CPSC 440: Advanced Machine Learning Density Estimation

Mark Schmidt

University of British Columbia

Winter 2021

Admin

• Canvas:

• The 440/540 Canvas page has all the links you need.

• Assignment 1 due tonight.

• Gradescope submissions instructions posted on Piazza.

• Today is the last day to drop the course.

- Consider whether you want to take this course if you found Assignment 1 difficult.
 - Particularly if you haven't taken CPSC 320 or 340, even if you are in CPSC or ECE.
 - I remember taking classes I wasn't ready for, it is not going to get better after week 2!

Digression: "Debugging by Frustration" and "Debugging by TA"

- Here is one way to write a complicated program (e.g., softmax with gradient):
 - Write the entire function at once.
 - Iry it out to "see if it works".
 - Spend hours fiddling with commands, trying to find magic working combination.
 - Send code to the TA, asking "what is wrong?"
- If you are lucky, step 2 works and you are done!
- If you are not lucky, this takes way longer than principled coding methods.
 - This is also a great way to introduce bugs into your code.
 - And you won't be able to do Step 4 when you graduate.

Debugging 101

• What strategies could we use to debug an implementation of these functions?

$$f(w) = \sum_{i=1}^{n} [f_i(w) + g_i(w)]$$
 and its gradient.

- Use "print" statements to see what is happening at each step of the code.
 - Or a debugger
- Check if $\nabla f_i(w)$ is correct on its own with numerical differencing.
 - Maybe you have the second term right but the not first term.
- Check if $\nabla g_i(w)$ is correct on its own with numerical differencing.
 - Maybe you have the first term right but not the second term.
- Try the implementation with only one training example or only one feature.
 - Maybe there is an indexing problem, or things aren't being aggregated properly.
- Develop one ore more simple "test case", where you worked out the result by hand.
 - Maybe one of the functions you are using does not work the way you think it does.
- Code up f(w), and then run gradient descent with numerical differencing.
 - Maybe your objective function is wrong so it doesn't matter if the gradietn is correct.
- TAs/instructor are happy to help, but when sending code you need to include:
 - "This is what I've tried to diagnose the problem and the problem seems to be here".

Last Time: Structure Prediction

- "Classic" machine learning: models p(yⁱ | xⁱ), where yⁱ was a single variable.
 In 340 we used simple distributions like the Gaussian and sigmoid.
- Structured prediction: yⁱ could be a vector, protein, image, dependency tree,....
 This requires defining more-complicated distributions.
- But before considering $p(y^i \mid x^i)$ for complicated y^i :
 - We'll first consider just modeling $p(y^i)$ or $p(x^i)$ with multiple variables, without worrying about conditioning (this is already a hard problem).
 - If you know how to model $p(x^i)$, then $p(y^i \mid x^i)$ isn't much more complicated.

Density Estimation

• The next topic we'll focus on is density estimation:

- What is probability of $[1 \ 0 \ 1 \ 1]$?
- Want to estimate probability of feature vectors x^i .
- For the training data this is easy:
 - Set $p(x^i)$ to "number of times x^i is in the training data" divided by n.
- We're interested in the probability of test data,
 - What is probability of seeing feature vector \tilde{x}^i for a new example *i*.

Density Estimation Applications

- Density estimation could be called a "master problem" in machine learning.
 - Solving this problem lets you solve a lot of other problems.
- If you have $p(x^i)$ then:
 - Outliers could be cases where $p(x^i)$ is small.
 - Missing data in x^i can be "filled in" based on $p(x^i)$.
 - Vector quantization can be achieved by assigning shorter code to high $p(x^i)$ values.
 - Association rules can be computed from conditionals $p(x_j^i \mid x_k^i)$.
- We can also do density estimation on (x^i,y^i) jointly:
 - Supervised learning can be done by conditioning to give $p(y^i \mid x^i)$.
 - Feature relevance can be analyzed by looking at $p(x^i \mid y^i)$.
- If features are continuous, we are estimating the "probability density function".
 - I'll sloppily just say "probability" though.

