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Last Time: Density Estimation
We started discussing density estimation:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

 X̃ =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


What is probability (or PDF) of [1 0 1 1]?

With model you do inference: test likelihood, sample, conditionals,. . .

We disucssed “product of independent” distributions:
Just model each column independently (as Bernoulli or categorical).
Maybe with Laplace smoothing.

We discussed general discrete distribution
Have one parameter for each of the kd possible vectors.
Not limited in complexity like “product of independent” but leads to overfitting.
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Univariate Gaussian

Consider the case of a continuous variable x ∈ R:

Grades, amounts, velocities, temperatures, and so on.

X =


0.53
1.83
−2.26
0.86

 .
Even with 1 variable there are many possible distributions.

Most common is the Gaussian (or “normal”) distribution:

p(xi | µ, σ2) =
1

σ
√

2π
exp

(
−(xi − µ)2

2σ2

)
or xi ∼ N (µ, σ2),

for mean µ ∈ R and standard deviation σ > 0 (or variance σ2).
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Univariate Gaussian

https://en.wikipedia.org/wiki/Gaussian_function

Mean parameter µ controls location of center of density.
Variance parameter σ2 controls how spread out density is.

As σ → 0 you get a “spike” at the mean, as σ →∞ you get uniform.

https://en.wikipedia.org/wiki/Gaussian_function
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Univariate Gaussian

Why use the Gaussian distribution?

Data might actually follow Gaussian.
Good justification if true, but usually false.

Central limit theorem: mean estimators converge in distribution to a Gaussian.
Bad justification: doesn’t imply data distribution converges to Gaussian.

Distribution with maximum entropy that fits mean and variance of data (bonus).
“Makes the least assumptions” while matching mean and variance of data.
But for complicated problems, just matching mean and variance isn’t enough.

Closed-form maximum likelihood estimate (MLE).
MLE for the mean is the mean of the data (“sample mean” or “empirical mean”).
MLE for the variance is the variance of the data (“sample variance”).
A lot of other nice properties that make computation/theory easy.
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Univariate Gaussian (MLE for Mean)

Gaussian likelihood for an example xi is

p(xi | µ, σ2) =
1

σ
√

2π
exp

(
−(xi − µ)2

2σ2

)
.

So the negative log-likelihood for n IID examples is

− log p(X | µ, σ2) = −
n∑
i=1

log p(xi | µ, σ2) =
1

2σ2

n∑
i=1

(xi − µ)2 + n log(σ)+const.

Setting derivative with respect to µ to 0 gives MLE of

µ̂ =
1

n

n∑
i=1

xi (for any σ > 0),

so the MLE is the mean of the samples.
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Univariate Gaussian (MLE for Variance)

Gaussian likelihood for an example xi is

p(xi | µ, σ2) =
1

σ
√

2π
exp

(
−(xi − µ)2

2σ2

)
.

So the negative log-likelihood for n IID examples is

− log p(X | µ, σ2) = −
n∑
i=1

log p(xi | µ, σ2) =
1

2σ2

n∑
i=1

(xi − µ)2 + n log(σ)+const.

Plugging in µ̂ = 1
n

∑n
i=1 x

i and setting derivative with respect to σ to zero gives

σ2 =
1

n

n∑
i=1

(xi − µ̂)2, (variance of the samples)

unless all xi are equal (then NLL is not bounded below and MLE doesn’t exist).
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Alternatives to Univariate Gaussian
Why not the Gaussian distribution?

Negative log-likelihood is a quadratic function of µ,

− log p(X | µ, σ2) =
1

2σ2

n∑
i=1

(xi − µ)2 + n log(σ) + const.

so as with least squares the Gaussian is not robust to outliers.

This is a histogram of the xi values, and the red line is the estimated density.
We say Gaussian is “light-tailed”: assumes most data is close to mean.
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Alternatives to Univariate Gaussian

Robust: Laplace distribution or student’s t-distribution

“Heavy-tailed”: has non-trivial probability that data is far from mean.
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Alternatives to Univariate Gaussian

Gaussian distribution is unimodal.

Laplace and student t are also unimodal so don’t fix this issue.

Next time we’ll discuss “mixture models” that address this.
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Outline

1 Unvariate Gaussian

2 Multivariate Gaussian
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“Product of Independent” Gaussians

If we have d variables, we could make each follow an independent Gaussian,

xij ∼ N (µj , σ
2
j ),

In this case the joint density p(xi | µ1, µ2, . . . , µd, σ
2
1, σ

2
2, . . . , σ

2
d) can be written:

d∏
j=1

p(xij | µj , σ2
j ) ∝

d∏
j=1

exp

(
−

(xij − µj)2

2σ2
j

)

= exp

−1

2

d∑
j=1

1

σ2
j

(xij − µj)2

 (eaeb = ea+b)

= exp

(
−1

2
(xi − µ)TΣ−1(xi − µ)

)
(matrix notation)

where µ = (µ1, µ2, . . . , µd) and Σ is a diagonal matrix with diagonal elements σ2
j .

