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Last Time: Multivariate Gaussian
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http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

e The multivariate normal/Gaussian distribution models PDF of vector z* as

e 112 = e (<4 - )T - )
(2m)z |2 2
where ;1 € R? and ¥ € R*? and ¥ >~ 0.
e This is the density for a linear transformation of a product of independent Gaussians.
® MLE is easy: o =13" 2% and 3= LS (@ =)t —p)T.
@ Diagonal ¥ implies independence between variables.


http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

Example: Multivariate Gaussians on Digits

@ Recall the task of density estimation with handwritten images of digits:

' = vec

@ Let's treat this as a continuous density estimation problem.



Example: Multivariate Gaussians on Digits

@ MLE of parameters using independent Gaussians (diagonal X):

o Mean y; (left) and variance o7 (right) for each feature.

@ Samples generate from this model:

@ Because ¥ is diagonal, doesn't model dependencies between pixels.



Example: Multivariate Gaussians on Digits

@ MLE of parameters using multivariate Gaussians (dense d x d covariance X):

o Largest values are on main diagonal (self-correlation), above/below main diagonal
(neighbour above/below in image), and shifted (nelghbour left/right in image).

o Captures some pairwise dependencies between pixels, but not expressive enough.

@ Samples generate from this model:
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MAP Estimation in Multivariate Gaussian (Trace Regularization)

@ A classic regularizer for 3. is to add a diagonal matrix to S and use
3= S+\,

which satisfies ¥ > 0 because S = 0 (eigenvalues at least \).

@ This corresponds to L1-regularization of diagonals of precision.

d

£(©) =Tr(S©) —log O] + A > 0,5 (Gauss. NLL plus L1 of diags)
j=1
d
=Tr(SO) —log |©| + A Z 9;; (Diagonals of pos. def. matrix are > 0)
j=1
= Tr(SO) — log |©| + ATr(O) (Definition of trace)
= Tr(50+X0) — log |©| (Linearity of trace)
= Tr((S + AI)©) — log |©] (Distributive law)

e Taking gradient and setting to zero gives ¥ = S + A.
o But doesn’t set to exactly zero as log-determinant term is too “steep” at 0.
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Graphical LASSO

@ A popular generalization called the graphical LASSO,
f(©) =Tr(56) —log|O] + A[[O]]1.
where we are using the element-wise L1-norm, ||O|; = Zgzl Z;-lzl O;;.
@ Gives sparse off-diagonals in ©.
o Can solve very large instances with proximal-Newton and other tricks (“QUIC").

@ It's common to draw the non-zeroes in © as a graph.

o Has an interpretation in terms on conditional independence (we'll cover this later).
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Graphical LASSO on Digits

@ Sparsity pattern if we instead use the graphical LASSO:
o MAP estimate of precision matrix © with regularizer A||O]|; (with A = 1/8).

@ To understand this picture, first consider the two matrices:
o The images of digits, which are m x m matrices (m pixels by m pixels)
o This gives d = m?” elements of x*, which we'll assume are in “column-major” order.
@ So the first m elements of 2* are row 1, the next m elements are row 2, and so on.

o The covariance picture above, which is d x d so will be m? x m?.
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Graphical LASSO on Digits

@ Sparsity pattern if we instead use the graphical LASSO:
o MAP estimate of precision matrix © with regularizer A||©]]; (with A = 1/8).

@ So what are the non-zeroes in the covariance matrix?
© The diagonals ©, ; (these are all non-zero because © - 0).
@ The first off-diagonals ©; ;11 and ©;41 ;.
@ This represents the dependencies between adjacent pixels horizontally.
© The (m + 1) off-diagonals O, ;1m and O, 1, ;.
@ This represents the dependencies between adjacent pixels vertically.
@ Because in “column-major” order, you go “down"” a pixel every m indices.
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Graphical LASSO on Digits

@ Sparsity pattern if we instead use the graphical LASSO:
o MAP estimate of precision matrix © with regularizer A||©]; (with A = 1/8).

@ The graph represented by this adjacency matrix is (roughly) the 2d image lattice.
o Pixels that are near each other in the image end up being connected by an edge.

o Examples:
@ https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models


https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models

Outline
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Inference in Multivariate Gaussian

@ Suppose we have fit © and X to our data X.
e Using either MLE or MAP.

@ How do we do predictions/inference in the model?
o We can compute likelihood of data p(x) by plugging into formula.
o Likelihood of seeing the vector z7?
o But what about computing a marginal likelihood like p(z;)?
e What is the likelihood that variable j takes the value z;?
o Or computing a conditional likelihood p(z; | z;/).
@ Maybe you know the values of some variables and want to “fill in” others.

o Or generating samples from the distribution.

@ Gaussians have many nice properties that make these computations easy.
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Closedness of Multivariate Gaussian

@ Multivariate Gaussian has nice properties of univariate Gaussian:
o Closed-form MLE for p and X given by sample mean /variance.
o Central limit theorem: mean estimates of random variables converge to Gaussians.
e Maximizes entropy subject to fitting mean and covariance of data.

@ A crucial computational property: Gaussians are closed under many operations.

@ Affine transformation: if p(z) is Gaussian, then p(Az + b) is a Gaussian?.

@ Marginalization: if p(x, z) is Gaussian, then p(x) is Gaussian.
© Conditioning: if p(x, z) is Gaussian, then p(x | z) is Gaussian.
@ Product: if p(x) and p(z) are Gaussian, then p(z)p(z) is proportional to a Gaussian.

@ Most continuous distributions don't have these nice properties.