Unsupervised Learning

- Density estimation is an unsupervised learning method.
 - We only have x^i values, but no explicit target labels.
 - You want to do "something" with them.
- Some unsupervised learning tasks from CPSC 340 (depending on semester):
 - Clustering: what types of x^i are there?
 - Association rules: which x_j and x_k occur together?
 - Outlier detection: is this a "normal" x^i ?
 - Latent-factors: what "parts" are x^i made from?
 - Data visualization: what do the high-dimensional x^i look like?
 - Ranking: which are the most important x^i ?

• You can probably address all these if you can do density estimation.

Bernoulli Distribution on Binary Variables

• Let's start with the simplest case: $x^i \in \{0,1\}$ (e.g., coin flips),

$$X = \begin{bmatrix} 1\\0\\0\\0\\1\end{bmatrix}$$

.

• For IID data the only choice is the Bernoulli distribution:

$$p(x^i = 1 \mid \theta) = \theta, \quad p(x^i = 0 \mid \theta) = 1 - \theta.$$

• We can write both cases as

$$p(x^i \mid \theta) = \theta^{\mathcal{I}[x^i=1]} (1-\theta)^{\mathcal{I}[x^i=0]}, \text{ where } \mathcal{I}[y] = \begin{cases} 1 & \text{if } y \text{ is true} \\ 0 & \text{if } y \text{ is false} \end{cases}.$$

а

Maximum Likelihood with Bernoulli Distribution

• MLE for Bernoulli likelihood with IID data is

$$\begin{split} \mathop{\mathrm{rgmax}}_{0 \leq \theta \leq 1} p(X \mid \theta) &= \mathop{\mathrm{argmax}}_{0 \leq \theta \leq 1} \prod_{i=1}^{n} p(x^{i} \mid \theta) \\ &= \mathop{\mathrm{argmax}}_{0 \leq \theta \leq 1} \prod_{i=1}^{n} \theta^{\mathcal{I}[x^{i}=1]} (1-\theta)^{\mathcal{I}[x^{i}=0]} \\ &= \mathop{\mathrm{argmax}}_{0 \leq \theta \leq 1} \underbrace{\frac{\theta^{1} \theta^{1} \cdots \theta^{1}}{\mathsf{number of } x_{i} = 1}}_{\mathsf{number of } x_{i} = 1} \underbrace{\frac{(1-\theta)(1-\theta) \cdots (1-\theta)}{\mathsf{number of } x_{i} = 0}}_{\mathsf{number of } x_{i} = 0} \end{split}$$

where n_1 is count of number of 1 values and n_0 is the number of 0 values.

- If you equate the derivative of the log-likelihood with zero, you get $\theta = \frac{n_1}{n_1 + n_0}$.
- So if you toss a coin 50 times and it lands heads 24 times, your MLE is 24/50.

Multinomial Distribution on Categorical Variables

• Consider the multi-category case: $x^i \in \{1, 2, 3, \dots, k\}$ (e.g., rolling di),

$$X = \begin{bmatrix} 2\\1\\1\\3\\1\\2 \end{bmatrix}$$

•

• The categorical distribution is

$$p(x^i=c\mid \theta_1,\theta_2,\ldots,\theta_k)=\theta_c,$$
 where each $\theta_c\geq 0$ and $\sum_{c=1}^k\theta_c=1.$

• We can write this for a generic \boldsymbol{x} as

$$p(x^i \mid \theta_1, \theta_2, \dots, \theta_k) = \prod_{c=1}^k \theta_c^{\mathcal{I}[x^i=c]}.$$

Multinomial Distribution on Categorical Variables

• Using Lagrange multipliers (bonus) to handle constraints, the MLE is

$$heta_c = rac{n_c}{n} = rac{n_c}{\sum_{c'} n_{c'}}.$$
 ("fraction of times you rolled a 4")

- If we never see category 4 in the data, should we assume $\theta_4 = 0$?
 - If we assume $\theta_4 = 0$ and we have a 4 in test set, our test set likelihood is 0.
- To leave room for this possibility we often use "Laplace smoothing",

$$\theta_c = \frac{n_c + 1}{\sum_{c'} (n_{c'} + 1)}.$$

• This is like adding a "fake" example to the training set for each class.

