
Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

CPSC 440: Advanced Machine Learning
Density Estimation

Mark Schmidt

University of British Columbia

Winter 2021

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Admin

Canvas:

The 440/540 Canvas page has all the links you need.

Assignment 1 due tonight.

Gradescope submissions instructions posted on Piazza.

Today is the last day to drop the course.
Consider whether you want to take this course if you found Assignment 1 difficult.

Particularly if you haven’t taken CPSC 320 or 340, even if you are in CPSC or ECE.
I remember taking classes I wasn’t ready for, it is not going to get better after week 2!

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Digression: “Debugging by Frustration” and “Debugging by TA”

Here is one way to write a complicated program (e.g., softmax with gradient):
1 Write the entire function at once.
2 Try it out to “see if it works”.
3 Spend hours fiddling with commands, trying to find magic working combination.
4 Send code to the TA, asking “what is wrong?”

If you are lucky, step 2 works and you are done!

If you are not lucky, this takes way longer than principled coding methods.

This is also a great way to introduce bugs into your code.
And you won’t be able to do Step 4 when you graduate.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Debugging 101
What strategies could we use to debug an implementation of these functions?

f(w) =

n∑
i=1

[fi(w) + gi(w)] and its gradient.

Use “print” statements to see what is happening at each step of the code.
Or a debugger

Check if ∇fi(w) is correct on its own with numerical differencing.
Maybe you have the second term right but the not first term.

Check if ∇gi(w) is correct on its own with numerical differencing.
Maybe you have the first term right but not the second term.

Try the implementation with only one training example or only one feature.
Maybe there is an indexing problem, or things aren’t being aggregated properly.

Develop one ore more simple “test case”, where you worked out the result by hand.
Maybe one of the functions you are using does not work the way you think it does.

Code up f(w), and then run gradient descent with numerical differencing.
Maybe your objective function is wrong so it doesn’t matter if the gradietn is correct.

TAs/instructor are happy to help, but when sending code you need to include:
“This is what I’ve tried to diagnose the problem and the problem seems to be here”.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Last Time: Structure Prediction

“Classic” machine learning: models p(yi | xi), where yi was a single variable.

In 340 we used simple distributions like the Gaussian and sigmoid.

Structured prediction: yi could be a vector, protein, image, dependency tree,. . . .

This requires defining more-complicated distributions.

But before considering p(yi | xi) for complicated yi:

We’ll first consider just modeling p(yi) or p(xi) with multiple variables,
without worrying about conditioning (this is already a hard problem).

If you know how to model p(xi), then p(yi | xi) isn’t much more complicated.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Density Estimation

The next topic we’ll focus on is density estimation:

X =

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

 X̃ =

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

What is probability of [1 0 1 1]?
Want to estimate probability of feature vectors xi.

For the training data this is easy:
Set p(xi) to “number of times xi is in the training data” divided by n.

We’re interested in the probability of test data,
What is probability of seeing feature vector x̃i for a new example i.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Density Estimation Applications

Density estimation could be called a “master problem” in machine learning.
Solving this problem lets you solve a lot of other problems.

If you have p(xi) then:
Outliers could be cases where p(xi) is small.
Missing data in xi can be “filled in” based on p(xi).
Vector quantization can be achieved by assigning shorter code to high p(xi) values.
Association rules can be computed from conditionals p(xij | xik).

We can also do density estimation on (xi, yi) jointly:
Supervised learning can be done by conditioning to give p(yi | xi).
Feature relevance can be analyzed by looking at p(xi | yi).

If features are continuous, we are estimating the “probability density function”.
I’ll sloppily just say “probability” though.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Unsupervised Learning

Density estimation is an unsupervised learning method.

We only have xi values, but no explicit target labels.
You want to do “something” with them.

Some unsupervised learning tasks from CPSC 340 (depending on semester):

Clustering: what types of xi are there?
Association rules: which xj and xk occur together?
Outlier detection: is this a “normal” xi?
Latent-factors: what “parts” are xi made from?
Data visualization: what do the high-dimensional xi look like?
Ranking: which are the most important xi?

You can probably address all these if you can do density estimation.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Bernoulli Distribution on Binary Variables

Let’s start with the simplest case: xi ∈ {0, 1} (e.g., coin flips),

X =

1
0
0
0
0
1

 .

