
CPSC 540 Assignment 2 (due February 12 at midnight)

The assignment instructions are the same as for the previous assignment, but for this assignment you can
work in groups of 1-3. However, please only hand in one assignment for the group.

1. Name(s):

2. Student ID(s):

1

1 Convexity

1.1 From Definitions

Show that the following functions are convex, by only using one of the definitions of convexity. In other
words, don’t use the “operations that preserve convexity” or other convexity results stated in class,, but
instead show that the function follows from one of the definitions of convexity we gave in class:1

1. Upper bound on second-order Taylor expansion: f(w) = f(v)+∇f(v)T (w−v)+ L
2 ‖w−v‖

2, for L > 0,
which is often used in the analysis of gradient descent.

2. Maximum absolute value: f(w) = maxj∈{1,2,...,d} |wj |.

3. The exponential loss, f(w) =
∑n
i=1 exp(−yiw>xi), used by AdaBoost.

Hint: Max and absolute value are not differentiable in general, so you cannot use the Hessian for functions
involving those operations.

1That C0 convex functions are below their chords, that C1 convex functions are above their tangents, or that C2 convex
functions have a positive semidefinite Hessian.

2

1.2 Using Operations that Preserve Convexity

Show that the following functions are convex (you can use results from class and operations that preserve
convexity if they help):

4. Support vector regression: f(w) =
∑N
i=1 max{0, |w>xi − yi| − ε}+ λ

2 ‖w‖
2
2.

5. Mixed-norm regularization: f(w) = ‖w‖p,q =
(∑

g∈G ‖wg‖pq
) 1

p

(for p ≥ 1 and q ≥ 1, and G partitioning

the variables into a set of “groups”). This is a generalization of L1-regularization that encourages
sparsity in groups of variables (setting entire groups to 0). Hint: show that this is a norm.

6. Negative minimum of entropy over pairs of variables: f(w) = −min{i,j | i 6=j}{−wi logwi − wj logwj}
subject to wi > 0 for all i.

1.3 Strong Convexity

Which of the functions 1-6 in the previous subsections are strongly convex?

3

2 Discrete and Gaussian Variables

2.1 MLE for General Discrete Distribution

Consider a density estimation task, where we have two variables (d = 2) that can each take one of k discrete
values. For example, we could have

X =

1 3
4 2
k 3
1 k-1

 .
The likelihood for example xi under a general discrete distribution would be

p(xi1, x
i
2 | Θ) = θxi

1,x
i
2
,

where θc1,c2 gives the probability of x1 being in state c1 and x2 being in state c2, for all the k2 combinations of
the two variables. In order for this to define a valid probability, we need all elements θc1,c2 to be non-negative

and they must sum to one,
∑k
c1=1

∑k
c2=1 θc1,c2 = 1.

1. Given n training examples, derive the MLE for the k2 elements of Θ.

2. Note that this question was updated on February 4th. If we had separate parameters θ1,c1 and θ2,c2

for each variable, a standard for the prior would be a product of independent Dirichlet distributions,

p(Θ) ∝

[∏
c1

θ
αc1
−1

1,c1

][∏
c2

θ
αc2
−1

c2

]
,

where in this case the two variables share k hyper-parameters α1, α2, . . . , αk. Alternately, we could use
a Dirichlet distribution over the k2 variables,

p(Θ) ∝
k∏

c1=1

k∏
c2=1

θ
αc1,c2

−1
c1,c2 ,

with k2 hyper-parameters. An alternate approach that could be considered is to use

p(Θ) ∝
k∏

c1=1

k∏
c2=1

θ
αc1+αc2−2
c1,c2 ,

which only uses k hyper-parameters to define a prior over the k2 values. Derive the MAP estimate
under this prior (assuming we use k2 variables to parameterize Θ)

3. We often use discrete distributions as parts of more-complicated distributions (like mixture models and
graphical models). In these cases we often need to fit a weighted NLL for the form

f(Θ) = −
n∑
i=1

vi log p(xi1, x
i
2 | Θ),

with n non-negative weights. What is the MLE for the k2 elements of Θ under this weighting.