MAP Estimation with Bernoulli Distributions

• In the binary case, a generalization of Laplace smoothing is

$$\theta = \frac{n_1 + \alpha - 1}{(n_1 + \alpha - 1) + (n_0 + \beta - 1)},$$

- We get the MLE when $\alpha = \beta = 1$, and Laplace smoothing with $\alpha = \beta = 2$.
- This is a MAP estimate under a beta prior,

$$p(\theta \mid \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1},$$

where the beta function B makes the probability integrate to one.

We want
$$\int_{\theta} p(\theta \mid \alpha, \beta) d\theta = 1$$
, so define $B(\alpha, \beta) = \int_{\theta} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta$.

• Note that $B(\alpha, \beta)$ is constant in terms of θ , it doesn't affect MAP estimate.

• Above formula assumes $n_1 + \alpha > 1$ and $n_0 + \beta > 1$ (other cases in bonus).

MAP Estimation with Categorical Distributions

• In the categorical case, a generalization of Laplace smoothing is

$$\theta_c = \frac{n_c + \alpha_c - 1}{\sum_{c'=1}^k (n_{c'} + \alpha_{c'} - 1)},$$

which is a MAP estimate under a Dirichlet prior,

$$p(\theta_1, \theta_2, \dots, \theta_k \mid \alpha_1, \alpha_2, \dots, \alpha_k) = \frac{1}{B(\alpha)} \prod_{c=1}^k \theta_c^{\alpha_c - 1},$$

where $B(\alpha)$ makes the multivariate distribution integrate to 1 over θ ,

$$B(\alpha) = \int_{\theta_1} \int_{\theta_2} \cdots \int_{\theta_{k-1}} \int_{\theta_k} \prod_{c=1}^k \left[\theta_c^{\alpha_c - 1} \right] d\theta_k d\theta_{k-1} \cdots d\theta_2 d\theta_1.$$

• Because of MAP-regularization connection, Laplace smoothing is regularization.

Discrete Density Estimation (d = 1)

Discrete Density Estimation (d > 1)

Outline

2 Discrete Density Estimation (d > 1)

General Discrete Distribution

- Now consider the case where $x^i \in \{0,1\}^d$:
 - Words in e-mails, pixels in binary image, locations of cancers, and so on.

 $X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}.$

- Now there are 2^d possible values of vector x^i .
 - General discrete distribution would consider θ_{0000} , θ_{0001} , θ_{0010} , θ_{0011} , θ_{0100} ,...
 - You can compute the MLE of this distribution in O(nd).
 - $\bullet\,$ See at most n unique x^i values, and using a hash data structure.
 - But unless we have a small number of repeated x^i values, we'll hopelessly overfit.
- With finite dataset, we'll need to make assumptions...

Product of Independent Distributions

• A common assumption is that the variables are independent:

$$p(x_1^i, x_2^i, \dots, x_d^i \mid \Theta) = \prod_{j=1}^d p(x_j^i \mid \theta_j).$$

• Now we just need to model each column of X as its own dataset:

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \to X_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad X_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad X_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

• A big assumption, but now you can fit Bernoulli for each variable.

• We used a similar independence assumption in CPSC 340 for naive Bayes.

Digression: Optimizing "Separable" Functions

• Consider an optimization problem of the form

 $\min_{w_1,w_2} f_1(w_1) + f_2(w_2).$

- This is called a separable function.
 - The variable w_1 only affects the first term, and w_2 only affects second.
- With separable functions, you can optimize each term separately.
 - Gradient with respect to w_1 is: $\nabla f_1(w_1)$ (not affected by w_2).
 - Gradient with repsect to w_2 is: $\nabla f_2(w_2)$ (not affected by w_1).
- Similarly, if you have $\sum_{j=1}^{d} f_j(w_j)$, you optimize each f_j separately.
 - Use this property to simplify your assignment questions.

