
CPSC 440/540 Machine Learning (January-April, 2021)

Assignment 1 (due January 22nd at midnight)

IMPORTANT!!!!! Please carefully read the submission instructions that will be posted on
Piazza We will deduct 50% on assignments that do not follow the instructions.

Most of the questions below are related to topics covered in CPSC 340, or other courses listed on the
prerequisite form. There are several “notes” available on the webpage which can help with some relevant
background.

If you find this assignment to be difficult overall, that is an early warning sign that you may not be prepared
to take CPSC 440 at this time. Future assignments will be longer and more difficult than this one.

We use blue to highlight the deliverables that you must answer/do/submit with the assignment.

Basic Information

1. Name:

2. Student ID:

1 Very-Short Answer Questions

Give a short and concise 1-2 sentence answer to the below questions. All acronyms and methods are as used
in CPSC 340/532M.

1. A common pre-processing operation is to standardize our features. This operation replaces each xij with

(xij − µj)/σj , where µj is the mean of feature j on the training data and σj is the standard deviation
of feature j on the training data. When doing predictions with the model, some codes standardize the
test features x̃ij with a mean µ̃j and standard deviation σ̃j computing based on the test data. Describe
why this usually is a mistake, and describe a setting where it can lead to terrible performance even if
the training and test data come IID from the same distribution.

2. What is the difference between a test set error and the test error?

3. In the deep learning world, neural architecture search describes the process of searching for the hyper-
parameters of a neural network model (like the number of layers, the step size, whether to use con-
volutions, the regularization parameters, and so on) in order to optimize the performance on a fixed
validation set. What is a potential problem with this approach?

4. In a parametric model, what is the effect of the number of features d that our model uses on the training
error and on the approximation error (the difference between the training error and test error)?

5. Give a way to set the depth and width of a neural network that makes the model parametric, and a
choice that makes the model non-parametric.

6. You can fit a decision stump by finding the stump that maximizes the number of times ŷi = yi in the
training data. Why do we not try to maximize this quantity when we fit the regression weights w in
linear regression models?
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7. How does λ in an L1-regularizer affect the sparsity pattern of the solution (number of wj set to exactly
0), the training error, and the approximation error?

8. Minimizing the squared error used by in k-means clustering is NP-hard. What would be the significance
of an algorithm that minimizes this error that runs in time O(nd2 + d3).

9. Consider the regression objective given by f(w) =
∑n
i=1 max{0, |yi − wTxi| − ε} + λ

2 ‖w‖
2 for some

number ε. Describe a method to minimize this objective function (or closely approximate the mini-
mum).

10. Consider an ensemble clustering method that generates m different bootstraps of the data. It then fits
a k-means model (with a random initialization) to each of the boostraps. To form the final clustering
for example xi, it chooses the yi that is most common across the m clusterings. Would this be an
effective or an inneffective ensemble method? (Briefly explain.)

11. What does minimizing f(w) = ||Xw − y||1 + λ||w||2 correspond to in the MLE/MAP view?

12. If you perform MLE with a Gaussian likelihood, would the coefficient ŵ change if you standardized
the features? Would the predictions ŷi change? Which of these would change if you perform MAP
estimation with a Gaussian likelihood and Gaussian prior.

13. Do you expect the resulting loss from running NMF to be lower, higher, or the same as the loss from
running PCA on the same data? Briefly justify your answer.

14. Suppose we need to multiply a huge number of matrices to compute a product like A1A2A3 · · ·Ak. The
matrices have wildly-different sizes so the order of multiplication will affect the runtime. For example,
A1(A2A3) may be faster to compute than (A1A2)A3. Describe (at a high level) an O(k3)-time algorithm
that finds the lowest-cost order to multiply the matrices.

15. You have a supervised learning dataset {X, y}. You fit a 1-hidden-layer neural network using stochastic
gradient descent to minimize the squared error, that makes predictions of the form ŷi = v>Wxi where
W and v are the parameters. Explain why or why not this neural network can achieve a better training
accuracy than the basic linear regression model ŷi = w>xi.

2 Coding Questions

If you have not previously used Julia, there is a list of useful Julia commands (and syntax) among the list
of notes on the course webpage.

2.1 Regularization and Hyper-Parameter Tuning

Download a1.zip from the course webpage, and start Julia (latest version) in a directory containing the
extracted files. If you run the script example nonLinear (from Julia’s REPL), it will:

1. Load a one-dimensional regression dataset.

2. Fit a least-squares linear regression model.

3. Report the test set error.

4. Draw a figure showing the training/testing data and what the model looks like.

This script uses the JLD package to load the data and the PyPlot package to make the plot. If you have
not previously used these packages, they can be installed using:

using Pkg

Pkg.add("JLD")

Pkg.add("PyPlot")
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Unfortunately, this is not a great model of the data, and the figure shows that a linear model is probably
not suitable.

