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Last Time: Density Estimation

@ We started discussing density estimation:
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o What is probability (or PDF) of [1 01 1]?

o With model you do inference: test likelihood, sample, conditionals,. ..

@ We disucssed “product of independent” distributions:
o Just model each column independently (as Bernoulli or categorical).
e Maybe with Laplace smoothing.
@ We discussed general discrete distribution
o Have one parameter for each of the k% possible vectors.
e Not limited in complexity like “product of independent” but leads to overfitting.
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Univariate Gaussian

@ Consider the case of a continuous variable z € R:
o Grades, amounts, velocities, temperatures, and so on.
0.53
1.83
X = —2.26
0.86

@ Even with 1 variable there are many possible distributions.

@ Most common is the Gaussian (or “normal™) distribution:

: 1 (ﬂ—ﬂy> : 2
| p,o?) = exp | — or z' ~N(u,o°),
p(a’ | p, o) oo 1% ( 202 (1, 07)

for mean p € R and standard deviation o > 0 (or variance o2).
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Univariate Gaussian
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https://en.wikipedia.org/wiki/Gaussian_function

@ Mean parameter p controls location of center of density.
@ Variance parameter o2 controls how spread out density is.
e As 0 — 0 you get a “spike” at the mean, as ¢ — oo you get uniform.


https://en.wikipedia.org/wiki/Gaussian_function
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Univariate Gaussian

@ Why use the Gaussian distribution?

e Data might actually follow Gaussian.
e Good justification if true, but usually false.

o Central limit theorem: mean estimators converge in distribution to a Gaussian.
o Bad justification: doesn't imply data distribution converges to Gaussian.

o Distribution with maximum entropy that fits mean and variance of data (bonus).
o “Makes the least assumptions” while matching mean and variance of data.
o But for complicated problems, just matching mean and variance isn't enough.

e Closed-form maximum likelihood estimate (MLE).
@ MLE for the mean is the mean of the data (“sample mean” or “empirical mean”).
@ MLE for the variance is the variance of the data (“sample variance”).
@ A lot of other nice properties that make computation/theory easy.
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Univariate Gaussian (MLE for Mean)

@ Gaussian likelihood for an example z* is

; 1 (xf —u)Q)
% 2
T ,0°) = exp | ———=— ).
p( ’:U* ) \/T p< 202

@ So the negative log-likelihood for n 11D examples is

Multivariate Gaussian

—logp(X | p, 0 Zlogp "o Z z' — p)? + nlog(o)+const.

@ Setting derivative with respect to i to 0 gives MLE of
1 n
1= — © (for a > 0),
p=_ ;x (for any o > 0)

so the MLE is the mean of the samples.
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Univariate Gaussian (MLE for Variance)

@ Gaussian likelihood for an example z* is

: 1 (:L’Z —M)Q)
) 2
T ,07 ) = ex —_ | .
p( ’:U' ) \/27 p< 272

@ So the negative log-likelihood for n 1ID examples is

n
—logp(X | p,0%) = — Zlogp(xi | p,o Z z' — p)* + nlog(o)+const.

o Plugging in i = %Z?:l z' and setting derivative with respect to o to zero gives

1~
o2 = - Z(gg’ — f1)?,  (variance of the samples)
i=1

unless all ' are equal (then NLL is not bounded below and MLE doesn't exist).
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Alternatives to Univariate Gaussian

@ Why not the Gaussian distribution?
o Negative log-likelihood is a quadratic function of g,
n

1 .
z:(acZ — 1) + nlog(c) + const.
=1

—log p(X | MvUQ) = 202

so as with least squares the Gaussian is not robust to outliers.

o045

@ This is a histogram of the 2’ values, and the red line is the estimated density.
@ We say Gaussian is “light-tailed”: assumes most data is close to mean.
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Alternatives to Univariate Gaussian

@ Robust: Laplace distribution or student’s t-distribution
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@ "Heavy-tailed": has non-trivial probability that data is far from mean.
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Alternatives to Univariate Gaussian

@ Gaussian distribution is unimodal.
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@ Laplace and student t are also unimodal so don't fix this issue.
e Next time we'll discuss “mixture models” that address this.
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“Product of Independent” Gaussians

@ If we have d variables, we could make each follow an independent Gaussian,

1“; NN(N]'7O-32')7

o In this case the joint density p(x’ | ji1, 2, - - - , fta, 05, 0%, ..., 03) can be written:
d d (.rl )2
; - )
Hp(l“; | Mj»%z) X HGXP <—]202>
j=1 j=1 J
1< 1
= exp 5 Z —2(;5; — /’LJ)Q (eaeb - ea+b)
j=1 Uj