Digression: Optimizing "Separable" Functions

• Let's show that "product of independent" model fits each column separately.

$$p(x_1^i, x_2^i, \dots, x_d^i \mid \Theta) = \prod_{j=1}^d p(x_j^i \mid \theta_j).$$

$$\begin{array}{ll} \bullet & \mathsf{MLE:} & \underset{\Theta}{\operatorname{argmin}} - \log \prod_{i=1}^{n} p(x_{1}^{i}, x_{2}^{i}, \ldots, x_{d}^{i} \mid \Theta) & (\mathsf{NLL for IID data}) \\ & \equiv \underset{\Theta}{\operatorname{argmin}} - \sum_{i=1}^{n} \log p(x_{1}^{i}, x_{2}^{i}, \ldots, x_{d}^{i} \mid \Theta) & (\log(\alpha\beta) = \log(\alpha) + \log(\beta)) \\ & \equiv \underset{\Theta}{\operatorname{argmin}} - \sum_{i=1}^{n} \log \prod_{j=1}^{d} p(x_{j}^{i} \mid \theta_{j}) & (\operatorname{product of independent assumption}) \\ & \equiv \underset{\Theta}{\operatorname{argmin}} - \sum_{i=1}^{n} \sum_{j=1}^{d} \log p(x_{j}^{i} \mid \theta_{j})) & (\log(\alpha\beta) = \log(\alpha) + \log(\beta)) \\ & \equiv \operatorname{argmin} - \sum_{i=1}^{n} \sum_{j=1}^{d} \log p(x_{j}^{i} \mid \theta_{j})) & (\operatorname{exchanging sums gives separable function: } f_{j}(\theta_{j}) = -\sum_{i=1}^{n} \log p(x_{j}^{i} \mid \theta_{j})). \end{array}$$

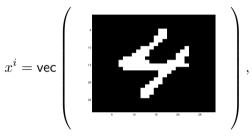
• Since the NLL is separable in the Θ_j , you can minimize each f_j separately.

Big Picture: Training and Inference

- Density estimation training phase:
 - Input is a matrix X.
 - Output is a model.
- Density estimation prediction phase:
 - Input is a model, and possibly test data $ilde{X}$
 - Many possible prediction tasks:
 - Measure probability of test examples \tilde{x}^i .
 - Generate new samples x according to the distribution.
 - Find configuration x maximizing p(x).
 - Compute marginal probability like $p(x_j = c)$ for somr variable j and value c.
 - Compute conditional queries like $p(x_j = c \mid x_{j'} = c')$.
- We call these inference tasks.
 - More complicated than superised learning.
 - In supervised learning, inference was "find $\hat{y}^{i \prime \prime}$ or "compute $p(y=c \mid w,x)$ ".

Example: Independent vs. General Discrete on Digits

• Consider handwritten images of digits:



so each row of X contains all pixels from one image of a 0, 1, 2, ..., or a 9.

- Previously we had labels and wanted to recognize that this is a 4.
- In density estimation we want probability distribution over images of digits.
- Inference tasks:
 - Given an image, what is the probability that it's a digit?
 - Sampling from the density, which should generate images of new digits.

Example: Independent vs. General Discrete on Digits

- Fitting independent Bernoullis to this data gives a parameter θ_j for each pixel j.
 - MLE is "fraction of times we have a 1 at pixel j":

• Samples generated from independent Bernoulli model:

- Flip a coin that lands hands with probability θ_j for each pixel j.
- This is clearly a terrible model: misses dependencies between pixels.

Example: Independent vs. General Discrete on Digits

• Here is a sample from the MLE with the general discrete distribution:

• Here is an image with a probability of 0:

- This model memorized training images and doesn't generalize.
 - MLE puts probability at least 1/n on training images, and 0 on non-training images.

Density Estimation and Fundamental Trade-off

- "Product of independent" distributions (with *d* parameters):
 - Easily estimate each θ_c but can't model many distributions.
- General discrete distribution (with 2^d parameters):
 - Hard to estimate 2^d parameters but can model any distribution.
- An unsupervised version of the fundamental trade-off:
 - Simple models often don't fit the data well but don't overfit much.
 - Complex models fit the data well but often overfit.
- We'll consider models that lie between these extremes:
 - Mixture models.
 - 2 Markov models.
 - Graphical models.
 - Boltzmann machines.
 - Sully-convolutional and recurrent neural networks.
 - Variational autoencoders.
 - Generative adversarial networks.

Summary

- Density estimation: unsupervised modelling of probability of feature vectors.
- Bernoulli distribution for modeling binary data.
- Categorical distribution for modeling discrete data.
- MAP estimation with beta and Dirichlet priors ("Laplace smoothing").
- Product of independent distributions is simple/crude density estimation method.
- Next time: we start talking about density estimation with continuous data.

