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Last Time: Properties of Multivariate Gaussian

@ Consider modeling density of “grades” data:
Math | Physics | Biology | English

72 57 53 87
88 84 73 75
64 70 75 70

o Might expect Xmath,Physics > 0 and Xmath,English < 0.
@ Last time we discussed how Gaussians are closed under many operations.
o Affine transformation, marginalization, conditioning, product.
@ These properties are what allow us to easily do inference with Gaussians.
o We can compute likelihood of data p(x) by plugging into formula.
e What is likelihood of getting [80 80 80 80]?
o We can computie a marginal likelihood like p(x;)?
o What is likelihood of getting 75 in physics? What is probability of getting > 757
o Computing a conditional likelihood p(z; | /).
o If I got 80 in math, what is likelihood if getting 75 in physics?
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1 Gaussian for Multi-Modal Data

@ Major drawback of Gaussian is that it's uni-modal.
o It gives a terrible fit to data like this:

0.03

@ If Gaussians are all we know, how can we fit this data?
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2 Gaussians for Multi-Modal Data

@ We can fit this data by using two Gaussians

0.03

0.025

0.015}

0.005

@ Half the samples are from Gaussian 1, half are from Gaussian 2.
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Mixture of Gaussians
@ Our probability density in this example is given by

) 1 . 1 :
p(z | pa, po, X1, 82) = 5 p(z’ | p1, X1) +5 p(z' | p2, X2) ,

PDF of Gaussian 1 PDF of Gaussian 2

o We need the (1/2) factors so it still integrates to 1.

0.03
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Mixture of Gaussians

o If data comes from one Gaussian more often than the other, we could use

P(«Tl | M1, 12, 217 227771772) =T p(‘rl | M1, Zl) +772 p(‘rl | H2, 22) )
PDF of Gaussian 1 PDF of Gaussian 2

where 1 and w5 are non-negative and sum to 1.
e 7 represents “probability that we take a sample from Gaussian 1".
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Mixture of Gaussians

@ In general we might have a mixture of &£ Gaussians with different weights.

k
p(x ’ ,U,,E,Tr) = Zﬂ'c p(:IZ ‘ Mc;zc) )
————

e=1 PDF of Gaussian ¢

o Where 7. are categorical distribution parameters (non-negative and sum to 1).
o We can use it to model complicated densities with Gaussians (like RBFs).

@ “Universal approximator”: can model any continuous density on compact set.
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@ Gaussian vs. mixture of 2 Gaussian densities in 2D:

20

@ Marginals will also be mixtures of Gaussians.

Mixture of Gaussians
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Mixture of Gaussians

@ Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:

Gaussian (nll = 7.100) Mixture of Gaussian (nll = 5.108)
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Mixture of Gaussians

@ Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:

Gaussian (nll = 7.100) Mixture of Gaussian (nll = 5.050)
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Mixture of Gaussians

e Given parameters {7, jic, X}, we can sample from a mixture of Gaussians using:

@ Sample cluster ¢ based on prior probabilities 7. (categorical distribution).
@ Sample example = based on mean p. and covariance X..

e We usually fit these models with expectation maximization (EM):
e An optimization method that gives closed-form updates for this model.
o We'll cover EM later.
o To choose k, we might use domain knowledge or test set likelihood.
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Previously: Independent vs. General Discrete Distributions

@ We previously considered density estimation with discrete variables,

1000
X‘[Oloo}’

and considered two extreme approaches:
e Product of independent Bernoullis:

d
p(a' |0) =[] p(} | 65).
j=1

Easy to fit but strong independence assumption:

e Knowing z; tells you nothing about .

o General discrete distribution: ‘
p(a* | 6) = 0.

No assumptions but hard to fit: _

o Parameter vector 0, for each possible z°.

@ A model in between these two is the mixture of Bernoullis.
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Mixture of Bernoullis

@ Consider a coin flipping scenario where we have two coins:
e Coin 1 has #; = 0.5 (fair) and coin 2 has 63 = 1 (biased).