1. Write a function called leastSquaresRBFL2 that implements least squares using Gaussian radial basis
functions (RBFs) and L2-regularization.
You should start from the leastSquares function and use the same conventions: n refers to the number
of training examples, d refers to the number of features, X refers to the data matrix, y refers to the
targets, Z refers to the data matrix after the change of basis, and so on. Note that you’ll have to
add two additional input arguments (λ for the regularization parameter and σ for the Gaussian RBF
variance) compared to the leastSquares function. To make your code easier to understand/debug, you
may want to define a new function rbfBasis which computes the Gaussian RBFs for a given training
set, testing set, and σ value. Hand in your function and the plot generated with λ = 1 and σ = 1.
Note: the distancesSquared function in misc.jl is a vectorized way to quickly compute the squared
Euclidean distance between all pairs of rows in two matrices.

2. Modify the script to split the training data into a “train” and “validation” set (you can use half the
examples for training and half for validation), and use these to select λ and σ. Hand in your modified
script and the plot you obtain with the best values of λ and σ.

3. There are reasons why this dataset is particularly well-suited to Gaussian RBFs are that (i) the period
of the oscillations stays constant and (ii) we have evenly sampled the training data across its domain.
If either of these assumptions are violated, the performance with our Gaussian RBFs might be much
worse. Consider a scenario where either (i) or (ii) is violated, and describe a way that you could address
this problem.

2.2 Multi-Class Logistic Regression

The script example multiClass.jl loads a multi-class classification dataset and fits a “one-vs-all” logistic
regression classifier using the findMin gradient descent implementation, then reports the validation error
and shows a plot of the data/classifier. The performance on the validation set is ok, but could be much
better. For example, this classifier never even predicts some of the classes.

Using a one-vs-all classifier hurts performance because the classifiers are fit independently, so there is no
attempt to calibrate the columns of the matrix W . An alternative to this independent model is to use the
softmax probability,

p(yi|W,xi) =
exp(w>yix

i)∑k
c=1 exp(w>c x

i)
.

Here c is a possible label and wc is column c of W . Similarly, yi is the training label, wyi is column yi of
W . The loss function corresponding to the negative logarithm of the softmax probability is given by

f(W ) =

n∑
i=1

[
−w>yix

i + log

(
k∑

c′=1

exp(w>c′x
i)

)]
.

Make a new function, softmaxClassifier, which fits W using the softmax loss from the previous section instead
of fitting k independent classifiers. Hand in the code and report the validation error.

Hint: you can use the derivativeCheck option when calling findMin to help you debug the gradient of the
softmax loss. Also, note that the findMin function treats the parameters as a vector (you may want to use
reshape when writing the softmax objective).

2.3 Principal Component Analysis

The script example PCA will load a dataset containing 50 examples, each representing an animal. The 85
features are traits of these animals. The script gives two unsatisfying visualizations of it. First it shows a
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plot of the matrix entries, which has too much information and thus gives little insight into the relationships
between the animals. Next it shows a scatterplot based on two random features and displays the name of 10
randomly-chosen animals. Because of the binary features even a scatterplot matrix shows us almost nothing
about the data.

The function PCA applies the classic PCA method (orthogonal bases via SVD) for a given k. Using this
function, modify the demo so that the scatterplot uses the latent features zi from the PCA model with k = 2.
Make a scatterplot of the two columns in Z, and use the annotate function to label a bunch of the points in
the scatterplot.

1. Hand in your modified demo and the scatterplot.

2. Which trait of the animals has the largest influence (absolute value) on the first principal component?
(Make sure not to forget the “+1” when looking for the name of the trait in the dataTable).

3. Which trait of the animals has the largest influence (absolute value) on the second principal component?

4. How much of the variance in X (after centering) is explained by our two-dimensional representation
from the previous question?
Note: you can compute the Frobenius norm of a matrix using the function norm. Also, note that the
“variance explained” formula from CPSC 340 assumes that X is already centered.

5. How many PCs are required to explain 50% of the variance in the data?

3 Calculation Questions

3.1 Minimizing Strictly-Convex Quadratic Functions

Solve for the minimizer w of the below strictly-convex quadratic functions:

1. f(w) = 1
2w
>Λw + u>w + λ (general quadratic).

2. f(w) = 1
2 (Xw − y)>Σ−1(Xw − y) + λ

2 ‖w‖
2 (L2-regularized least squares with weight matrix Σ).

3. f(w) = 1
2

∑n
i=1 vi(w

>xi − yi)2 + λ
2 ‖w − u‖

2 (weighted least squares shrunk towards u).

Above we use our usual supervised learning notation. In addition, we assume that u is d× 1 and v is n× 1,
λ is a positive scalar, and Σ and Λ are symmetric positive-definite matrices. You can use V as a diagonal
matrix with v along the diagonal (with the vi non-negative). You can use I as an identity matrix. Hint:
positive-definite matrices are invertible.

3.2 MAP Estimation

In 340, we showed that under the assumptions of a Gaussian likelihood and Gaussian prior,

yi ∼ N (w>xi, 1), wj ∼ N
(

0,
1

λ

)
,

that the MAP estimate is equivalent to solving the L2-regularized least squares problem

f(w) =
1

2

n∑
i=1

(w>xi − yi)2 +
λ

2

d∑
j=1

w2
j ,

in the “loss plus regularizer” framework. For each of the alternate assumptions below, write it in the “loss
plus regularizer” framework (simplifying as much as possible):
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1. Laplace likelihood (with a scale of 1) for each training example and Laplace prior centered at u with
scale 1/λ.

yi ∼ L(w>xi, 1), wj ∼ L (u, 1/λ) ,

where u is d× 1.

