CPSC 440: Machine Learning

How Much Data?
Winter 2021
We discussed 3 levels of convexity, and their implications:

- **Convexity**: all stationary points are global minimum (may be none or ∞).
- **Strict convexity**: there is at most one stationary point (may be 0 or 1).
- **Strong convexity**: there is exactly one global minimum (for closed domain).

For twice-differentiable functions (“C^2”), related to Hessian:

- **Convexity**: Hessian eigenvalues are non-negative everywhere. $\nabla^2 f(\omega) \succeq 0$
- **Strict convexity**: eigenvalues are positive everywhere. $\nabla^2 f(\omega) > 0$
- **Strong convexity**: eigenvalues are at least $\mu > 0$ everywhere. $\nabla^2 f(\omega) \succeq \mu I$
The Question I Hate the Most…

• How much data do we need?

• A difficult if not impossible question to answer.

• My usual answer: “more is better”.
 – With the warning: “as long as the quality doesn’t suffer”.

• Another popular answer: “ten times the number of features”.
The Question I Hate the Most...

• Let’s assume you have a new supervised learning application.
 – But you have no data.

• You have some way to collect IID samples.
 – So you have to decide how much data to collect.

• Since it’s supervised learning, our goal is to minimize a test error:

\[\hat{\mathcal{L}}(w) = \mathbb{E} \left[f_i(w) \right] \quad \text{"test error"} \]

 – Expected loss over IID examples from the test distribution.
 – Here, \(f_i(w) \) could be the squared error or some other loss.
Usual Approach: Collect Data then Optimize

• We want to minimize the test error (which we cannot compute):
 \[\hat{f} (w) = \mathbb{E} \left[f_i(w) \right] \quad \text{"test error"} \]

• We approximate this with a training error over ‘n’ IID samples:
 \[f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w) \quad \text{"train error"} \]

• And we need to decide how large ‘n’ should be.

• But first, let’s quickly review stochastic gradient descent (SGD).
 – Among most common approaches for minimizing the training error.
1-Slide Review of Stochastic Gradient Descent (SGD)

• To optimize training error, could use **stochastic gradient descent**:

\[
 w^{k+1} = w^k - \alpha_k \nabla f_{i_k}(w^k)
\]

– This generates a sequence of iterates \(w^0, w^1, w^2,\ldots\)
– We have a sequence of **step sizes** \(\alpha_k\).
– Each iteration ‘k’ chooses uses a **random training example** \(i_k\).
 • Based on an **unbiased estimate** of the gradient of the training error (uniform \(i_k\)):

\[
 \mathbb{E} [\nabla f_i(w)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \nabla f_j(w) = \nabla f(w)
\]

– Converges to a stationary point (under reasonable assumptions) if:
 • Typical choices: \(\alpha_k = O(1/k)\) or \(\alpha_k = O(1/\sqrt{k})\) which is more robust.
SGD Speed of Convergence (Training Error)

• “How much data” can be related to “how fast does SGD converge”?

• Assumptions:
 – ‘f’ is strongly-convex: $\nabla^2 f(w) \succcurlyeq \sigma I$
 – ‘f’ is strongly-smooth: $\|I \preccurlyeq \nabla^2 f(w)$
 – “Variance” of gradients is bounded: $\frac{1}{n} \sum_{i=1}^{n} \|\nabla f_i(w) - \nabla f(w)\|_2^2 \leq \sigma^2$

• Under these assumptions (and suitable α_k):
 – $E[f(w^k)] - f^* = O(1/k)$, where f^* is training error of the global optimum.
 – Implies we need $k=O(1/\epsilon)$ iterations to have $f(w^k) - f^* \leq \epsilon$.
Training Error vs. Testing Error

• We don’t care about training error, we want to minimize test error.
 – And our goal was to decide how many examples ‘n’ to collect.

• We considered SGD “on collected data” (Approach 1):
 – Choose a random training example i_k (among the ‘n’ training examples).
 – Perform the SGD step.

• Now consider SGD “while collecting data” (Approach 2):
 – Collect a new random example i_k (IID from the true distribution).
 – Perform the SGD step.

• Approach 1 uses unbiased estimates of training error gradient.
• Approach 2 uses unbiased estimates of test error gradient.
SGD Speed of Convergence (Test Error)

• Approach 1: gap with best train error after ‘k’ iterations is $O(1/k)$.
• Approach 2: gap with best test error after ‘k’ iterations is $O(1/k)$.
 – And we are using 1 new example on each iteration.
 – So with ‘n’ examples, this approach has test error of $O(1/n)$.
 – And we need $n=O(1/\epsilon)$ training examples to get within ϵ of best test error.
 • This is referring to “best you can with this model”, not necessarily E_{best}.

• Notice that there is no overfitting.
 – Approach 2 is doing SGD on the test error.
 – It’s like doing SGD with $n=\infty$, where train error = test error.
Scenarios where you can use Approach 2

• Here are some scenarios where you effectively have “\(n = \infty \)”:
 – A dataset that is so large we cannot even go through it once (Gmail).
 – A function you want to minimize that you can’t measure without noise.
 – You want to encourage invariance with a continuous set of transformation:
 • You consider infinite number of translations/rotations instead of a fixed number.

– Learning from simulators with random numbers (physics/chem/bio):

http://kinefold.curie.fr/cgi-bin/form.pl
One-Pass SGD, Multi-Pass, and Caveats

• **One-pass SGD:**
 – If you already have a training set, you can simulate ‘n’ steps of Approach 2.
 – Go through your ‘n’ examples once, doing SGD step on each example.
 • Gets within $O(1/n)$ of optimal test error.

• Under (ugly) assumptions, this “$O(1/n)$ rate with ‘n’ examples” is **unimprovable**.
 – Even for methods that go through the dataset more than once or that minimize train error.

• In practice: **one-pass SGD often doesn’t work well**.
 – Doing multiple passes almost always helps.
 – Multiple passes can potentially improve constants in $O(1/n)$ rate.
 – One-pass SGD is also very sensitive to the step-size.
 – Our “loss” might not be the error. For example, 0-1 error is approximated by logistic loss.
 – Some recent works have been exploring assumptions where $O(1/n)$ is improvable.
 – So if you have $n=\infty$, but finite time: may be better to work with large-but-finite dataset.
 • “Optimize better on less data”.
A Practical Answer to “How Much Data”?

• Whether we use one-pass SGD or minimize training error,

\[E[\text{test error of model fit on training set}] - (\text{best test error in class}) = O(1/n). \]

(under reasonable assumptions, and with parametric model)

• You rarely know the constant factor, but this gives some guidelines:
 – Adding more data helps more on small datasets than on large datasets.
 • Going from 10 training examples to 20, difference with best possible error gets cut in half.
 – If the best possible error is 15% you might go from 20% to 17.5% (this does not mean 20% to 10%).
 • Going from 110 training examples to 120, gap only goes down by ~10%.
 • Going from 1M training examples to 1M+10, you won’t notice a change.
 – Doubling the data size cuts the error in half:
 • Going from 1M training to 2M training examples, gap gets cut in half.
 • If you double the data size and your test error doesn’t improve, more data might not help.