4. Consider the following alternate parameterization of the joint distribution: we use θc1 as the (“marginal”)
probability that variable 1 is in state c1 (p(x1 = c1) = θc1) and θc2 | c1 as the (“conditional”) probability
that variable 2 is in state c2 conditioned on variable 1 being in state c1 (p(x2 = c2 | x1 = c1) = θc2 | c1).2

Give the MLE for the k elements of θc1 and k2 elements of θc2 | c1 (you don’t need to give the full deriva-
tion, but should know how this would be done).

2So we could use p(x1, x2) = p(x2 | x1)p(x1) to get the joint probability.

4

Hint: it may be convenient to write the discrete likelihood for an example i in the form

p(xi | Θ) =
∏
c∈[k]2

θI[xi=c]
c ,

where c is a vector containing (c1, c2), [xi = c] evaluates to 1 if all elements are equal, and [k]2 is all ordered
pairs (c1, c2). You can use a Lagrangian to enforce the sum-to-1 constraint on the log-likelihood (bug the
TAs to show you how to do this in office hours or tutorial if you don’t know how), and you may find it
convenient to define nc =

∑n
i=1 I[xi = c]. Note that the solutions you find using the Lagrangian will already

satisfy the non-negative constraint on the parameters.

5

2.2 Gaussian Self-Conjugacy

Consider n IID samples xi distributed according to a Gaussian with mean µ and covariance σ2I,

xi ∼ N (µ, σ2I).

Assume that µ itself is distributed according to a Gaussian

µ ∼ N (µ0,Σ0),

with mean µ0 and (positive-definite) covariance Σ0. In this setting, the posterior for µ also follows a Gaussian
distribution.3

Derive the form of the posterior distribution, p(µ | X,σ2, µ0,Σ0).
Hint: the posterior is a product of Gaussian densities.

3Because of the prior and posterior coming from the same family, we say that the Gaussian distribution is the “conjugate
prior” for the Gaussian mean parameter (we’ll formally discuss conjugate priors later in the course). Another reason the Gaussian
distribution is important is that is the only (non-trivial) continuous distribution that has this “self-conjugacy” property.

6

2.3 Generative Classifiers with Gaussian Assumption

Consider the 3-class classification dataset in this image: In this dataset, we have 2 features and each colour
represents one of the classes. Note that the classes are highly-structured: the colours each roughly follow a
Gausian distribution plus some noisy samples.

Since we have an idea of what the features look like for each class, we might consider classifying inputs x
using a generative classifier. In particular, we are going to use Bayes rule to write

p(yi = c | xi,Θ) =
p(xi | yi = c,Θ) · p(yi = c | Θ)

p(xi | Θ)
,

where Θ represents the parameters of our model. To classify a new example x̃i, generative classifiers would
use

ŷi = arg max
y∈{1,2,...,k}

p(x̃i | yi = c,Θ)p(yi = c | Θ),

where in our case the total number of classes k is 3.4 Modeling p(yi = c | Θ) is easy: we can just use a
k-state categorical distribution,

p(yi = c | Θ) = θc,

where θc is a single parameter for class c. The maximum likelihood estimate of θc is given by nc/n, the
number of times we have yi = c (which we’ve called nc) divided by the total number of data points n.

Modeling p(xi | yi = c,Θ) is the hard part: we need to know the probability of seeing the feature vector
xi given that we are in class c. This corresponds to solving a density estimation problem for each of the k
possible classes. To make the density estimation problem tractable, we’ll assume that the distribution of xi

given that yi = c is given by a N (µc,Σc) Gaussian distribution for a class-specific µc and Σc,

p(xi | yi = c,Θ) =
1

(2π)
d
2 |Σc|

1
2

exp

(
−1

2
(xi − µc)TΣ−1

c (xi − µc)
)
.

