**, but several methods exist.
 – Such as “ordinal logistic regression”.
 • A loss function that reflects that “2 stars” is closer to “3 stars” than “4 stars”.
 – But the distances between adjacent “stars” may not be the same.
 • That loss function can be used in place of “softmax” in neural nets with ordinal labels.
Summary

• **Pixel classification:**
 – Assigning a label to every pixel in an image.

• **Fully-convolutional networks (FCNs):**
 – CNNs where every layer maintains spatial information.
 – Useful for handling images of different sizes.
 – Requires upsampling to be used for pixel classification.
 – Transpose convolutions learn upsampling operators.

• **Categorical density estimation:**
 – Modeling probabilities of several unordered categories.

• Next time: the second-most popular type of algorithm in ML.