Debugging Checklist (From Cinda Heeran)

LMNOP List

Before placing yourself on the Queue or posting to Piazza, please make sure to:

- 1. Format your code so it can be read.
- 2. Comment your code so you (and we) can understand what it's doing.
- Isolate your error as specifically as you can. "This line of code doesn't do what I expect" or "this function returns the wrong value for these parameters."
- Sketch your algorithm on paper, with pencil. Use small or simplified instances of the problem.
- 5. Re-read the specification to make sure you're solving the right problem.
- 6. Read error messages carefully and try to understand what they're telling you.
- 7. Google your error message. Stackoverflow.com is a gift from god, populated by angels.
- Break your functions into smaller chunks, or even helper functions, and make sure each smaller piece behaves as you expect (i.e. test them!).
- 9. Challenge the assumptions you make
 - a. Does the order of what I'm doing matter?
 - b. Do I need to check the input values?
 - c. Does this do what I expect? (will it overflow?, will it be a shallow copy?)

Help-seeking behaviors that are doomed to fail:

- 1. Saying only, "It's not working!"
- 2. Asking if your code looks correct without having finished it or tested it.
- 3. Ignoring the suggestions of the TA.
- 4. Looking at Github for answers.

ProTip: Check your code into a repository every time you finish a function or take a break, and give yourself good commit messages. This helps enormously if you have to roll back changes.

• Consider minimizing a differentiable f with linear equality constraints,

 $\underset{Aw=b}{\operatorname{argmin}} f(w).$

• The Lagrangian of this problem is defined by

$$L(w,v) = f(w) + v^T (Aw - b),$$

for a vector $v \in \mathbb{R}^m$ (with A being m by d).

• At a solution of the problem we must have

 $\nabla_w L(w,v) = \nabla f(w) + A^T v = 0 \quad \text{(gradient is orthogonal to constraints)}$ $\nabla_v L(w,v) = Aw - b = 0 \quad \text{(constraints are satisfied)}$

• So solution is stationary point of Lagrangian.

• Scans from Bertsekas discussing Lagrange multipliers (also see CPSC 406).

3.1 NECESSARY CONDITIONS FOR EQUALITY CONSTRAINTS

In this section we consider problems with equality constraints of the form

minimize
$$f(x)$$

subject to $h_i(x) = 0$, $i = 1, ..., m$. (ECP)

We assume that $f: \Re \to \Re, h: \Re \to \Im, i = 1, ..., m, are continuously differentiable functions. All the necessary and the sufficient conditions of this chapter relating to a laced minimum can also be shown to hold if f and h, are defined and are continuously differentiable utilin just an open set containing the local minimum. The proofs are essentially identical to those given here.$

For notational convenience, we introduce the constraint function h: $\Re^n \mapsto \Re^m$, where

 $h = (h_1, ..., h_m).$

We can then write the constraints in the more compact form

$$(x) = 0.$$
 (3.1)

Our basic Lagrange multiplier theorem states that for a given local minimum x^{*}, there exist scalars $\lambda_1, \ldots, \lambda_m$, called Lagrange multipliers, such that

$$7f(x^*) + \sum_{i=1}^{m} \lambda_i \nabla h_i(x^*) = 0.$$
 (

There are two ways to interpret this equation:

- (a) The cost gradient ∇f(x*) belongs to the subspace spanned by the constraint gradients at x*. The example of Fig. 3.1.1 illustrates this interpretation.
- (b) The cost gradient ∇f(x*) is orthogonal to the subspace of first order feasible variations

$$V(x^*) = \{\Delta x \mid \nabla h_i(x^*)' \Delta x = 0, i = 1, ..., m\}$$

This is the subspace of variations Δx for which the vector $x = x^* + \Delta x$ satisfies the constraint h(x) = 0 up to first order. Thus, according to the Lagrange multiplier condition of Eq. (3.2), at the local minimum x^* , the first order cost variation $\nabla f(x^*)'\Delta x$ is zero for all variations

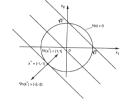


Figure 3.1.1. Illustration of the Lagrange multiplier condition (3.1) for the problem

minimize $x_1 + x_2$

subject to $x_1^2 + x_2^2 = 2$.