Since we are distinguishing between the probability under k different Gaussians to make our classification,
this is called Gaussian discriminant analysis (GDA). In the special case where we have a constant Σc = Σ
across all classes it is known as linear discriminant analysis (LDA) since it leads to a linear classifier between
any two classes (while the region of space assigned to each class forms a convex polyhedron as in k-means
clustering and softmax classification). Another common restriction on the Σc is that they are diagonal
matrices, since this only requires O(d) parameters instead of O(d2) (corresponding to assuming that the
features are independent univariate Gaussians given the class label). Given a dataset D = {(xi, yi)}ni=1,
where xi ∈ Rd and yi ∈ {1, . . . , k}, the maximum likelihood estimate (MLE) for the µc and Σc in the GDA
model is the solution to

arg max
µ1,µ2,...,µk,Σ1,Σ2,...,Σk

n∏
i=1

p(xi | yi, µyi ,Σyi).

This means that the negative log-likelihood will be equal to

− log p(X | y,Θ) = −
n∑
i=1

log p(xi, yi | µyi ,Σyi)

=

n∑
i=1

1

2
(xi − µyi)TΣ−1

yi (xi − µyi) +
1

2

n∑
i=1

log |Σyi |+ const.

In class we derived the MLE for this model under the assumption that we use full covariance matrices and
that each class has its own covariance.

4The denominator p(x̃i | Θ) is irrelevant to the classification since it is the same for all y.

7

1. Derive the MLE for the GDA model under the assumption of common diagonal covariance matrices,
Σc = D (d parameters). (Each class will have its own mean µc.)

2. Derive the MLE for the GDA model under the assumption of individual scaled-identity matrices,
Σc = σ2

cI (k parameters).

3. When you run example generative it loads a variant of the dataset in the figure that has 12 features
and 10 classes. This data has been split up into a training and test set, and the code fits a k-nearest
neighbour classifier to the training set then reports the accuracy on the test data (around ∼ 63%
test error). The k-nearest neighbour model does poorly here since it doesn’t take into account the
Gaussian-like structure in feature space for each class label. Write a function gda that fits a GDA
model to this dataset (using individual full covariance matrices). Hand in the function and report the
test set accuracy.

4. In this question we would like to replace the Gaussian distribution of the previous problem with
the more robust multivariate-t distribution so that it isn’t influenced as much by the noisy data.
Unlike the previous case, we don’t have a closed-form solution for the parameters. However, if you run
example student it generates random noisy data and fits a multivariate-t model. By using the studentT
model, write a new function tda that implements a generative model that is based on the multivariate-t
distribution instead of the Gaussian distribution. Report the test accuracy with this model.

Hints: you may be able to substantially simplify the notation in the MLE derivations if you use the notation∑
i∈yc to mean the sum over all values i where yi = c. Similarly, you can use nc to denote the number of

cases where yi = c, so that we have
∑
i∈yc 1 = nc. Note that the determinant of a diagonal matrix is the

product of the diagonal entries, and the inverse of a diagonal matrix is a diagonal matrix with the reciprocals
of the original matrix along the diagonal.

For the implementation you can use the result from class regarding the MLE of a general multivariate
Gaussian. At test time for GDA, you may find it more numerically reasonable to compare log probabilities
rather than probabilities of different classes, and you may find it helpful to use the logdet function to compute
the log-determinant in a more numerically-stable way than taking the log of the determinant. (Also, don’t
forget to center at training and test time.)

For the last question, you may find it helpful to define an empty array that can be filled with k DensityModel
objects using:

subModel = Array{DensityModel}(undef,k)

8

3 Mixture Models and Expectation Maximization

3.1 Categorical Mixture Model

Consider density estimation with examples xi ∈ {1, 2, . . . , k}d representing a set of d categorical variables.
In this setting, a natural way to model an individual variable xij would be with a categorical distribution,

p(xij = c | θj,1, θj,2, . . . , θj,k) = θj,c,

so the joint distribution would be

p(xi | θj,1, θj,2, . . . , θj,k) =

d∏
j=1

θj,xi
j
,

where all θj,c ≥ 0 and
∑k
c=1 θj,c = 1 for each feature j. However, in this distribution the variables would

are independent. One way to model dependent count variables would be with a mixture of m independent
categorical distributions,

p(xi | Θ) =

m∑
c=1

p(zi = c | Θt)p(xi | zi = c,Θt) =

m∑
c=1

πc

d∏
j=1

θcj,xi
j
,

where:

• πc is the probability that the examples comes from mixture c, p(zi = c | Θ) = πc.