For IID data the only choice is the Bernoulli distribution:

p(xi = 1 | θ) = θ, p(xi = 0 | θ) = 1− θ.

We can write both cases as

p(xi | θ) = θI[x
i=1](1− θ)I[xi=0], where I[y] =

{
1 if y is true

0 if y is false
.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Maximum Likelihood with Bernoulli Distribution

MLE for Bernoulli likelihood with IID data is

argmax
0≤θ≤1

p(X | θ) = argmax
0≤θ≤1

n∏
i=1

p(xi | θ)

= argmax
0≤θ≤1

n∏
i=1

θI[x
i=1](1− θ)I[xi=0]

= argmax
0≤θ≤1

θ1θ1 · · · θ1︸ ︷︷ ︸
number of xi = 1

(1− θ)(1− θ) · · · (1− θ)︸ ︷︷ ︸
number of xi = 0

= argmax
0≤θ≤1

θn1(1− θ)n0 ,

where n1 is count of number of 1 values and n0 is the number of 0 values.

If you equate the derivative of the log-likelihood with zero, you get θ = n1
n1+n0

.

So if you toss a coin 50 times and it lands heads 24 times, your MLE is 24/50.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Multinomial Distribution on Categorical Variables
Consider the multi-category case: xi ∈ {1, 2, 3, . . . , k} (e.g., rolling di),

X =

2
1
1
3
1
2

 .

The categorical distribution is

p(xi = c | θ1, θ2, . . . , θk) = θc,

where each θc ≥ 0 and
∑k

c=1 θc = 1.
We can write this for a generic x as

p(xi | θ1, θ2, . . . , θk) =

k∏
c=1

θI[x
i=c]

c .

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Multinomial Distribution on Categorical Variables

Using Lagrange multipliers (bonus) to handle constraints, the MLE is

θc =
nc
n

=
nc∑
c′ nc′

. (“fraction of times you rolled a 4”)

If we never see category 4 in the data, should we assume θ4 = 0?

If we assume θ4 = 0 and we have a 4 in test set, our test set likelihood is 0.

To leave room for this possibility we often use “Laplace smoothing”,

θc =
nc + 1∑
c′(nc′ + 1)

.

This is like adding a “fake” example to the training set for each class.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

MAP Estimation with Bernoulli Distributions

In the binary case, a generalization of Laplace smoothing is

θ =
n1 + α− 1

(n1 + α− 1) + (n0 + β − 1)
,

We get the MLE when α = β = 1, and Laplace smoothing with α = β = 2.

This is a MAP estimate under a beta prior,

p(θ | α, β) =
1

B(α, β)
θα−1(1− θ)β−1,

where the beta function B makes the probability integrate to one.

We want

∫
θ
p(θ | α, β)dθ = 1, so define B(α, β) =

∫
θ
θα−1(1− θ)β−1dθ.

Note that B(α, β) is constant in terms of θ, it doesn’t affect MAP estimate.
Above formula assumes n1 + α > 1 and n0 + β > 1 (other cases in bonus).

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

MAP Estimation with Categorical Distributions

In the categorical case, a generalization of Laplace smoothing is

θc =
nc + αc − 1∑k

c′=1(nc′ + αc′ − 1)
,

which is a MAP estimate under a Dirichlet prior,

p(θ1, θ2, . . . , θk | α1, α2, . . . , αk) =
1

B(α)

k∏
c=1

θαc−1c ,

where B(α) makes the multivariate distribution integrate to 1 over θ,

B(α) =

∫
θ1

∫
θ2

· · ·
∫
θk−1

∫
θk

k∏
c=1

[
θαc−1c

]
dθkdθk−1 · · · dθ2dθ1.

Because of MAP-regularization connection, Laplace smoothing is regularization.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Outline

1 Discrete Density Estimation (d = 1)

2 Discrete Density Estimation (d > 1)

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

General Discrete Distribution

Now consider the case where xi ∈ {0, 1}d:

Words in e-mails, pixels in binary image, locations of cancers, and so on.

X =

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

 .
Now there are 2d possible values of vector xi.

General discrete distribution would consider θ0000, θ0001, θ0010, θ0011, θ0100,. . .
You can compute the MLE of this distribution in O(nd).

