
CPSC 440: Machine Learning

Autoencoders

Winter 2022

Last Time: Autoencoders

• Autoencoders are neural networks with same input and output.
– Includes a bottleneck layer: with dimension ‘k’ smaller than input ‘d’.
– First layers “encode” the input into bottleneck.
– Last layers “decode” the bottleneck into a (hopefully valid) input.

• This is unsupervised, and is a non-linear generalization of PCA.
(I am not showing the ‘h’ functions to keep the diagram simple.)

Encoder as Learning a Representation

• Consider the encoder part of the network:
– Takes features ‘xi’ and makes low-dimensional ‘zi’.

• Ways you could use the encoder:
– Use zi as compressed input (reduce memory needed).
– Set bottleneck size to 2, and plot the zi to visualize the data.
– Try to interpret what the bottleneck features zi mean.
– Use the zi as features for supervised learning.

• For the special case of PCA and regression with L2 loss, this is called “partial least squares”.

– You could add a supervised ‘yi’ to final layer of trained autoencoder, fit with SGD.
• This is called “unsupervised pre-training”.
• If you use unlabeled data to do this initialization, an example of “self-supervised” learning.

– Usually it is easier to get a lot of unlabeled data than it is to get labeled data.

PCA vs. Deep Autoencoder (Document Data)

https://www.cs.toronto.edu/~hinton/science.pdf (these days I would recommend t-SNE for making visualizations like this)

Decoder as Generative Model

• Consider the decoder part of the network:

– Takes low-dimensional ‘zi’ and makes features ‘ො𝑥i’.

• Can be used for outlier detection:

– Check distance to original features to detect outliers.

• Can be used to generate new data:

– The ‘z’ close to training examples should generate new valid samples.

– But this is not density estimation, since we are not modeling p(z) yet.

Font Manifold

• Going from encoding to decoding for different fonts:

• Demo here.
– The above was generated by a Gaussian process and not an autoencoder.

– But the decoder part of autoencoders is trying to do something like this.

http://entangled.systems/fragments/20160729-learning-a-manifold-of-fonts-machine-learning-research-from-2014-by-dr-neill-campbell-provides-an-interactive-exploration-of.html

http://vecg.cs.ucl.ac.uk/Projects/projects_fonts/projects_fonts.html

Neural Networks with Multiple Outputs
• Previous neural networks we have seen only have 1 output ‘y’.
• In autoencoders, we have ‘d’ outputs (one for each feature).

• For training, we add up the loss across all ‘j’:

• Fit with SGD (sampling random ‘i’), and usual deep learning tricks can be used.
– Even though network has multiple outputs, ‘f’ is a scalar so AD works as before.
– For images, may want to use convolution layers.

Denoising Autoencoders

• A common variation on autoencoders is denoising autoencoders:
– Use “corrupted” inputs, and learn to reconstruct uncorrupted originals.

– “Learn a model that removes the noise”. Easy to get lots of training data.
• You can apply the model to denoise new images.

• Do not necessarily need a “bottleneck” layer.
https://www.pyimagesearch.com/2020/02/24/denoising-autoencoders-with-keras-tensorflow-and-deep-learning/

• Gallery: http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html

• Video: https://www.youtube.com/watch?v=ys5nMO4Q0iY

Image Colourization

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/extra.html
https://www.youtube.com/watch?v=ys5nMO4Q0iY

• Instead of noisy inputs, you use de-coloured inputs:

• Another application is super-resolution:
– Learn to output a high-resolution image based on low-resolution images.

Image Colourization

http://iizuka.cs.tsukuba.ac.jp/projects/colorization/en/

Next Topic: Multi-Label Classification

Motivation: Multi-Label Classification

• Consider multi-label classification:

• Which of the ‘k’ objects are in this image?

– There may be more than one “correct” class label.

http://image-net.org/challenges/LSVRC/2013/

Independent Classifier Approach

• One way to build a multi-label classifier:
– Train a classifier for each label.

