CPSC 440: Advanced Machine Learning More Gaussians

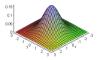
Mark Schmidt

University of British Columbia

Winter 2021

Last Time: Multivariate Gaussian

Bivariate Normal



http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

 $\bullet\,$ The multivariate normal/Gaussian distribution models PDF of vector x^i as

$$p(x^{i} \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i} - \mu)^{\top} \Sigma^{-1}(x^{i} - \mu)\right)$$

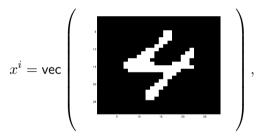
where $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ and $\Sigma \succ 0$.

• This is the density for a linear transformation of a product of independent Gaussians. • MLE is easy: $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$, and $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x^{i} - \mu)(x^{i} - \mu)^{\top}$.

• Diagonal $\boldsymbol{\Sigma}$ implies independence between variables.

Example: Multivariate Gaussians on Digits

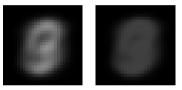
• Recall the task of density estimation with handwritten images of digits:



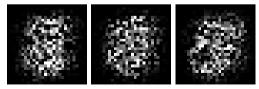
• Let's treat this as a continuous density estimation problem.

Example: Multivariate Gaussians on Digits

- MLE of parameters using independent Gaussians (diagonal Σ):
 - Mean μ_j (left) and variance σ_j^2 (right) for each feature.



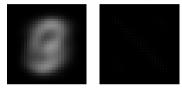
• Samples generate from this model:



 $\bullet\,$ Because Σ is diagonal, doesn't model dependencies between pixels.

Example: Multivariate Gaussians on Digits

• MLE of parameters using multivariate Gaussians (dense $d \times d$ covariance Σ):



- Largest values are on main diagonal (self-correlation), above/below main diagonal (neighbour above/below in image), and shifted (neighbour left/right in image).
- Samples generate from this model:

• Captures some pairwise dependencies between pixels, but not expressive enough.

MAP Estimation in Multivariate Gaussian (Trace Regularization)

 \bullet A classic regularizer for Σ is to add a diagonal matrix to S and use

 $\Sigma = S + \lambda I,$

which satisfies $\Sigma \succ 0$ because $S \succeq 0$ (eigenvalues at least λ).

• This corresponds to L1-regularization of diagonals of precision.

$$\begin{split} f(\Theta) &= \mathsf{Tr}(S\Theta) - \log |\Theta| + \lambda \sum_{j=1}^{d} |\Theta_{jj}| & (\mathsf{Gauss. \ NLL \ plus \ L1 \ of \ diags}) \\ &= \mathsf{Tr}(S\Theta) - \log |\Theta| + \lambda \sum_{j=1}^{d} \Theta_{jj} & (\mathsf{Diagonals \ of \ pos. \ def. \ matrix \ are > 0}) \\ &= \mathsf{Tr}(S\Theta) - \log |\Theta| + \lambda \mathsf{Tr}(\Theta) & (\mathsf{Definition \ of \ trace}) \\ &= \mathsf{Tr}(S\Theta + \lambda\Theta) - \log |\Theta| & (\mathsf{Linearity \ of \ trace}) \\ &= \mathsf{Tr}((S + \lambda I)\Theta) - \log |\Theta| & (\mathsf{Distributive \ law}) \end{split}$$

- Taking gradient and setting to zero gives $\Sigma = S + \lambda$.
 - But doesn't set to exactly zero as log-determinant term is too "steep" at 0.

Graphical LASSO

• A popular generalization called the graphical LASSO,

$$f(\Theta) = \mathsf{Tr}(S\Theta) - \log |\Theta| + \lambda \|\Theta\|_1.$$

where we are using the element-wise L1-norm, $\|\Theta\|_1 = \sum_{i=1}^d \sum_{j=1}^d \Theta_{ij}$.

- Gives sparse off-diagonals in Θ .
 - Can solve very large instances with proximal-Newton and other tricks ("QUIC").
- It's common to draw the non-zeroes in Θ as a graph.
 - Has an interpretation in terms on conditional independence (we'll cover this later).

Graphical LASSO on Digits

- Sparsity pattern if we instead use the graphical LASSO:
 - MAP estimate of precision matrix Θ with regularizer $\lambda \|\Theta\|_1$ (with $\lambda = 1/8$).

