CPSC 440: Advanced Machine Learning Convex Optimization

Mark Schmidt

University of British Columbia

Winter 2021

Last Time: Convex Optimization

• In machine learning we often need to solve convex optimization problems,

$$\underset{w \in \mathcal{C}}{\operatorname{argmin}} \, f(w),$$

where f is a convex function and C is a convex set.

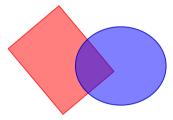
- Key property: all local optima are global optima.
- ullet We say set ${\mathcal C}$ is convex if convex combinations stay inside the set,

$$\underbrace{\theta w + (1 - \theta)v}_{\text{convex comb.}} \in \mathcal{C} \text{ for } 0 \le \theta \le 1.$$

- Important examples in ML of simple convex sets:
 - \bullet \mathbb{R}^d , non-negative orthant, hyper-planes, half-spaces, and norm-balls.

Showing a Set is Convex from Intersections

• Useful property: the intersection of convex sets is convex.



- We can prove convexity of a set by showing it's an intersection of convex sets.
- Example: "linear programs" have constraints of the form $Aw \leq b$.
 - Each constraints $a_i^{\top} b_i$ defines a half-space.
 - Half-spaces are convex sets.
 - So the set of w satisfying $Aw \leq b$ is the intersection of convex sets.

Showing a Set is Convex from a Convex Function

ullet The set ${\cal C}$ is often the intersection of a set of inequalities of the form

$$\{w \mid g(w) \le \tau\},\$$

for some function g and some number τ .

- Sets defined like this are convex if g is a convex function (see bonus).
 - This follows from the definition of a convex function (next topic).
- Example:
 - The set of w where $w^2 \le 10$ forms a convex set by convexity of w^2 .
 - Specifically, the set is $[-\sqrt{10}, \sqrt{10}]$.

Digression: k-way Convex Combinations and Differentiability Classes

• A convex combination of 2 vectors w_1 and w_2 is given by

$$\theta w_1 + (1 - \theta)w_2$$
, where $0 \le \theta \le 1$.

ullet A convex combintion of k vectors $\{w_1, w_2, \dots, w_k\}$ is given by

$$\sum_{c=1}^k \theta_c w_c \quad \text{where} \quad \sum_{c=1}^k \theta_c = 1, \ \theta_c \ge 0.$$

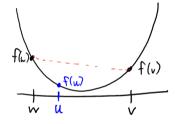
- We'll define convex functions for different differentiability classes:
 - C^0 is the set of continuous functions.
 - ullet C¹ is the set of continuous functions with continuous first-derivatives.
 - \bullet C^2 is the set of continuous functions with continuous first- and second-derivatives.

Definitions of Convex Functions

- Four equivalent definitions of convex functions (depending on differentiability):
 - lacksquare A C^0 function is convex if the area above the function is a convex set.
 - $oldsymbol{Q}$ A C^0 function is convex if the function is always below its "chords" between points.
 - **3** A C^1 function is convex if the function is always above its tangent planes.
 - $oldsymbol{0}$ A C^2 function is convex if it is curved upwards everwhere.
 - If the function is univariate this means $f''(w) \ge 0$ for all w.
- Univariate examples where you can show $f''(w) \ge 0$ for all w:
 - Quadratic $w^2 + bw + c$ with $a \ge 0$.
 - Linear: aw + b.
 - Constant: b.
 - Exponential: $\exp(aw)$.
 - Negative logarithm: $-\log(w)$.
 - Negative entropy: $w \log w$, for w > 0.
 - Logistic loss: $\log(1 + \exp(-w))$.

C^0 Definitions of Convex Functions

ullet A function f is convex iff the area above the function is a convex set.



• Equivalently, the function is always below its "chords" between points.

$$f(\underbrace{\theta w + (1-\theta)v}) \leq \underbrace{\theta f(w) + (1-\theta)f(v)}_{\text{``chord''}}, \quad \text{for all } w \in \mathcal{C}, v \in \mathcal{C}, 0 \leq \theta \leq 1.$$

- Implies all local minima of convex functions are global minima.
 - Indeed, $\nabla f(w) = 0$ means w is a global minima.

