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Last Time: Properties of Multivariate Gaussian
Consider modeling density of “grades” data:

Math Physics Biology English

72 57 53 87
88 84 73 75
64 70 75 70
...

...
...

...

Might expect ΣMath,Physics > 0 and ΣMath,English < 0.

Last time we discussed how Gaussians are closed under many operations.
Affine transformation, marginalization, conditioning, product.

These properties are what allow us to easily do inference with Gaussians.
We can compute likelihood of data p(x) by plugging into formula.

What is likelihood of getting
[
80 80 80 80

]
?

We can computie a marginal likelihood like p(xj)?
What is likelihood of getting 75 in physics? What is probability of getting > 75?

Computing a conditional likelihood p(xj | xj′).
If I got 80 in math, what is likelihood if getting 75 in physics?
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1 Gaussian for Multi-Modal Data

Major drawback of Gaussian is that it’s uni-modal.
It gives a terrible fit to data like this:

If Gaussians are all we know, how can we fit this data?
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2 Gaussians for Multi-Modal Data

We can fit this data by using two Gaussians

Half the samples are from Gaussian 1, half are from Gaussian 2.
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Mixture of Gaussians
Our probability density in this example is given by

p(xi | µ1, µ2,Σ1,Σ2) =
1

2
p(xi | µ1,Σ1)︸ ︷︷ ︸

PDF of Gaussian 1

+
1

2
p(xi | µ2,Σ2)︸ ︷︷ ︸

PDF of Gaussian 2

,

We need the (1/2) factors so it still integrates to 1.
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Mixture of Gaussians
If data comes from one Gaussian more often than the other, we could use

p(xi | µ1, µ2,Σ1,Σ2, π1, π2) = π1 p(x
i | µ1,Σ1)︸ ︷︷ ︸

PDF of Gaussian 1

+π2 p(x
i | µ2,Σ2)︸ ︷︷ ︸

PDF of Gaussian 2

,

where π1 and π2 are non-negative and sum to 1.
π1 represents “probability that we take a sample from Gaussian 1”.
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Mixture of Gaussians

In general we might have a mixture of k Gaussians with different weights.

p(x | µ,Σ, π) =

k∑
c=1

πc p(x | µc,Σc)︸ ︷︷ ︸
PDF of Gaussian c

,

Where πc are categorical distribution parameters (non-negative and sum to 1).
We can use it to model complicated densities with Gaussians (like RBFs).

“Universal approximator”: can model any continuous density on compact set.
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Mixture of Gaussians

Gaussian vs. mixture of 2 Gaussian densities in 2D:

Marginals will also be mixtures of Gaussians.
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Mixture of Gaussians

Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:
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Mixture of Gaussians

Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:
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Mixture of Gaussians

Given parameters {πc, µc,Σc}, we can sample from a mixture of Gaussians using:
1 Sample cluster c based on prior probabilities πc (categorical distribution).
2 Sample example x based on mean µc and covariance Σc.

We usually fit these models with expectation maximization (EM):
An optimization method that gives closed-form updates for this model.

We’ll cover EM later.

To choose k, we might use domain knowledge or test set likelihood.
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Previously: Independent vs. General Discrete Distributions

We previously considered density estimation with discrete variables,

X =

[
1 0 0 0
0 1 0 0

]
,

and considered two extreme approaches:
Product of independent Bernoullis:

p(xi | θ) =

d∏
j=1

p(xij | θj).

Easy to fit but strong independence assumption:
Knowing xij tells you nothing about xik.

General discrete distribution:
p(xi | θ) = θxi .

No assumptions but hard to fit:
Parameter vector θxi for each possible xi.

A model in between these two is the mixture of Bernoullis.
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Mixture of Bernoullis

Consider a coin flipping scenario where we have two coins:

Coin 1 has θ1 = 0.5 (fair) and coin 2 has θ2 = 1 (biased).