1. .
= exp (—2(30’ — Iy - ,u)) (matrix notation)

where p = (p1, p2, - .., f1g) and X is a diagonal matrix with diagonal elements 0]2-.
@ Distributions with this form are a special case of the multivariate Gaussian.
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Multivariate Gaussian Distribution

@ A d > 1 generalization of unvariate Gaussian is the multivariate normal/Gaussian,

Bivariate Mormal
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http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html
@ This maintains many of the nice properties of univariate Gaussians.
o Closed-form intuitive MLE, many analytic properties, maximum entropy property.


http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html
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Multivariate Gaussian Distribution

@ The probability density for the multivariate Gaussian is given by

; 1 1, . ) )
Pt | 1,%) = ———exp (—(ﬂ TS (- m), or &~ N (1, ),
eoimE T\ 2

where € R?, ¥ € R™? and ¥ = 0, and |%] is the determinant.

@ Where does this wonky formula come from?
o Consider a product of independent Gaussians, 2% ~ N(0,1).
o Then perform a linear transformation, 2! = Az%* + .

o If we define & = AAT, multivariate Gaussian is PDF of transformed variables.
@ Derivation in bonus slides.

e If |X| = 0 we say the Gaussian is degenerate (bonus).
o Transformed variables ' don’t span the full space.
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Product of Independent Gaussians

@ The effect of a diagonal ¥ on the multivariate Gaussian:

e If ¥ = al the level curves are circles: 1 parameter.
o If ¥ = D (diagonal) then axis-aligned ellipses: d parameters.

o We saw that this is equivalent to using a product of independent Gaussians.

o If X is dense they do not need to be axis-aligned: d(d + 1)/2 parameters.
(by symmetry, we only need upper-triangular part of X)

@ Diagonal ¥ assumes features are independent, dense 3> models dependencies.
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MLE for Multivariate Gaussian (Mean Vector)

@ With a multivariate Gaussian we have

z! :71 ex —1 = )TN -
Pt 119 = o5 -0 - ),

so up to a constant our negative log-likelihood for n examples 2 is
1 — n
5 2 @ =) 87 (@' — ) + S log [,
i=1
@ This is a strongly-convex quadratic in u, setting gradient to zero gives
1 n
i
= — X s

which is the unique solution (strong-convexity is due to 3 > 0).
e MLE for u is the average along each dimension, and it doesn't depend on X..
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MLE for Multivariate Gaussians (Covariance Matrix)

@ To get MLE for ¥ we re-parameterize in terms of precision matrix © = X1,
RS Tyl n
52(35 —p) X - )+ 510@2\
i=1

_ln i N\T i n -1
—2;(9«" w0’ — p) + 5 log |07

o After some tedious linear algebra (in bonus slides) we obtain that this is equal to

n n

—Tr(SO) — —log|®

" 11(50) ~ Tlog 6],

where:
o S is the empirical covariance of the data, 5 = 23" | (z' — p)(2' — p) .
o Trace operator Tr(A) is the sum of the diagonal elements of A.
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MLE for Multivariate Gaussians (Covariance Matrix)

@ So the NLL in terms of the precision matrix ©® and sample covariance S is

n

F(0) = STr($8) — 3 log 6], with § = %ZW — ) =)’
i=1

@ Weird-looking but has nice properties:
o Tr(SO©) is linear function of O, with Vg Tr(S0) = S.

(it's the matrix version of an inner-product s )
o Negative log-determinant is strictly-convex and has Vg log |©] = ©71.
(generalizes Vlog |z| = 1/x for for > 0).

@ Using these two properties the gradient matrix has a simple form:

n n ._
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Unvariate Gaussian

MLE for Multivariate Gaussians (Covariance Matrix)
o Gradient matrix of NLL with respect to © is
_ g _Tg-t
Vf(O)= 25 2@ :

@ The MLE for a given p is obtained by setting gradient matrix to zero, giving

n

1 . ,
O=5" o T=8=- (@t = )T
EDDCEIEE
=1
@ The constraint X > 0 means we need positive-definite sample covariance, S > 0

e If S is not invertible, NLL is unbounded below and no MLE exists.
e This is like requiring “not all values are the same” in univariate Gaussian.
o In d-dimensions, you need d linearly-independent " values (no “collinearity”)

@ For most distributions, the MLEs are not the sample mean and covariance.
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Summary

@ Gaussian distribution is a common distribution with many nice properties.

o Closed-form MLE.
e But unimodal and not robust.

