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MAP Estimation in Multivariate Gaussian Properties of Multivariate Gaussian

Last Time: Multivariate Gaussian

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

The multivariate normal/Gaussian distribution models PDF of vector xi as

p(xi | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)>Σ−1(xi − µ)

)
where µ ∈ Rd and Σ ∈ Rd×d and Σ � 0.

This is the density for a linear transformation of a product of independent Gaussians.

MLE is easy: µ̂ = 1
n

∑n
i=1 x

i, and Σ̂ = 1
n

∑n
i=1(x

i − µ)(xi − µ)>.

Diagonal Σ implies independence between variables.

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html
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Example: Multivariate Gaussians on Digits

Recall the task of density estimation with handwritten images of digits:

xi = vec




,

Let’s treat this as a continuous density estimation problem.
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Example: Multivariate Gaussians on Digits

MLE of parameters using independent Gaussians (diagonal Σ):

Mean µj (left) and variance σ2
j (right) for each feature.

Samples generate from this model:

Because Σ is diagonal, doesn’t model dependencies between pixels.
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Example: Multivariate Gaussians on Digits
MLE of parameters using multivariate Gaussians (dense d× d covariance Σ):

Largest values are on main diagonal (self-correlation), above/below main diagonal
(neighbour above/below in image), and shifted (neighbour left/right in image).

Samples generate from this model:

Captures some pairwise dependencies between pixels, but not expressive enough.



MAP Estimation in Multivariate Gaussian Properties of Multivariate Gaussian

MAP Estimation in Multivariate Gaussian (Trace Regularization)

A classic regularizer for Σ is to add a diagonal matrix to S and use

Σ = S+λI,

which satisfies Σ � 0 because S � 0 (eigenvalues at least λ).

This corresponds to L1-regularization of diagonals of precision.

f(Θ) = Tr(SΘ)− log |Θ| + λ
d∑

j=1

|Θjj | (Gauss. NLL plus L1 of diags)

= Tr(SΘ)− log |Θ| + λ
d∑

j=1

Θjj (Diagonals of pos. def. matrix are > 0)

= Tr(SΘ)− log |Θ| + λTr(Θ) (Definition of trace)

= Tr(SΘ+λΘ)− log |Θ| (Linearity of trace)

= Tr((S + λI)Θ)− log |Θ| (Distributive law)

Taking gradient and setting to zero gives Σ = S + λ.
But doesn’t set to exactly zero as log-determinant term is too “steep” at 0.
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Graphical LASSO

A popular generalization called the graphical LASSO,

f(Θ) = Tr(SΘ)− log |Θ|+ λ‖Θ‖1.

where we are using the element-wise L1-norm, ‖Θ‖1 =
∑d

i=1

∑d
j=1 Θij .

Gives sparse off-diagonals in Θ.

Can solve very large instances with proximal-Newton and other tricks (“QUIC”).

It’s common to draw the non-zeroes in Θ as a graph.

Has an interpretation in terms on conditional independence (we’ll cover this later).
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Graphical LASSO on Digits

Sparsity pattern if we instead use the graphical LASSO:

MAP estimate of precision matrix Θ with regularizer λ‖Θ‖1 (with λ = 1/8).

To understand this picture, first consider the two matrices:
The images of digits, which are m×m matrices (m pixels by m pixels)

This gives d = m2 elements of xi, which we’ll assume are in “column-major” order.
So the first m elements of xi are row 1, the next m elements are row 2, and so on.

The covariance picture above, which is d× d so will be m2 ×m2.
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Graphical LASSO on Digits

Sparsity pattern if we instead use the graphical LASSO:
MAP estimate of precision matrix Θ with regularizer λ‖Θ‖1 (with λ = 1/8).

So what are the non-zeroes in the covariance matrix?
1 The diagonals Θi,i (these are all non-zero because Θ � 0).
2 The first off-diagonals Θi,i+1 and Θi+1,i.

This represents the dependencies between adjacent pixels horizontally.
3 The (m+ 1) off-diagonals Θi,i+m and Θi+m,i.