• θcj,c′ is the probability that xij is c′ for examples from mixture c, p(xij = c′ | zi = c,Θ).

• We use Θ as the set containing all the πc and θcj,c′ values.

Derive the EM update for this mixture model (treating the zi as missing values).

Hint: a lot of the work has been done for you in the EM notes on the course webpage.

9

3.2 Semi-Supervised Gaussian Discriminant Analysis

Consider fitting a GDA model where some of the yi values are missing at random. In particular, let’s assume
we have a set of n labeled examples (xi, yi) and another set of t unlabeled examples (xi). This is a special
case of semi-supervised learning, and fitting generative models with EM is one of the oldest semi-supervised
learning techniques. When the classes exhibit clear structure in the feature space, it can be very effective
even if the number of labeled examples is very small.

1. Derive the EM update for fitting the parameters of a GDA model (with individual full covariance
matrices) in the semi-superivsed setting where we have n labeled examples and t unlabeled examples.

2. If you run the demo example SSL.jl, it will load a variant of the dataset from the GDA, but where
the number of labeled examples is small and a large number of unlabeled examples are available. The
demo first fits a KNN model and then a generative Gaussian model (once you are finished the GDA
question and assuming that you put your gda function in a file named gda.jl). Because the number of
labeled examples it quite small, the performance is worse than in the GDA question. Write a function
gdaSSL that fits the generative Gaussian model of the previous question using EM to incorporate the
unlabeled data. Hand in the function and report the test error when training on the full dataset.

3. Repeat the previous part, but using the imputation approach (“hard”-EM) where we explicitly classify
all the unlabeled examples before each model update. How does this change the performance and the
number of iterations?

Hint: for the first question most of the work has been done for you in the EM notes on the course webpage.
You can use the result (**) and the update of θc from those notes, but you will need to work out the update
of the parameters of the Gaussian distribution p(xi|yi,Θ).

For the second question, although EM often leads to simple updates, implementing them correctly can often
be a pain. One way to help debug your code is to compute the observed-data log-likelihood after every
iteration. If this number goes down, then you know your implementation has a problem. You can also test
your updates of sets of variables in this way too. For example, if you hold the µc and Σc fixed and only
update the θc, then the log-liklihood should not go down. In this way, you can test each combination of
updates on its own to make sure they are correct.

10

4 Very-Short Answer Questions

Give a short and concise 1-sentence answer to the below questions.

1. What is a situation where we can violate the golden rule on our test set, and still have it be a reasonable
approximation of test error?

2. Suppose we have a way to generate new IID samples for our problem. If we are fitting a model with
SGD, what would be the key advantage of using new IID samples as opposed to sampling from a fixed
training set?

3. Is the minimum of a convex function achieved by a unique input value? What about a strictly-convex
function or a strongly-convex function?

4. How can we use density estimation for supervised learning?

5. How many parameters does the general discrete distribution have when each feature is a categorical
variable that can take up to k values.

11

6. What is the relationship between the covariance matrix Σ and the precision matrix Θ of a multivariate
Gaussian?

7. Suppose we run the graphical LASSO method and it returns a tri-diagonal precision matrix. What
would the graph look like?

8. Suppose we have a lot of extreme outliers in our dataset. Why is this less of a problem for a mixture
of Gaussians than if we use a single Gaussian?

9. Why do the πc need to be a convex combination in mixture models?

12

10. What is the relationship between the supervised naive Bayes model and the unsupervised mixture of
Bernoullis model?

11. What is the difference between “missing at random” and “missing completely at random”?

12. What is an advantage of the Epanechnikov kernel over the Gaussian kernel.

13. How does parameter tieing allow us to model training examples that have different sizes?

13

CPSC 540 Project Proposal

This section is only to be done by students enrolled in CPSC 540.