@ Half the time we flip coin 1, and otherwise we flip coin 2:

p(a' =1]061,05) = mp(a’ =1]61) +mop(z’ =11 6,)
1,1, 46,
= 291+292— 9

@ With one variable this mixture model is not very interesting:
e It's equivalent to flipping one coin with 8 = 0.75.

Generative Classifiers

@ But with multiple variables mixture of Bernoullis can model dependencies...
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Mixture of Independent Bernoullis

@ Consider a mixture of independent Bernoullis:

d d

1 1
p(z [ 61,62) = 5 [1pG; 1 615) +5 11 pG; | 625)
j=1 j=1
first set of Bernoullis second set of Bernoulli

@ Conceptually, we now have two sets of coins:
o Half the time we throw the first set, half the time we throw the second set.

o With d =4 we could have §; = [0 0.7 1 1]andf=[1 0.7 0.8 0].
o Half the time we have p(z} = 1) = 1 and half the time it's 0.8.

@ Have we gained anything?
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Mixture of Independent Bernoullis

Generative Classifiers

Example from the previous slide: 6, = [O 0.7 1 1] and 0y = [1 0.7 0.8 ()].

Here are some samples from this model:

0

1
1
0
1
0

_ == O ==

1
1
0

1
1
0

_ O = O O =

Unlike product of Bernoullis, notice that features in samples are not independent.

o In this example knowing z; = 1 tells you that x4 = 0.

This model can capture dependencies: p(zq4 =1 |z1 =1) # p(zq = 1).

0

0.5
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Mixture of Independent Bernoullis

@ General mixture of independent Bernoullis:

k d
p(a' | ©) = Z“cp(xi | 0c) = Zﬂc H Ocj,

where © contains all the model parameters.
e O has k values of 7. and k x d values of 0.

@ Mixture of Bernoullis can model dependencies between variables

o Individual mixtures act like clusters of the binary data.
e Knowing cluster of one variable gives information about other variables.

o With k large enough, mixture of Bernoullis can model any discrete distribution.
o Hopefully with k& << 29,
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Mixture of Independent Bernoullis
o Plotting parameters 6, with 10 mixtures trained on MNIST digits (with “EM"):

(numbers above images are mixture coefficients 7.)

0.12 0.14 0.12 0.06 0.13

117]3]0]3

0.07 0.05 0.15 0.07 0.09

Jlslrjelé

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

http:

@ Remember this is unsupervised: it hasn't been told there are ten digits.
o Density estimation is trying to figure out how the world works.


http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
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Mixture of Independent Bernoullis
o Plotting parameters 6, with 10 mixtures trained on MNIST digits (with “EM"):

(numbers above images are mixture coefficients 7.)

0.12 0.14 0.12 0.06 0.13

117191013

0.07 0.05 0.15 0.07 0.09

Jl5lr]elé

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

http:

@ You could use this model to “fill in” missing parts of an image:
e By finding likely cluster/mixture, you find likely values for the missing parts.


http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
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Mixture of Bernoullis on Digits with £ > 10

@ Parameters of a mixture of Bernoulli model fit to MNIST with & = 10:

zl7]9l3]lalolslall{ée

@ Shapes of samples are better, but missing within-cluster dependencies:

@ You get a better model W|th k > 10. First 10 components with k& = o()

° Samples from the & = 50 model (can have more than one “type” of a number):

|IJ"'_.,|_|. !
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Summary

@ Mixture of Gaussians writes probability as convex comb. of Gaussian densities.
o Can model arbitrary continuous densities.

@ Mixture of Bernoullis can model dependencies between discrete variables.
e Probability of belonging to mixtures is a soft-clustering of examples.

@ Next time: dealing with missing data.
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Mixture of Gaussians on Digits

@ Mean parameters of a mixture of Gaussians with k£ = 10:

@ Samples:
. E
@ 10 components with & = 50 (I might need a better initialization):

@ Samples:
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