- To understand this picture, first consider the two matrices:
 - The images of digits, which are m imes m matrices (m pixels by m pixels)
 - This gives $d = m^2$ elements of x^i , which we'll assume are in "column-major" order.
 - So the first m elements of x^i are row 1, the next m elements are row 2, and so on.
 - The covariance picture above, which is $d \times d$ so will be $m^2 \times m^2$.

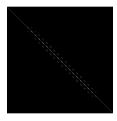
Graphical LASSO on Digits

- Sparsity pattern if we instead use the graphical LASSO:
 - MAP estimate of precision matrix Θ with regularizer $\lambda \|\Theta\|_1$ (with $\lambda = 1/8$).

- So what are the non-zeroes in the covariance matrix?
 - **1** The diagonals $\Theta_{i,i}$ (these are all non-zero because $\Theta \succ 0$).
 - 2 The first off-diagonals $\Theta_{i,i+1}$ and $\Theta_{i+1,i}$.
 - This represents the dependencies between adjacent pixels horizontally.
 - **3** The (m+1) off-diagonals $\Theta_{i,i+m}$ and $\Theta_{i+m,i}$.
 - This represents the dependencies between adjacent pixels vertically.
 - Because in "column-major" order, you go "down" a pixel every m indices.

Graphical LASSO on Digits

- Sparsity pattern if we instead use the graphical LASSO:
 - MAP estimate of precision matrix Θ with regularizer $\lambda \|\Theta\|_1$ (with $\lambda = 1/8$).



• The graph represented by this adjacency matrix is (roughly) the 2d image lattice.

- Pixels that are near each other in the image end up being connected by an edge.
- Examples:
 - https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models

MAP Estimation in Multivariate Gaussian

Properties of Multivariate Gaussian

Outline

Inference in Multivariate Gaussian

- Suppose we have fit μ and Σ to our data X.
 - Using either MLE or MAP.
- How do we do predictions/inference in the model?
 - We can compute likelihood of data p(x) by plugging into formula.
 - Likelihood of seeing the vector x?
 - But what about computing a marginal likelihood like $p(x_j)$?
 - What is the likelihood that variable j takes the value x_j ?
 - Or computing a conditional likelihood $p(x_j \mid x_{j'})$.
 - Maybe you know the values of some variables and want to "fill in" others.
 - Or generating samples from the distribution.
- Gaussians have many nice properties that make these computations easy.

Closedness of Multivariate Gaussian

- Multivariate Gaussian has nice properties of univariate Gaussian:
 - $\bullet\,$ Closed-form MLE for μ and Σ given by sample mean/variance.
 - Central limit theorem: mean estimates of random variables converge to Gaussians.
 - Maximizes entropy subject to fitting mean and covariance of data.
- A crucial computational property: Gaussians are closed under many operations.
 - **()** Affine transformation: if p(x) is Gaussian, then p(Ax + b) is a Gaussian¹.
 - **2** Marginalization: if p(x, z) is Gaussian, then p(x) is Gaussian.
 - **③** Conditioning: if p(x, z) is Gaussian, then $p(x \mid z)$ is Gaussian.
 - **9** Product: if p(x) and p(z) are Gaussian, then p(x)p(z) is proportional to a Gaussian.
- Most continuous distributions don't have these nice properties.

¹Could be degenerate with $|\Sigma| = 0$, dependending on particular A.

Affine Property: Special Case of Shift

• Assume that random variable x follows a Gaussian distribution,

 $x \sim \mathcal{N}(\mu, \Sigma).$

• And consider an shift of the random variable,

z = x + b.

• Then random variable z follows a Gaussian distribution

 $z \sim \mathcal{N}(\mu + b, \Sigma),$

where we've shifted the mean.

Affine Property: General Case

• Assume that random variable x follows a Gaussian distribution,

 $x \sim \mathcal{N}(\mu, \Sigma).$

• And consider an affine transformation of the random variable,

 $z = \mathbf{A}x + b.$

• Then random variable z follows a Gaussian distribution

 $z \sim \mathcal{N}(\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{b}, \boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}^{\top}),$

although note we might have $|A\Sigma A^{\top}| = 0$.