For the final part of this assignment, you must a submit a project proposal for your course project. The
proposal should be a maximum of 2 pages (and 1 page or half of a page is ok if you can describe your plan
concisely). The proposal should be written for me and the TAs, so you don’t need to introduce any ML
background but you will need to introduce non-ML topics. The projects must be done in groups of 2-3, and
will be submitted separately from the assignment.

There is quite a bit of flexibility in terms of the type of project you do, as I believe there are many ways
that people can make valuable contributions to research. However, note that ultimately the project will have
three parts:

1. A very short paper review summarizing the pros and cons of a particular paper on the topic (due with
Assignment 3).

2. A short literature review summarizing at least 10 papers on a particular topic (due with Assignment
4).

3. A final report containing at most 6 pages of text (the actual document can be longer due to figures,
tables, references, and proofs) that emphasizes a particular “contribution” (i.e., what doing the project
has added to the world).

The three mains ingredients of the project proposal are:

1. What problem you are focusing on.

2. What you plan to do.

3. What will be the “contribution”.

Also, note that for the course project that negative results (like “we tried something that we thought we
would work in a particular setting but it didn’t work”) are acceptable (and often unavoidable).

Here are some standard project “templates” that you might want to follow:

• Application bake-off : you pick a specific application (from your research, personal interests, or
maybe from Kaggle) or a small number of related applications, and try out a bunch of techniques (e.g.,
random forests vs. logistic regression vs. generative models). In this case, the contribution would be
showing that some methods work better than others for this specific application (or your contribution
could be that everything works equally well/badly).

• New application: you pick an application where where people aren’t using ML, and you test out
whether ML methods are effective for the task. In this case, the contribution would be knowing whether
ML is suitable for the task.

• Scaling up: you pick a specific machine learning technique, and you try to figure out how to make it
run faster or on larger datasets (for example, how do we apply kernel methods when n is very large).
In this case, the contribution would be the new technique and an evaluation of its performance, or
could be a comparison of different ways to address the problem.

• Improving performance: you pick a specific machine learning technique, and try to extend it in
some way to improve its performance (for example, how can we efficiently use non-linearity within
graphical models). In this case, the contribution would be the new technique and an evaluation of its
performance.

• Generalization to new setting: you pick a specific machine learning technique, and try to extend
it to a new setting (for example, making a graphical-model version of random forests). In this case,

14

the contribution would be the new technique and an evaluation of its performance, or could be a
comparison of different ways to address the problem.

• Perspective paper: you pick a specific topic in ML, read a larger number of papers on the topic,
then write a report summarizing what has been done on the topic and what are the most promising
directions of future work. In this case, the contribution would be your summary of the relationships
between the existing works, and your insights about where the field is going.

• Coding project: you pick a specific method or set of methods (like independent component analysis),
and build an implementation of them. In this case, the contribution could be the implementation itself
or a comparison of different ways to solve the problem.

• Theory: you pick a theoretical topic (like the variance of cross-validation or the convergence of
proximal stochastic gradient in the non-convex setting), read what has been done about it, and try
to prove a new result (usually by relaxing existing assumptions or adding new assumptions). The
contribution could be a new analysis of an existing method, or why some approaches to analyzing the
method will not work.

The above are just suggestions, and many projects will mix several of these templates together, but if you
are having trouble getting going then it’s best to stick with one of the above templates. Also note that the
above includes topics not covered in the course (like random forests), so there is flexibility in the topic, but
the topic should be closely-related to ML.

This question is mandatory but will not be formally marked: it’s just a sanity check that you have at least
one project idea that fits within the scope of a 540 course project, and it’s an excuse for you to allocate some
time to thinking about the project. Also, there is flexibility in the choice of project topics even after the
proposal: if you want to explore different topics you can ultimately choose to do a project that is unrelated
to the one in your proposal/paper-review/literature-review, although it will likely be easier to do all 4 parts
on the same topic.

15