See at most n unique xi values, and using a hash data structure.

But unless we have a small number of repeated xi values, we’ll hopelessly overfit.

With finite dataset, we’ll need to make assumptions...

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Product of Independent Distributions

A common assumption is that the variables are independent:

p(xi1, x
i
2, . . . , x

i
d | Θ) =

d∏
j=1

p(xij | θj).

Now we just need to model each column of X as its own dataset:

X =

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

 → X1 =

1
0
0
0
1

 , X2 =

0
1
0
1
0

 , X3 =

0
0
1
0
1

 , X4 =

0
0
0
1
1

 .
A big assumption, but now you can fit Bernoulli for each variable.

We used a similar independence assumption in CPSC 340 for naive Bayes.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Digression: Optimizing “Separable” Functions

Consider an optimization problem of the form

min
w1,w2

f1(w1) + f2(w2).

This is called a separable function.

The variable w1 only affects the first term, and w2 only affects second.

With separable functions, you can optimize each term separately.

Gradient with respect to w1 is: ∇f1(w1) (not affected by w2).
Gradient with repsect to w2 is: ∇f2(w2) (not affected by w1).

Similarly, if you have
∑d

j=1 fj(wj), you optimize each fj separately.

Use this property to simplify your assignment questions.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Digression: Optimizing “Separable” Functions
Let’s show that “product of independent” model fits each column separately.

p(xi1, x
i
2, . . . , x

i
d | Θ) =

d∏
j=1

p(xij | θj).

MLE:
argmin

Θ
− log

n∏
i=1

p(x
i
1, x

i
2, . . . , x

i
d | Θ) (NLL for IID data)

≡ argmin
Θ
−

n∑
i=1

log p(x
i
1, x

i
2, . . . , x

i
d | Θ) (log(αβ) = log(α) + log(β))

≡ argmin
Θ
−

n∑
i=1

log
d∏

j=1

p(x
i
j | θj) (product of independent assumption)

≡ argmin
Θ
−

n∑
i=1

d∑
j=1

log p(x
i
j | θj)) (log(αβ) = log(α) + log(β))

≡ argmin
Θ
−

d∑
j=1

n∑
i=1

log p(x
i
j | θj)) (exchanging sums gives separable function: fj(θj) = −

n∑
i=1

log p(x
i
j | θj)).

Since the NLL is separable in the Θj , you can minimize each fj separately.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Big Picture: Training and Inference

Density estimation training phase:

Input is a matrix X.
Output is a model.

Density estimation prediction phase:

Input is a model, and possibly test data X̃
Many possible prediction tasks:

Measure probability of test examples x̃i.
Generate new samples x according to the distribution.
Find configuration x maximizing p(x).
Compute marginal probability like p(xj = c) for somr variable j and value c.
Compute conditional queries like p(xj = c | xj′ = c′).

We call these inference tasks.
More complicated than superised learning.

In supervised learning, inference was “find ŷi” or “compute p(y = c | w, x)”.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Example: Independent vs. General Discrete on Digits
Consider handwritten images of digits:

xi = vec

,

so each row of X contains all pixels from one image of a 0, 1, 2, . . . , or a 9.

Previously we had labels and wanted to recognize that this is a 4.
In density estimation we want probability distribution over images of digits.
Inference tasks:

Given an image, what is the probability that it’s a digit?
Sampling from the density, which should generate images of new digits.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Example: Independent vs. General Discrete on Digits
Fitting independent Bernoullis to this data gives a parameter θj for each pixel j.

MLE is “fraction of times we have a 1 at pixel j”:

Samples generated from independent Bernoulli model:

Flip a coin that lands hands with probability θj for each pixel j.

This is clearly a terrible model: misses dependencies between pixels.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Example: Independent vs. General Discrete on Digits

Here is a sample from the MLE with the general discrete distribution:

Here is an image with a probability of 0:

This model memorized training images and doesn’t generalize.

MLE puts probability at least 1/n on training images, and 0 on non-training images.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Density Estimation and Fundamental Trade-off
“Product of independent” distributions (with d parameters):

Easily estimate each θc but can’t model many distributions.
General discrete distribution (with 2d parameters):

Hard to estimate 2d parameters but can model any distribution.