Partitioned Gaussian

• Consider a dataset where we've partitioned the variables into two sets:

$$X = \begin{bmatrix} | & | & | & | \\ x_1 & x_2 & z_1 & z_2 \\ | & | & | & | \end{bmatrix}.$$

• It's common to write multivariate Gaussian for partitioned data as:

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right),$$

• Example:

$$\mathsf{f} \begin{bmatrix} x_1 \\ x_2 \\ z_1 \\ z_2 \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0.3 \\ -0.1 \\ 1.5 \\ 2.5 \end{bmatrix}, \begin{bmatrix} 1.5 & -0.1 & -0.1 & 0 \\ -0.1 & 2.3 & 0.1 & 0 \\ -0.1 & 0.1 & 1.6 & -0.2 \\ 0 & 0 & -0.2 & 4 \end{bmatrix} \right), \quad \mathsf{then} \quad \mu_z = \begin{bmatrix} 1.5 \\ 2.5 \end{bmatrix} \quad \mathsf{and} \quad \Sigma_{zz} = \begin{bmatrix} 1.6 & -0.2 \\ -0.2 & 4 \end{bmatrix}.$$

• The blocks don't necessarily have to have the same size.

Marginalization of Gaussians

• Consider a dataset where we've partitioned the variables into two sets:

$$X = \begin{bmatrix} | & | & | & | \\ x_1 & x_2 & z_1 & z_2 \\ | & | & | & | \end{bmatrix}.$$

• It's common to write multivariate Gaussian for partitioned data as:

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right),$$

• If I want the marginal distribution p(x), I can use the affine property,

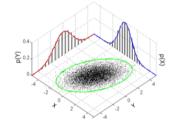
$$x = \underbrace{\begin{bmatrix} I & 0 \end{bmatrix}}_{A} \begin{bmatrix} x \\ z \end{bmatrix} + \underbrace{0}_{b},$$

to get that

 $x \sim \mathcal{N}(\mu_x, \Sigma_{xx}).$

Marginalization of Gaussians

• In a picture, ignoring a subset of the variables gives a Gaussian:



https://en.wikipedia.org/wiki/Multivariate_normal_distribution

• This seems less intuitive if you use rules of probability to marginalize:

$$p(x) = \int_{z_1} \int_{z_2} \cdots \int_{z_d} \frac{1}{(2\pi)^{\frac{d}{2}} \left| \left[\sum_{\substack{\Sigma x x \\ \Sigma z x \\ \Sigma z x \\ \Sigma z x \\ \Sigma z z \\ \Sigma z x \\ \Sigma z z \\ \Sigma z x \\ \Sigma z$$

• A caution about different "precisions": note that $\Sigma_{xx}^{-1} \neq (\Sigma^{-1})_{xx}$ in general.

Conditioning in Gaussians

• Again consider a partitioned Gaussian,

$$\begin{bmatrix} x \\ z \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_x \\ \mu_z \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \Sigma_{xz} \\ \Sigma_{zx} & \Sigma_{zz} \end{bmatrix} \right).$$

• The conditional probabilities are also Gaussian,

$$x \mid z \sim \mathcal{N}(\mu_{x \mid z}, \Sigma_{x \mid z}),$$

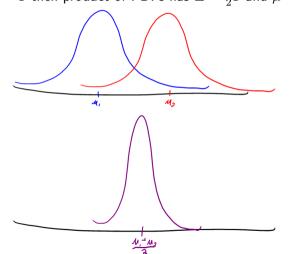
where

$$\mu_{x \mid z} = \mu_x + \Sigma_{xz} \Sigma_{zz}^{-1} (z - \mu_z), \quad \Sigma_{x \mid z} = \Sigma_{xx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}.$$

- "For any fixed z, the distribution of x is a Gaussian".
 - Notice that if $\Sigma_{xz} = 0$ then x and z are independent $(\mu_x \mid z = \mu_x, \Sigma_x \mid z = \Sigma_x)$.
 - We previously saw the special case where Σ is diagonal (all variables independent).

Product of Gaussian Densities

• If $\Sigma_1 = I$ and $\Sigma_2 = I$ then product of PDFs has $\Sigma = \frac{1}{2}I$ and $\mu = \frac{\mu_1 + \mu_2}{2}$.