Distributions with this form are a special case of the multivariate Gaussian.
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Multivariate Gaussian Distribution

A d > 1 generalization of unvariate Gaussian is the multivariate normal/Gaussian,

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

This maintains many of the nice properties of univariate Gaussians.

Closed-form intuitive MLE, many analytic properties, maximum entropy property.

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html


Unvariate Gaussian Multivariate Gaussian

Multivariate Gaussian Distribution

The probability density for the multivariate Gaussian is given by

p(xi | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)TΣ−1(xi − µ)

)
, or xi ∼ N (µ,Σ),

where µ ∈ Rd, Σ ∈ Rd×d and Σ � 0, and |Σ| is the determinant.

Where does this wonky formula come from?
Consider a product of independent Gaussians, zij ∼ N (0, 1).

Then perform a linear transformation, xi = Azi + µ.

If we define Σ = AAT , multivariate Gaussian is PDF of transformed variables.
Derivation in bonus slides.

If |Σ| = 0 we say the Gaussian is degenerate (bonus).
Transformed variables xi don’t span the full space.
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Product of Independent Gaussians

The effect of a diagonal Σ on the multivariate Gaussian:

If Σ = αI the level curves are circles: 1 parameter.
If Σ = D (diagonal) then axis-aligned ellipses: d parameters.

We saw that this is equivalent to using a product of independent Gaussians.

If Σ is dense they do not need to be axis-aligned: d(d+ 1)/2 parameters.
(by symmetry, we only need upper-triangular part of Σ)

Diagonal Σ assumes features are independent, dense Σ models dependencies.



Unvariate Gaussian Multivariate Gaussian

MLE for Multivariate Gaussian (Mean Vector)

With a multivariate Gaussian we have

p(xi | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)>Σ−1(xi − µ)

)
,

so up to a constant our negative log-likelihood for n examples xi is

1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ) +
n

2
log |Σ|.

This is a strongly-convex quadratic in µ, setting gradient to zero gives

µ =
1

n

n∑
i=1

xi,

which is the unique solution (strong-convexity is due to Σ � 0).
MLE for µ is the average along each dimension, and it doesn’t depend on Σ.
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MLE for Multivariate Gaussians (Covariance Matrix)

To get MLE for Σ we re-parameterize in terms of precision matrix Θ = Σ−1,

1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ) +
n

2
log |Σ|

=
1

2

n∑
i=1

(xi − µ)>Θ(xi − µ) +
n

2
log |Θ−1|

After some tedious linear algebra (in bonus slides) we obtain that this is equal to

n

2
Tr(SΘ)− n

2
log |Θ|,

where:

S is the empirical covariance of the data, S = 1
n

∑n
i=1(xi − µ)(xi − µ)>.

Trace operator Tr(A) is the sum of the diagonal elements of A.
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MLE for Multivariate Gaussians (Covariance Matrix)

So the NLL in terms of the precision matrix Θ and sample covariance S is

f(Θ) =
n

2
Tr(SΘ)− n

2
log |Θ|, with S =

1

n

n∑
i=1

(xi − µ)(xi − µ)>

Weird-looking but has nice properties:

Tr(SΘ) is linear function of Θ, with ∇Θ Tr(SΘ) = S.
(it’s the matrix version of an inner-product s>θ)

Negative log-determinant is strictly-convex and has ∇Θ log |Θ| = Θ−1.
(generalizes ∇ log |x| = 1/x for for x > 0).

Using these two properties the gradient matrix has a simple form:

∇f(Θ) =
n

2
S − n

2
Θ−1.
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MLE for Multivariate Gaussians (Covariance Matrix)

Gradient matrix of NLL with respect to Θ is

∇f(Θ) =
n

2
S − n

2
Θ−1.

The MLE for a given µ is obtained by setting gradient matrix to zero, giving

Θ = S−1 or Σ = S =
1

n

n∑
i=1

(xi − µ)(xi − µ)>.

The constraint Σ � 0 means we need positive-definite sample covariance, S � 0.
If S is not invertible, NLL is unbounded below and no MLE exists.
This is like requiring “not all values are the same” in univariate Gaussian.

In d-dimensions, you need d linearly-independent xi values (no “collinearity”)

For most distributions, the MLEs are not the sample mean and covariance.
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Summary

Gaussian distribution is a common distribution with many nice properties.

Closed-form MLE.
But unimodal and not robust.

Multivariate Gaussian generalizes univariate Gaussian for multiple variables.