2. Gaussian likelihood with a separate variance σ2
i for each training example, and Gaussian prior with a

separate variance 1/λj for each variable,

yi ∼ N (wTxi, σ2
i ), wj ∼ N

(
0,

1

λj

)
.

3. Time-independent censored survival analysis likelihood with a uniform prior,

p(yi, vi|xi, w) = exp(viwTxi) exp(−yi exp(wTxi)), p(wj) ∝ κ

Here, yi is a positive number giving the latest time that we observed patient i, and vi = 1 if patient i
has quit the study while vi = 0 if they are still in it.1

For this question, you do not need to convert to matrix notation.

3.3 Machine Learning Model Memory and Time Complexities

Answer the following questions using big-O notation. Your answers may involve n, d, and perhaps additional
quantities defined in the question. As an example, (linear) least squares model has O(d) parameters and
requires O(nd2 + d3) time to train.2

1. What is the storage space required for a naive Bayes classifier with binary features and k class labels?

2. What is the training time required for k-means clustering? You can use t as the number of iterations
it takes to converge.

3. What is the training time for linear regression with Gaussian RBF features? You can use σ2 as the
variance of the Gaussian RBFs.

4. What is the storage space required for an L2-regularized linear regression model with a polynomial
basis, where we have used the kernel trick? You can use λ as the regularization parameter and p as
the degree of the polynomial.

5. What is the cost of trying to minimize the logistic regression loss by running t iterations of stochastic
gradient descent?

6. What is the cost of forward propagation (computing one value ŷi) in a neural network (for regression)
with 3 fully-connected hidden layers? Use k1 as the number of hidden units in layer 1, k2 as the number
of hidden units in layer 2, and k3 as the number of hidden units in layer 3.

3.4 Gradients and Hessians in Matrix Notation

Express the gradient ∇f(w) and Hessian ∇2f(w) of the following functions in matrix notation, simplifying
as much as possible:

1. The quadratic function

f(w) = wTu+ uTAw +
λ

2
wTw + wTAw,

wher u is d× 1 and A is d× d (not necessarily symmetric).

1This likelihood can be used in regression settings to estimate survival times when some patients are still alive.
2In this course, we assume matrix operations have the “textbook” cost where the operations are implemented in a straight-

forward way with “for” loops. For example, we’ll assume that multiplying two n × n matrices or computing a matrix inverse
simply costs O(n3), rather than the O(nω) where ω is closer to 2 as discussed in CS algorithm courses.
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2. L2-regularized weighted least squares with non-Euclidean quadratic regularizaiton,

f(w) =
1

2

n∑
i=1

vi(w
>xi − yi)2 +

1

2

d∑
i=1

d∑
j=1

wiwjλij

where you can use V as a matrix with the vi along the diagonal and Λ as a positive-definite d × d
(symmetric) matrix with λij in position (i, j).

3. Weighted L2-regularized probit regression,

f(w) = −
n∑
i=1

log p(yi|xiw) +
1

2

d∑
j=1

ujw
2
j .

where u is d× 1, yi ∈ {−1,+1}, and the likelihood of a single example i is given by

p(yi|xi, w) = Φ(yiwTxi).

where Φ is the cumulative distribution function (CDF) of the standard normal distribution.

Hint: You can use the results from the linear and quadratic gradients and Hessians notes to simplify the
derivations. You can use 0 to represent the zero vector or a matrix of zeroes and I to denote the identity
matrix. It will help to convert the second question to matrix notation first. For the last question, it is useful
to define a vector c containing the CDF Φ(yiwTxi) as element ci and a vector p containing the corresponding
PDF as element pi. For the probit question you’ll need to define new vectors to express the gradient and
Hessian in matrix notation (and remember the relationship between the PDF and CDF). As a sanity check,
make sure that your results have the right dimension.

3.5 Norm Inequalities

Show that the following inequalities hold for vectors w ∈ Rd, u ∈ Rd, and X ∈ Rn×d:

1. ‖w‖∞ ≤ ‖w‖2 ≤ ‖w‖1 (relationship between decreasing p-norms)

2. ‖w‖1 ≤
√
d‖w‖2 ≤ d‖w‖∞ (relationship between increasing p-norms)

3.
√
m‖w‖2 ≤ ‖w‖H ≤

√
M‖w‖2 (relationship between quadratic norm and Euclidean norm).

You should use the definitions of the norms, but should not use the known equivalences between these norms
(since these are the things you are trying to prove). Hint: for many of these it’s easier if you work with
squared values (and you may need to “complete the square”). Beyond non-negativity of norms, it may also
help to use the Cauchy-Schwartz inequality, and/or to use that ‖x‖1 = x>sign(x). We’ve used M as the
largest eigenvalue of the (positive-definite) matrix H and m as the smallest eigenvalue, so mI � H �MI.
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