Product of Gaussian Densities

- Let $f_1(x)$ and $f_2(x)$ be Gaussian PDFs defined on variables x.
- The product of the PDFs $f_1(x)f_2(x)$ is proportional to a Gaussian density,
 - With (μ_1, Σ_1) as parameters of f_1 and (μ_2, Σ_2) for f_2 :

covariance of
$$\Sigma = (\Sigma_1^{-1} + \Sigma_2^{-1})^{-1}$$
.

mean of
$$\mu = \Sigma \Sigma_1^{-1} \mu_1 + \Sigma \Sigma_2^{-1} \mu_2$$
,

although this density may not be normalized (may not integrate to 1 over all x).

• So if we can write a probability as $p(x) \propto f_1(x) f_2(x)$ for 2 Gaussians, then p is a Gaussian with known mean/covariance.

Product of Gaussian Densities

• Example of a Gaussian likelihood $p(x^i \mid \mu, \Sigma)$ for IID data,

$$\prod_{i=1}^{n} p(x^i \mid , \mu, \Sigma),$$

will be Gaussian if the individual likelihoods $p(x^i \mid \mu, \Sigma)$ are Gaussian.

Example of a Gaussian likelihood p(xⁱ | μ, Σ) and Gaussian prior p(μ | μ₀, Σ₀).
Posterior for μ will be Gaussian:

$$p(\mu \mid x^{i}, \Sigma, \mu_{0}, \Sigma_{0}) \propto p(x^{i} \mid \mu, \Sigma)p(\mu \mid \mu_{0}, \Sigma_{0})$$
(Bayes rule)
$$= p(\mu \mid x^{i}, \Sigma)p(\mu \mid \mu_{0}, \Sigma_{0})$$
(symmetry of x^{i} and μ)
$$=$$
(some Gaussian).

- Non-example of $p(x_2 \mid x_1)$ being Gaussian and $p(x_1 \mid x_2)$ being Gaussian.
 - Product $p(x_2 \mid x_1)p(x_1 \mid x_2)$ may not be a proper distribution.
 - Although we saw it will be a Gaussian if they are independent.
- "Product of Gaussian densities" will be used later in Gaussian Markov chains.

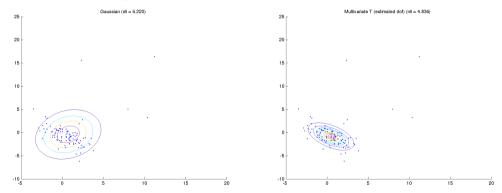
Properties of Multivariate Gaussians

• A multivariate Gaussian "cheat sheet" is here:

- https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf
- For a careful discussion of Gaussians, see the playlist here:
 - https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34

Problems with Multivariate Gaussian

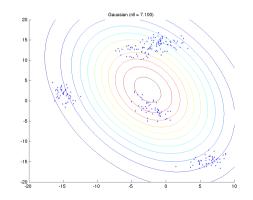
- Why not the multivariate Gaussian distribution?
 - Still not robust, may want to consider multivariate Laplace or multivariate T.



• These require numerical optimization to compute MLE/MAP.

Problems with Multivariate Gaussian

- Why not the multivariate Gaussian distribution?
 - Still not robust, may want to consider multivariate Laplace of multivariate T.
 - Still unimodal, which often leads to very poor fit.



Summary

• MAP in multivariate Gaussian:

- Common approach is trace regularization, graphical Lasso gives visualization.
- Properties of multivariate Gaussian:
 - Closed under affine transformations, marginalization, conditioning, and products.
 - But unimodal and not robust.
- Next time: a universal model for continuous densities.

MAP for Univariate Gaussian Mean

- Assume $x^i \sim \mathcal{N}(\mu, \sigma^2)$ and assume $\mu \sim \mathcal{N}(\mu_0, 1)$.
- $\bullet\,$ The MAP estimate of μ under these assumptions can be written as

$$\hat{\mu} = \frac{n}{n+\sigma^2}\bar{x} + \frac{\sigma^2}{n+\sigma^2}\mu_0,$$

where \bar{x} is the sample mean, $\frac{1}{n}\sum_{i=1}^{n}x^{i}$ (which is the MLE).

- The MAP estimate is a convex combination of the MLE and prior mean μ_0 .
 - Regularizer moves us in a straight line away from MLE towards μ_0 .
 - With small n you stay close to prior, with large n you start ignoring prior.