Parameterized by mean vector µ and positive-definite covariance Σ.
Product of independent Gaussians is equivalent to using a diagonal Σ.
Closed-form MLE given by sample mean and covariance.

Next time: more about the normal distribution than you ever wanted to know.
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Maximum Entropy and Gaussian

Consider trying to find the PDF p(x) that
1 Agrees with the sample mean and sample covariance of the data.
2 Maximizes entropy subject to these constraints,

max
p

{
−
∫ ∞
−∞

p(x) log p(x)dx

}
, subject to E[x] = µ, E[(x− µ)2] = σ2.

Solution is the Gaussian with mean µ and variance σ2.

Beyond fitting mean/variance, Gaussian makes fewest assumptions about the data.

This is proved using the convex conjugate.

Convex conjugate of Gaussian negative log-likelihood is entropy.
Same result holds in higher dimensions for multivariate Gaussian.
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Multivariate Gaussian from Univariate Gaussians

Consider a joint distribution that is the product univariate standard normals:

p(zi) =

d∏
j=1

1√
2π

exp

(
−1

2
(zij)

2

)

=
1

(2π)
d
2

exp

(
1

2
〈zi, zi〉

)
.

Now define xi = Azi + µ for some (non-singular) matrix A and vector µ.

The change of variables formula for multivariate probabilities is

p(xi) = p(zi)

∣∣∣∣∂zi∂xi

∣∣∣∣ .
Plug in zi = A−1(xi − µ) and ∂zi

∂xi
= A−1...
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Multivariate Gaussian from Univariate Gaussians

This gives

p(xi | µ,A) =
1

(2π)
d
2

exp

(
1

2
〈A−1(xi − µ), A−1(xiµ)〉

)
| det(A−1)|

=
1

(2π)
d
2 | det(A)|

exp

(
1

2
(xi − µ)A−>A−1(xi − µ)

)
.

Define Σ = AA> (so Σ−1 = A−>A−1 and det Σ = (detA)2) to get

p(xi | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)>Σ−1(xi − µ)

)
So multivariate Gaussian is an affine transformtation of independent Gaussians.
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Degenerate Gaussians

If |Σ| = 0, we say the Gaussian is degenerate.

In this case the PDF only integrates to 1 along a subspace of the original space.

With d = 2 degenerate Gaussians only have non-zero probability along a line (or
just one point).
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MLE for Multivariate Gaussians (Covariance Matrix)

To get MLE for Σ we re-parameterize in terms of precision matrix Θ = Σ−1,

1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ) +
n

2
log |Σ|

=
1

2

n∑
i=1

(xi − µ)>Θ(xi − µ) +
n

2
log |Θ−1| (ok because Σ is invertible)

=
1

2

n∑
i=1

Tr
(

(xi − µ)>Θ(xi − µ)
)

+
n

2
log |Θ|−1 (scalar y>Ay = Tr(y>Ay))

=
1

2

n∑
i=1

Tr((xi − µ)(xi − µ)>Θ)− n

2
log |Θ| (Tr(ABC) = Tr(CAB))

Where the trace Tr(A) is the sum of the diagonal elements of A.
That Tr(ABC) =Tr(CAB) when dimensions match is the cyclic property of trace.
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MLE for Multivariate Gaussians (Covariance Matrix)

From the last slide we have in terms of precision matrix Θ that

=
1

2

n∑
i=1

Tr((xi − µ)(xi − µ)>Θ)− n

2
log |Θ|

We can exchange the sum and trace (trace is a linear operator) to get,

=
1

2
Tr

(
n∑
i=1

(xi − µ)(xi − µ)>Θ

)
− n

2
log |Θ|

∑
i

Tr(AiB) = Tr

(∑
i

AiB

)

=
n

2
Tr


 1

n

n∑
i=1

(xi − µ)(xi − µ)>︸ ︷︷ ︸
sample covariance ‘S’

Θ

− n

2
log |Θ|.

(∑
i

AiB

)
=

(∑
i

Ai

)
B
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Positive-Definiteness of Θ and Checking Positive-Definiteness

If we define centered vectors x̃i = xi − µ then empirical covariance is

S =
1

n

n∑
i=1

(xi − µ)(xi − µ)> =
1

n

n∑
i=1

x̃i(x̃i)> =
1

n
X̃>X̃ � 0,

so S is positive semi-definite but not positive-definite by construction.

If data has noise, it will be positive-definite with n large enough.

For Θ � 0, note that for an upper-triangular T we have

log |T | = log(prod(eig(T ))) = log(prod(diag(T ))) = Tr(log(diag(T ))),

where we’ve used Matlab notation.

So to compute log |Θ| for Θ � 0, use Cholesky to turn into upper-triangular.

Bonus: Cholesky fails if Θ � 0 is not true, so it checks positive-definite constraint.
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