• Train a neural network that predicts +1 if the image contains a dog, and -1 otherwise.
• Train a neural network that predicts +1 if the image contains a cat, and -1 otherwise.
• …

– To make predictions for the ‘k’ classes, concatenate predictions of the ‘k’ models.

• Can think of this as a “product of independent classifiers”.

• Drawbacks:
– Lots of parameters: k*(number of parameters for base classifier).
– Each classifier needs to “relearn from scratch”.

• Each classifier needs to learn its own Gabor filters, how corners and light works, and so on.
• A lot of visual features for “dog” might also help us predict “cat”.

Encoding-Decoding for Multi-Label Classification

• Multi-label classification with an encoding-decoding approach:
– Input is connected to a hidden layer.
– Hidden layer is connected to multiple output units.

• Prediction: compute hidden layer, compute activations, compute output:

• Number of parameters and cost is O(dm + mk) for ‘k’ classes and ‘m’ hidden units.
– If we trained a separate network for each class, number of parameters and cost would be O(kdm) (for ‘W’ for each class)

• Might have multiple layers, convolution layers, and so on. And no need to have a “bottleneck” layer.

Encoding-Decoding for Multi-Label Classification

• We usually assume that the classes are independent given last layer:

– Conditioned on features/parameters, this is ultimately a fancy product of Bernoullis model:
• p(y1, y2,…,yk | x, W, V) = p(y1 | x, W, V)p(y2 | x, W, V)⋯p(yk | x, W, V), where p(yc = 1| x, W, V)= 𝜃𝑐.
• This makes decoding and other inference problems easy: you do inference on each yc independently.

Encoding-Decoding for Multi-Label Classification

• The negative log-likelihood we optimize for MLE:

• Use backpropagation or AD to compute gradient, train by SGD.
– You randomly sample a training example ‘i’ and compute gradient for all labels.

– The updates of ‘W’ lead to features that are useful across classes.

– The updates of ‘V’ focus on getting the class labels right given the features.

• Important:
– We assumed independence of labels given the last layer.

– But the last layer can reflect dependencies.
• If “dog” and “human” are frequently together, this should be reflected in the hidden layer.

– For example, 𝜃ℎ𝑢𝑚𝑎𝑛 might be higher when the features give a high value for 𝜃𝑑𝑜𝑔.

Pre-Training for Multi-Label Classification

• Consider a scenario where we get a new class label.
– For example, we get new images that contain horses (not seen in training).

• Instead of training from scratch, we could:
– Add an extra set of weights vk+1 to the final layer for the new class.

– Train these weights with the encoding weights ‘W’ fixed.
• This is a simple/convex logistic regression problem.

• If we already have “features” that are good for many classes,
we may be able to learn a new class with very-few training examples!

Pre-Training for Multi-Label Classification

• Using an existing network for new problems is called “pre-training”

– Typically, we start with a network trained on a large dataset.

– We use this network to give us features to fit a smaller dataset.

• “Few-shot learning”.

• Depending the setup, you may also update ‘W’ and the other ‘vc’.

– Useful if you have a lot of data on the new class.

– In this case, would typically mix in new examples with old ones.

• Increasing trend in vision and language to using pre-training a lot.

– No need to learn everything about language for every language task!

Summary
• Autoencoders:

– Neural network where the output is the input.
– Encode data into a bottleneck layer, then decode predict original input.
– Can be used for visualization, compression, outlier detection, pre-training.

• Denoising autoencoders train to uncorrupt/enhance images.
– Can be used for removing noise, adding colour, super-resolution, and so on.

• Multi-label classification:
– Classification with more than one label per example.

• Encoding-Decoding approach to multi-label classification:
– Have all classes shared the same hidden layer(s).
– Reduces number of parameters.
– Models dependencies between classes, while keeping inference easy.

• Pre-training:
– Use parameters from model trained a on large diverse dataset, to initialize SGD for new dataset.

• Next time: helping teach fish to drive?