At the local minimum $x^* = (-1, -1)$, the cost gradient $\nabla f(x^*)$ is normal to the constraint surface and is therefore, collinear with the constraint gradient $\nabla h(x^*) = (-2, -2)$. The Lagrange multiplier is $\lambda = 1/2$.

 Δx in this subspace. This statement is analogous to the "zero gradient condition" $\nabla f(x^*) = 0$ of unconstrained optimization.

Here is a formal statement of the main Lagrange multiplier theorem.

Proposition 3.1.1: (Lagrange Multiplier Theorem – Necessary Conditions) Let x^* be a local minimum of f subject to h(x) = 0, and assume that the constraint gradients $\nabla h_1(x^*), \dots, \nabla \nabla h_m(x^*)$ are linearly independent. Then there exists a unique vector $\lambda^* = (\lambda^*_1, \dots, \lambda^*_m)$ called a Lagrange multipler vector, such that

$$\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla h_i(x^*) = 0.$$
 (3.3)

If in addition f and h are twice continuously differentiable, we have

• We can use these optimality conditions,

 $\nabla_w L(w,v) = \nabla f(w) + A^T v = 0 \quad \text{(gradient is orthogonal to constraints)}$ $\nabla_v L(w,v) = Aw - b = 0 \quad \text{(constraints are satisfied)}$

to solve some constrained optimization problems.

- A typical approach might be:
 - **(**) Solve for w in the equation $\nabla_w L(w, v) = 0$ to get w = g(v) for some function g.
 - 2 Plug this w = g(v) into the the equation $\nabla_v L(w, v) = 0$ to solve for v.
 - **③** Use this v in g(v) to get the optimal w.

• But note that these are necessary conditions (may need to check it's a min).

• Example: minimize $\frac{1}{2}(w_1+1)^2 + \frac{1}{2}(w_2+2)^2$ subject to $w_1 + w_2 = 1$.

• So Lagrangian is $L(w, v) = \frac{1}{2}(w_1 + 1)^2 + \frac{1}{2}(w_2 + 2)^2 + v(w_1 + w_2 - 1).$

- Solving this problem using the Lagrangian:
 - **(**) Solve for w in the equation $\nabla_w L(w, v) = 0$ to get w = g(v) for some function g.

$$\begin{split} \nabla_{w_1}L(w,v) &= (w_1+1)+v, \quad \text{so with } \nabla_{w_1}L(w,v) = 0 \text{ we have } w_1 = -v-1, \\ \nabla_{w_2}L(w,v) &= (w_2+2)+v, \quad \text{so with } \nabla_{w_2}L(w,v) = 0 \text{ we have } w_2 = -v-2. \end{split}$$

2 Plug this w = g(v) into the the equation $\nabla_v L(w, v) = 0$ to solve for v.

$$\label{eq:prod} \begin{split} \nabla_v L(w,v) &= w_1 + w_2 - 1, \quad \text{so with } \nabla_v L(w,v) = 0 \text{ we have using the above } w_1 \text{ and } w_2 \text{:} \\ 0 &= (-v-1) + (-v-2) - 1, \quad \text{or } \mathbf{v} = \textbf{-2}. \end{split}$$

(3) Use this v in g(v) to get the optimal w.

$$w_1 = -(-2) - 1,$$

 $w_2 = -(-2) - 2,$

giving $w_1 = 1$ and $w_2 = 0$ as the minimum subject to the constraint.

Beta Distribution with $\alpha < 1$ and $\beta < 1$

- Wikipedia has a rather extensive article on the beta distribution: https://en.wikipedia.org/wiki/Beta_distribution
- In their picture of the beta distribution with $\alpha = \beta = 0.5$, you see that it's "U"-shaped, with modes at the extreme values of 0 or 1. I think of this as regularizing towards the coin being biased, but you're not sure whether the coin is biased towards heads or tails.
- Also, the MAP formula given in class only works if $n_1 + \alpha$ and $n_0 + \alpha$ are both greater than 1. This trivial holds for Laplace smoothing and the MLE case, but doesn't hold if you haven't seen both heads and tails when α and β are less than 1. In that case, the MAP will be either 0 or 1 or both depending on the precise values.