An unsupervised version of the fundamental trade-off:
Simple models often don’t fit the data well but don’t overfit much.
Complex models fit the data well but often overfit.

We’ll consider models that lie between these extremes:
1 Mixture models.
2 Markov models.
3 Graphical models.
4 Boltzmann machines.
5 Fully-convolutional and recurrent neural networks.
6 Variational autoencoders.
7 Generative adversarial networks.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Summary

Density estimation: unsupervised modelling of probability of feature vectors.

Bernoulli distribution for modeling binary data.

Categorical distribution for modeling discrete data.

MAP estimation with beta and Dirichlet priors (“Laplace smoothing”).

Product of independent distributions is simple/crude density estimation method.

Next time: we start talking about density estimation with continuous data.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Debugging Checklist (From Cinda Heeran)

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Lagrangian Function for Optimization with Equality Constraints

Consider minimizing a differentiable f with linear equality constraints,

argmin
Aw=b

f(w).

The Lagrangian of this problem is defined by

L(w, v) = f(w) + vT (Aw − b),

for a vector v ∈ Rm (with A being m by d).

At a solution of the problem we must have

∇wL(w, v) = ∇f(w) +AT v = 0 (gradient is orthogonal to constraints)

∇vL(w, v) = Aw − b = 0 (constraints are satisfied)

So solution is stationary point of Lagrangian.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Lagrangian Function for Optimization with Equality Constraints

Scans from Bertsekas discussing Lagrange multipliers (also see CPSC 406).

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Lagrangian Function for Optimization with Equality Constraints

We can use these optimality conditions,

∇wL(w, v) = ∇f(w) +AT v = 0 (gradient is orthogonal to constraints)

∇vL(w, v) = Aw − b = 0 (constraints are satisfied)

to solve some constrained optimization problems.

A typical approach might be:
1 Solve for w in the equation ∇wL(w, v) = 0 to get w = g(v) for some function g.
2 Plug this w = g(v) into the the equation ∇vL(w, v) = 0 to solve for v.
3 Use this v in g(v) to get the optimal w.

But note that these are necessary conditions (may need to check it’s a min).

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Lagrangian Function for Optimization with Equality Constraints
Example: minimize 1

2(w1 + 1)2 + 1
2(w2 + 2)2 subject to w1 + w2 = 1.

So Lagrangian is L(w, v) = 1
2 (w1 + 1)2 + 1

2 (w2 + 2)2 + v(w1 + w2 − 1).
Solving this problem using the Lagrangian:

1 Solve for w in the equation ∇wL(w, v) = 0 to get w = g(v) for some function g.

∇w1L(w, v) = (w1 + 1) + v, so with ∇w1L(w, v) = 0 we have w1 = −v − 1,

∇w2L(w, v) = (w2 + 2) + v, so with ∇w2L(w, v) = 0 we have w2 = −v − 2.

2 Plug this w = g(v) into the the equation ∇vL(w, v) = 0 to solve for v.

∇vL(w, v) = w1 + w2 − 1, so with ∇vL(w, v) = 0 we have using the above w1 and w2:

0 = (−v − 1) + (−v − 2)− 1, or v = -2.

3 Use this v in g(v) to get the optimal w.

w1 = −(−2)− 1,

w2 = −(−2)− 2,

giving w1 = 1 and w2 = 0 as the minimum subject to the constraint.

Discrete Density Estimation (d = 1) Discrete Density Estimation (d > 1)

Beta Distribution with α < 1 and β < 1

Wikipedia has a rather extensive article on the beta distribution:
https://en.wikipedia.org/wiki/Beta_distribution

In their picture of the beta distribution with α = β = 0.5, you see that it’s
”U”-shaped, with modes at the extreme values of 0 or 1. I think of this as
regularizing towards the coin being biased, but you’re not sure whether the coin is
biased towards heads or tails.

Also, the MAP formula given in class only works if n1 + α and n0 + α are both
greater than 1. This trivial holds for Laplace smoothing and the MLE case, but
doesn’t hold if you haven’t seen both heads and tails when α and β are less than
1. In that case, the MAP will be either 0 or 1 or both depending on the precise
values.

https://en.wikipedia.org/wiki/Beta_distribution

	Discrete Density Estimation (d=1)
	Discrete Density Estimation (d>1)

