CPSC 440: Machine Learning

How Much Data?
Winter 2021



Last Time: Strict/Strong Convexity

 We discussed 3 levels of convexity, and their implications:
— Convexity: all stationary points are global minimum (may be none or ).
— Strict convexity: there is at most one stationary point (may be O or 1).
— Strong convexity: there is exactly one global minimum (for closed domain).

* For twice-differentiable functions (“C?”), related to Hessian:
— Convexity: Hessian eigenvalues are non-negative everywhere.vq\(h,},/( D
— Strict convexity: eigenvalues are positive everywhere. Vi (W) & 0
— Strong convexity: eigenvalues are at least 1 > 0 everywhere. V7§ (W5¢41



The Question | Hate the Most...

How much data do we need?
A difficult if not impossible question to answer.

My usual answer: “more is better”.
— With the warning: “as long as the quality doesn’t suffer”.

Another popular answer: “ten times the number of features”.



The Question | Hate the Most...

e Let’s assume you have a new supervised learning application.
— But you have no data.

* You have some way to collect IID samples.

— So you have to decide how much data to collect.

* Since it’s supervised learning, our goal is to minimize a test error:
v
F(wy= ELEGDY "ot ervor

— Expected loss over 11D examples from the test distribution.
— Here, f,(w) could be the squared error or some other loss.



Usual Approach: Collect Data then Optimize

We want to minimize the test error (which we cannot compute):

F(W)= BLEGDT ot e

We approximate this with a training error over ‘n’ IID samples:

fW)=136) e erral

And we need to decide how large ‘n’ should be.

\

But first, let’s quickly review stochastic gradient descent (SGD).
— Among most common approaches for minimizing the training erorr.



1-Slide Review of Stochastic Gradient Descent (SGD)

* To optimize training error, could use stochastic gradient descent:

k+1 k
w S w _o(,(VF,k(wk)

— This generates a sequence of iterates w°, wi, w?,...
— We have a sequence of step sizes ay,.
— Each iteration ‘k’ chooses uses a random training example i,.

* Based on an unbiased estimate of the gradient of the training error (uniform i,):

CL VA= £ oIV L) = £CIV = E9E) = V()

(2%
2
— Converges to a stationary point (under reasonable assumptions) if: Z"(« =0

| 3

)

Zo‘k

et

 Typical choices: a;= O(1/k) or a;= O(1/\/k) which is more robust.



SGD Speed of Convergence (Training Error)

* “How much data” can be related to “how fast does SGD converge”?

* Assumptions:
— ‘t’ is strongly-convex: V4 £ >;,ul'
— ‘f’ is strongly-smooth: LT & V26 (.,)
— “Variance” of gradients is bounded: mig‘ “V'F'(N)-V-F (W) ¢ 02

* Under these assumptions (and suitable ay,):
— E[f(WK)] = f* = O(1/k), where f* is training error of the global optimum.
— Implies we need k=0(1/¢) iterations to have f(wk) — f* < €.



Training Error vs. Testing Error

We don’t care about training error, we want to minimize test error.
— And our goal was to decide how many examples ‘n’ to collect.

We considered SGD “on collected data” (Approach 1):
— Choose a random training example i, (among the ‘n’ training examples).
— Perform the SGD step.

Now consider SGD “while collecting data” (Approach 2):
— Collect a new random example i, (IID from the true distribution).
— Perform the SGD step.

Approach 1 uses unbiased estimates of training error gradient.
Approach 2 uses unbiased estimates of test error gradient.



SGD Speed of Convergence (Test Error)

* Approach 1: gap with best train error after ‘k’ iterations is O(1/k).

* Approach 2: gap with best test error after ‘k’ iterations is O(1/k).
— And we are using 1 new example on each iteration.
— So with ‘n” examples, this approach has test error of O(1/n).
— And we need n=0(1/¢) training examples to get within € of best test error.

* This is referring to “best you can with this model”, not necessarily E, .

* Notice that there is no overfitting.
— Approach 2 is doing SGD on the test error.
— It’s like doing SGD with n=00, where train error = test error.



Scenarios where you can use Approach 2

1

* Here are some scenarios where you effectively have “n = c0”:
— A dataset that is so large we cannot even go through it once (Gmail).
— A function you want to minimize that you can’t measure without noise.
— You want to encourage invariance with a continuous set of transformation:

* You consider infinite number of translations/rotations instead of a fixed number.

3—3 33

— Learning from simulators with random numbers (physics/chem/bio):

0.0 kcalimol reached after 0:000ms-and Ofansitions



One-Pass SGD, Multi-Pass, and Caveats

* One-pass SGD:
— If you already have a training set, you can simulate ‘n’ steps of Approach 2.

— Go through your ‘n” examples once, doing SGD step on each example.
* Gets within O(1/n) of optimal test error.

e Under (ugly) assumptions, this “O(1/n) rate with ‘n’ examples” is unimprovable.
— Even for methods that go through the dataset more than once or that minimize train error.

* |n practice: one-pass SGD often doesn’t work well.
— Doing multiple passes almost always helps.
— Multiple passes can potentially improve constants in O(1/n) rate.
— One-pass SGD is also very sensitive to the step-size.
— Our “loss” might not be the error. For example, 0-1 error is approximated by logistic loss.
— Some recent works have been exploring assumptions where O(1/n) is improvable.

— So if you have n=00, but finite time: may be better to work with large-but-finite dataset.
* “Optimize better on less data”.



A Practical Answer to “How Much Data”?
* Whether we use one-pass SGD or minimize training error,

E[test error of model fit on training set] — (best test error in class) = O(1/n).

(under reasonable assumptions, and with parametric model)

* You rarely know the constant factor, but this gives some guidelines:

— Adding more data helps more on small datasets than on large datasets.

* Going from 10 training examples to 20, difference with best possible error gets cut in half.
— If the best possible error is 15% you might go from 20% to 17.5% (this does not mean 20% to 10%).

* Going from 110 training examples to 120, gap only goes down by ~10%.
* Going from 1M training examples to 1M+10, you won’t notice a change.

— Doubling the data size cuts the error in half:

e Going from 1M training to 2M training examples, gap gets cut in half.
 If you double the data size and your test error doesn’t improve, more data might not help.