This represents the dependencies between adjacent pixels vertically.
Because in “column-major” order, you go “down” a pixel every m indices.
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Graphical LASSO on Digits

Sparsity pattern if we instead use the graphical LASSO:

MAP estimate of precision matrix Θ with regularizer λ‖Θ‖1 (with λ = 1/8).

The graph represented by this adjacency matrix is (roughly) the 2d image lattice.

Pixels that are near each other in the image end up being connected by an edge.

Examples:
https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Outline
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Inference in Multivariate Gaussian

Suppose we have fit µ and Σ to our data X.

Using either MLE or MAP.

How do we do predictions/inference in the model?
We can compute likelihood of data p(x) by plugging into formula.

Likelihood of seeing the vector x?

But what about computing a marginal likelihood like p(xj)?

What is the likelihood that variable j takes the value xj?

Or computing a conditional likelihood p(xj | xj′).

Maybe you know the values of some variables and want to “fill in” others.

Or generating samples from the distribution.

Gaussians have many nice properties that make these computations easy.
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Closedness of Multivariate Gaussian

Multivariate Gaussian has nice properties of univariate Gaussian:

Closed-form MLE for µ and Σ given by sample mean/variance.
Central limit theorem: mean estimates of random variables converge to Gaussians.
Maximizes entropy subject to fitting mean and covariance of data.

A crucial computational property: Gaussians are closed under many operations.
1 Affine transformation: if p(x) is Gaussian, then p(Ax+ b) is a Gaussian1.
2 Marginalization: if p(x, z) is Gaussian, then p(x) is Gaussian.
3 Conditioning: if p(x, z) is Gaussian, then p(x | z) is Gaussian.
4 Product: if p(x) and p(z) are Gaussian, then p(x)p(z) is proportional to a Gaussian.

Most continuous distributions don’t have these nice properties.

1Could be degenerate with |Σ| = 0, dependending on particular A.
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Affine Property: Special Case of Shift

Assume that random variable x follows a Gaussian distribution,

x ∼ N (µ,Σ).

And consider an shift of the random variable,

z = x+ b.

Then random variable z follows a Gaussian distribution

z ∼ N (µ+ b,Σ),

where we’ve shifted the mean.
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Affine Property: General Case

Assume that random variable x follows a Gaussian distribution,

x ∼ N (µ,Σ).

And consider an affine transformation of the random variable,

z = Ax+ b.

Then random variable z follows a Gaussian distribution

z ∼ N (Aµ+ b, AΣA>),

although note we might have |AΣA>| = 0.
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Partitioned Gaussian

Consider a dataset where we’ve partitioned the variables into two sets:

X =

x1 x2 z1 z2

 .
It’s common to write multivariate Gaussian for partitioned data as:[

x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
,

Example:

If


x1
x2
z1
z2

 ∼ N



0.3
−0.1
1.5
2.5

 ,


1.5 −0.1 −0.1 0
−0.1 2.3 0.1 0
−0.1 0.1 1.6 −0.2

0 0 −0.2 4


 , then µz =

[
1.5
2.5

]
and Σzz =

[
1.6 −0.2
−0.2 4

]
.

The blocks don’t necessarily have to have the same size.
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Marginalization of Gaussians

Consider a dataset where we’ve partitioned the variables into two sets:

X =

x1 x2 z1 z2

 .
It’s common to write multivariate Gaussian for partitioned data as:[

x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
,

If I want the marginal distribution p(x), I can use the affine property,

x =
[
I 0

]︸ ︷︷ ︸
A

[
x
z

]
+ 0︸︷︷︸

b

,

to get that
x ∼ N (µx,Σxx).
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Marginalization of Gaussians

In a picture, ignoring a subset of the variables gives a Gaussian:

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

This seems less intuitive if you use rules of probability to marginalize:

p(x) =

∫
z1

∫
z2

· · ·
∫
zd

1

(2π)
d
2

∣∣∣∣[Σxx Σxz
Σzx Σzz

]∣∣∣∣ 12
exp

(
−

1

2

([
x
z

]
−
[
µx
µz

]) [
Σxx Σxz
Σzx Σzz

]−1 ([x
z

]
−
[
µx
µz

]))
dzddzd−1 . . . dz1.