Half the time we flip coin 1, and otherwise we flip coin 2:

p(xi = 1 | θ1, θ2) = π1p(x
i = 1 | θ1) + π2p(x

i = 1 | θ2)

=
1

2
θ1 +

1

2
θ2 =

θ1 + θ2
2

With one variable this mixture model is not very interesting:

It’s equivalent to flipping one coin with θ = 0.75.

But with multiple variables mixture of Bernoullis can model dependencies...
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Mixture of Independent Bernoullis

Consider a mixture of independent Bernoullis:

p(x | θ1, θ2) =
1

2

d∏
j=1

p(xj | θ1j)︸ ︷︷ ︸
first set of Bernoullis

+
1

2

d∏
j=1

p(xj | θ2j)︸ ︷︷ ︸
second set of Bernoulli

.

Conceptually, we now have two sets of coins:

Half the time we throw the first set, half the time we throw the second set.

With d = 4 we could have θ1 =
[
0 0.7 1 1

]
and θ2 =

[
1 0.7 0.8 0

]
.

Half the time we have p(xi3 = 1) = 1 and half the time it’s 0.8.

Have we gained anything?
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Mixture of Independent Bernoullis

Example from the previous slide: θ1 =
[
0 0.7 1 1

]
and θ2 =

[
1 0.7 0.8 0

]
.

Here are some samples from this model:

X =



0 1 1 1
1 1 1 0
1 0 0 0
0 1 1 1
1 1 1 0
0 1 0 1


Unlike product of Bernoullis, notice that features in samples are not independent.

In this example knowing x1 = 1 tells you that x4 = 0.

This model can capture dependencies: p(x4 = 1 | x1 = 1)︸ ︷︷ ︸
0

6= p(x4 = 1)︸ ︷︷ ︸
0.5

.
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Mixture of Independent Bernoullis

General mixture of independent Bernoullis:

p(xi | Θ) =

k∑
c=1

πcp(x
i | θc) =

k∑
c=1

πc

d∏
j=1

θcj ,

where Θ contains all the model parameters.

Θ has k values of πc and k × d values of θcj .

Mixture of Bernoullis can model dependencies between variables

Individual mixtures act like clusters of the binary data.
Knowing cluster of one variable gives information about other variables.

With k large enough, mixture of Bernoullis can model any discrete distribution.

Hopefully with k << 2d.
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Mixture of Independent Bernoullis

Plotting parameters θc with 10 mixtures trained on MNIST digits (with “EM”):
(numbers above images are mixture coefficients πc)

http:

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

Remember this is unsupervised: it hasn’t been told there are ten digits.
Density estimation is trying to figure out how the world works.

http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
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Mixture of Independent Bernoullis

Plotting parameters θc with 10 mixtures trained on MNIST digits (with “EM”):
(numbers above images are mixture coefficients πc)

http:

//pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html

You could use this model to “fill in” missing parts of an image:
By finding likely cluster/mixture, you find likely values for the missing parts.

http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
http://pmtk3.googlecode.com/svn/trunk/docs/demoOutput/bookDemos/%2811%29-Mixture_models_and_the_EM_algorithm/mixBerMnistEM.html
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Mixture of Bernoullis on Digits with k > 10

Parameters of a mixture of Bernoulli model fit to MNIST with k = 10:

Shapes of samples are better, but missing within-cluster dependencies:

You get a better model with k > 10. First 10 components with k = 50:

Samples from the k = 50 model (can have more than one “type” of a number):
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Summary

Mixture of Gaussians writes probability as convex comb. of Gaussian densities.

Can model arbitrary continuous densities.

Mixture of Bernoullis can model dependencies between discrete variables.

Probability of belonging to mixtures is a soft-clustering of examples.

Next time: dealing with missing data.
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Mixture of Gaussians on Digits

Mean parameters of a mixture of Gaussians with k = 10:

Samples:

10 components with k = 50 (I might need a better initialization):

Samples:
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