@ Multivariate Gaussian generalizes univariate Gaussian for multiple variables.

o Parameterized by mean vector p and positive-definite covariance .
e Product of independent Gaussians is equivalent to using a diagonal X.
o Closed-form MLE given by sample mean and covariance.

@ Next time: more about the normal distribution than you ever wanted to know.



Multivariate Gaussian

Maximum Entropy and Gaussian

o Consider trying to find the PDF p(x) that

© Agrees with the sample mean and sample covariance of the data.
@ Maximizes entropy subject to these constraints,

max {_ /OO p(x) 1ogp(w)d”f} , subject to E[z] =y, E[( — u)*] = o”.

P —o0

@ Solution is the Gaussian with mean z and variance o2,

e Beyond fitting mean/variance, Gaussian makes fewest assumptions about the data.

@ This is proved using the convex conjugate.

e Convex conjugate of Gaussian negative log-likelihood is entropy.
e Same result holds in higher dimensions for multivariate Gaussian.
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Multivariate Gaussian from Univariate Gaussians

Consider a joint distribution that is the product univariate standard normals:
d
. 1 1 .
7)) = exp | —= (2} 2)
) =TT = o (52

- (2;)5 exp <;<z zi>> |

Now define 2* = Az’ + i for some (non-singular) matrix A and vector p.
The change of variables formula for multivariate probabilities is
; | 82°
T\ 2
pat) = () | 55|

Plug in 2zt = A=!(2* — i) and gi«i =A"1..
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Multivariate Gaussian from Univariate Gaussians
o This gives

p(a’ | p,A) =

1 Loa-1gi —1( i —
o (2<A o — ), Ao u))) |det(A™Y)

——1 ex lxi— —TA Y - .
(21)% | det(A))| p<2( M AT “))

o Define ¥ = AAT (so X' = A~ TA7! and det ¥ = (det A)?) to get
i 1 1 i Ty—1(.i
p(* | p,X) = ——5—exp —5(95 —p) I (e —p)
(2m)2[X]2

@ So multivariate Gaussian is an affine transformtation of independent Gaussians.
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Degenerate Gaussians

e If |X| =0, we say the Gaussian is degenerate.
@ In this case the PDF only integrates to 1 along a subspace of the original space.

@ With d = 2 degenerate Gaussians only have non-zero probability along a line (or
just one point).
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MLE for Multivariate Gaussians (Covariance Matrix)

o To get MLE for ¥ we re-parameterize in terms of precision matrix © = X1,

N —
gk

@
Il
—

, L n
(@' = ) ' 27" = p) + 5 log |2

(8 — )T O (st — ) + glog (S (ok because ¥ is invertible)

Il
N =
1gE

N
I
—

Il
DN | —
gl

@
Il
N

Tr ((CBZ —p) 'Oz — ,u)) + 2 log|©|™' (scalar y" Ay = Tr(y" Ay))

|
N —
)=

@
Il
—

Tr((2' — p)(2' — p)7O) — glog 0| (Tr(ABC) = Tr(CAB))

@ Where the trace Tr(A) is the sum of the diagonal elements of A.
o That Tr(ABC) =Tr(C AB) when dimensions match is the cyclic property of trace.
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MLE for Multivariate Gaussians (Covariance Matrix)
@ From the last slide we have in terms of precision matrix © that
1 i i T n
=52 (@' = (' — )" ) - 5 log 6]
i=1
@ We can exchange the sum and trace (trace is a linear operator) to get,

%Tr (Z(:{:’ — )z — M)T@> — glog |O] ZTr A;B) (ZA B)

=1

21| Y6 w7 e | - Dlogle. (ZAiB>:<ZAi>B

i=1

sample co:/;ria nce 'S’
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Positive-Definiteness of © and Checking Positive-Definiteness

o If we define centered vectors &% = 2’ — y then empirical covariance is

n

1 . o~
G= P - XTX =0,
- ;(w w)(a' — )" Z -
so S is positive semi-definite but not positive-definite by construction.
o If data has noise, it will be positive-definite with n large enough.

e For © > 0, note that for an upper-triangular 7" we have

log |T'| = log(prod(eig(T'))) = log(prod(diag(T))) = Tr(log(diag(T))),

where we've used Matlab notation.
@ So to compute log |O] for © > 0, use Cholesky to turn into upper-triangular.
e Bonus: Cholesky fails if © > 0 is not true, so it checks positive-definite constraint.
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