A caution about different “precisions”: note that Σ−1xx 6= (Σ−1)xx in general.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Conditioning in Gaussians

Again consider a partitioned Gaussian,[
x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
.

The conditional probabilities are also Gaussian,

x | z ∼ N (µx | z,Σx | z),

where

µx | z = µx + ΣxzΣ
−1
zz (z − µz), Σx | z = Σxx − ΣxzΣ

−1
zz Σzx.

“For any fixed z, the distribution of x is a Gaussian”.

Notice that if Σxz = 0 then x and z are independent (µx | z = µx, Σx | z = Σx).
We previously saw the special case where Σ is diagonal (all variables independent).
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Product of Gaussian Densities

If Σ1 = I and Σ2 = I then product of PDFs has Σ = 1
2I and µ = µ1+µ2

2 .
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Product of Gaussian Densities

Let f1(x) and f2(x) be Gaussian PDFs defined on variables x.

The product of the PDFs f1(x)f2(x) is proportional to a Gaussian density,

With (µ1,Σ1) as parameters of f1 and (µ2,Σ2) for f2:

covariance of Σ = (Σ−11 + Σ−12 )−1.

mean of µ = ΣΣ−11 µ1 + ΣΣ−12 µ2,

although this density may not be normalized (may not integrate to 1 over all x).

So if we can write a probability as p(x) ∝ f1(x)f2(x) for 2 Gaussians,
then p is a Gaussian with known mean/covariance.
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Product of Gaussian Densities
Example of a Gaussian likelihood p(xi | µ,Σ) for IID data,

n∏
i=1

p(xi | , µ,Σ),

will be Gaussian if the individual likelihoods p(xi | µ,Σ) are Gaussian.

Example of a Gaussian likelihood p(xi | µ,Σ) and Gaussian prior p(µ | µ0,Σ0).
Posterior for µ will be Gaussian:

p(µ | xi,Σ, µ0,Σ0) ∝ p(xi | µ,Σ)p(µ | µ0,Σ0) (Bayes rule)

= p(µ | xi,Σ)p(µ | µ0,Σ0) (symmetry of xi and µ)

= (some Gaussian).

Non-example of p(x2 | x1) being Gaussian and p(x1 | x2) being Gaussian.
Product p(x2 | x1)p(x1 | x2) may not be a proper distribution.
Although we saw it will be a Gaussian if they are independent.

“Product of Gaussian densities” will be used later in Gaussian Markov chains.
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Properties of Multivariate Gaussians

A multivariate Gaussian “cheat sheet” is here:
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

For a careful discussion of Gaussians, see the playlist here:
https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34

https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34
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Problems with Multivariate Gaussian
Why not the multivariate Gaussian distribution?

Still not robust, may want to consider multivariate Laplace or multivariate T.

These require numerical optimization to compute MLE/MAP.
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Problems with Multivariate Gaussian

Why not the multivariate Gaussian distribution?

Still not robust, may want to consider multivariate Laplace of multivariate T.
Still unimodal, which often leads to very poor fit.
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Summary

MAP in multivariate Gaussian:

Common approach is trace regularization, graphical Lasso gives visualization.

Properties of multivariate Gaussian:

Closed under affine transformations, marginalization, conditioning, and products.
But unimodal and not robust.

Next time: a universal model for continuous densities.
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MAP for Univariate Gaussian Mean

Assume xi ∼ N (µ, σ2) and assume µ ∼ N (µ0, 1).

The MAP estimate of µ under these assumptions can be written as

µ̂ =
n

n+ σ2
x̄+

σ2

n+ σ2
µ0,

where x̄ is the sample mean, 1
n

∑n
i=1 x

i (which is the MLE).

The MAP estimate is a convex combination of the MLE and prior mean µ0.

Regularizer moves us in a straight line away from MLE towards µ0.
With small n you stay close to prior, with large n you start ignoring prior.