!Could be degenerate with |X| = 0, dependending on particular A.
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Affine Property: Special Case of Shift

@ Assume that random variable x follows a Gaussian distribution,
z~N(p,X).
@ And consider an shift of the random variable,
z=a+0b.
@ Then random variable z follows a Gaussian distribution
z~N(pn+b,%),

where we've shifted the mean.
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Affine Property: General Case

@ Assume that random variable z follows a Gaussian distribution,
x~N(u,X).
@ And consider an affine transformation of the random variable,
z=Ax+0b.
@ Then random variable z follows a Gaussian distribution
2~ N(Ap+b,ASAT),

although note we might have |[AXAT| = 0.
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Partitioned Gaussian

Consider a dataset where we've partitioned the variables into two sets:
I

X = Tr1 T2 21 <2

I

It's common to write multivariate Gaussian for partitioned data as:

v (G 5 5])

@ Example:
1 0.3 1.5 —0.1 —0.1 0
T —0.1 —0.1 2.3 0.1 0 _ |15 _ 1.6 —0.2
P N s [ ]-01 o1 16 —oz2f |+ then ms= [25] and Bz = [702 4 ]
z9 2.5 0 0 —0.2 4
@ The blocks don't necessarily have to have the same size.
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Marginalization of Gaussians

o Consider a dataset where we've partitioned the variables into two sets:

T
X = r1 T2 21 X2
T

@ It's common to write multivariate Gaussian for partitioned data as:

v (G 5])

e If | want the marginal distribution p(x), | can use the affine property,

to get that
x~ N (g, Xor)-
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Properties of Multivariate Gaussian

Marginalization of Gaussians

@ In a picture, ignoring a subset of the variables gives a Gaussian:

(x)d

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

@ This seems less intuitive if you use rules of probability to marginalize:

S R e e | (SE-ED B 3] (E- L)) a0

ze Zzz

@ A caution about different “precisions”: note that X! # (X71),, in general.


https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Conditioning in Gaussians

@ Again consider a partitioned Gaussian,

T by b
(B B =)
@ The conditional probabilities are also Gaussian,
|2~ N(pig |2 S0 2),
where
Pz = be+ 50250 (2 = 12), So )z = Saw — S22 Sea

@ “For any fixed z, the distribution of x is a Gaussian”.

o Notice that if ¥,. = 0 then = and z are independent (uy | ; = fie, Xp |- = Xz).
o We previously saw the special case where X is diagonal (all variables independent).
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Product of Gaussian Densities
e If ©1 = I and 5 = I then product of PDFs has ¥ = 17 and 1 = "1+"2
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Product of Gaussian Densities

o Let fi(x) and fa(z) be Gaussian PDFs defined on variables x.

@ The product of the PDFs fi(x) fa(z) is proportional to a Gaussian density,
o With (u1,%1) as parameters of f; and (ug, X2) for fo:
covariance of ¥ = (N71 + ¥ )7L

mean of 1 = XX, g + XX5 o,

although this density may not be normalized (may not integrate to 1 over all x).

@ So if we can write a probability as p(x) o fi(z)f2(z) for 2 Gaussians,
then p is a Gaussian with known mean/covariance.
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Product of Gaussian Densities
e Example of a Gaussian likelihood p(x? | 11, %) for IID data,

| J T )
i=1
will be Gaussian if the individual likelihoods p(z° | i, ) are Gaussian.

@ Example of a Gaussian likelihood p(x? | i1, %) and Gaussian prior p(u | o, Xo).
e Posterior for u will be Gaussian:

p(p | 2,3, po, Xo) o< p(a* | 1, X)p(p | o, Xo) (Bayes rule)
=p(p | =, 2)p(p | po, o) (symmetry of z* and p)
= (some Gaussian).

e Non-example of p(zy | x1) being Gaussian and p(x; | z2) being Gaussian.
e Product p(z2 | z1)p(z1 | z2) may not be a proper distribution.
o Although we saw it will be a Gaussian if they are independent.
@ “Product of Gaussian densities” will be used later in Gaussian Markov chains.
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Properties of Multivariate Gaussians

@ A multivariate Gaussian “cheat sheet” is here:

@ https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

@ For a careful discussion of Gaussians, see the playlist here:
@ https://www.youtube.com/watch?v=TCOZAX3DA88&t=2s&1ist=PL17567A1A3F5DB5E4&index=34


https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34
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Problems with Multivariate Gaussian

@ Why not the multivariate Gaussian distribution?
e Still not robust, may want to consider multivariate Laplace or multivariate T.

Gaussian (nll = 6.220) Multivariate T (estimated dof) (nll = 4.836)
251 r

200

e These require numerical optimization to compute MLE/MAP.
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Problems with Multivariate Gaussian

@ Why not the multivariate Gaussian distribution?

e Still not robust, may want to consider multivariate Laplace of multivariate T.
o Still unimodal, which often leads to very poor fit.

Gaussian (nll = 7.100)




MAP Estimation in Multivariate Gaussian Properties of Multivariate Gaussian

Summary

@ MAP in multivariate Gaussian:
e Common approach is trace regularization, graphical Lasso gives visualization.

@ Properties of multivariate Gaussian:

o Closed under affine transformations, marginalization, conditioning, and products.
e But unimodal and not robust.

@ Next time: a universal model for continuous densities.
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MAP for Univariate Gaussian Mean

o Assume 2 ~ N (u1,0?%) and assume p ~ N (po, 1).

@ The MAP estimate of u under these assumptions can be written as

where Z is the sample mean, = 3" | 2% (which is the MLE).

@ The MAP estimate is a convex combination of the MLE and prior mean py.

o Regularizer moves us in a straight line away from MLE towards 1.
e With small n you stay close to prior, with large n you start ignoring prior.