Convexity of Norms

- The C^0 definition can be used to show that all norms are convex:
 - If $f(w) = ||w||_p$ for a generic norm, then we have

$$\begin{split} f(\theta w + (1-\theta)v) &= \|\theta w + (1-\theta)v\|_p \\ &\leq \|\theta w\|_p + \|(1-\theta)v\|_p & \text{(triangle inequality)} \\ &= |\theta| \cdot \|w\|_p + |1-\theta| \cdot \|v\|_p & \text{(absolute homogeneity)} \\ &= \theta \|w\|_p + (1-\theta)\|v\|_p & \text{($0 \leq \theta \leq 1$)} \\ &= \theta f(w) + (1-\theta)f(v), & \text{(definition of f)} \end{split}$$

so f is always below the "chord".

- See course webpage notes on norms if the above steps aren't familiar.
- Also note that all squared norms are convex.
 - These are all convex: $|w|, ||w||, ||w||_1, ||w||^2, ||w_1||^2, ||w||_{\infty},...$

Operations that Preserve Convexity

- There are a few operations that preserve convexity.
 - Can show convexity by writing as sequence of convexity-preserving operations.
- If f and g are convex functions, the following preserve convexity:
 - Non-negative scaling: $h(w) = \alpha f(w)$, (for $\alpha \ge 0$)
 - Sum: h(w) = f(w) + g(w).
 - Maximum: $h(w) = \max\{f(w), g(w)\}.$
 - Composition with linear: h(w) = f(Aw),

where A is a matrix (or another "linear operator").

- Note that multiplication and composition do not preserve convexity in general.
 - f(w)g(w) is not a convex function in general, even if f and g are convex.
 - f(g(w)) is not a convex function in general, even if f and g are convex.

Convexity of SVMs

- If f and g are convex functions, the following preserve convexity:
 - Non-negative scaling.
 - 2 Sum.
 - Maximum.
 - Composition with linear.
- We can use these to quickly show that SVMs are convex,

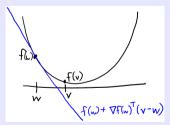
$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y^{i} w^{\top} x^{i}\} + \frac{\lambda}{2} ||w||^{2}.$$

- Second term is squared norm multiplied by non-negative $\frac{\lambda}{2}$.
 - Squared norms are convex, and non-negative scaling perserves convexity.
- First term is sum(max(linear)). Linear is convex and sum/max preserve convexity.
- Since both terms are convex, and sums preserve convexity, SVMs are convex.

C^1 Definition of Convex Functions

- Convex functions must be continuous, and have a domain that is a convex set.
 - But they may be non-differentiable.
- A differentiable (C^1) function f is convex iff f is always above tangent planes.

$$f(v) \ge f(w) + \nabla f(w)^{\top} (v - w), \quad \forall w \in \mathcal{C}, v \in \mathcal{C}.$$



• Notice that $\nabla f(w) = 0$ implies $f(v) \ge f(w)$ for all v, so w is a global minimizer.

C^2 Definition of Convex Functions

- The multivariate C^2 definition is based on the Hessian matrix, $\nabla^2 f(w)$.
 - The matrix of second partial derivatives.

$$\nabla^2 f(w) = \begin{bmatrix} \frac{\partial}{\partial w_1 \partial w_1} f(w) & \frac{\partial}{\partial w_1 \partial w_2} f(w) & \cdots & \frac{\partial}{\partial w_1 \partial w_d} f(w) \\ \frac{\partial}{\partial w_2 \partial w_1} f(w) & \frac{\partial}{\partial w_2 \partial w_2} f(w) & \cdots & \frac{\partial}{\partial w_2 \partial w_d} f(w) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial w_d \partial w_1} f(w) & \frac{\partial}{\partial w_d \partial w_2} f(w) & \cdots & \frac{\partial}{\partial w_d \partial w_d} f(w) \end{bmatrix}$$

ullet In the case of least squares, we can write the Hessian for any w as

$$\nabla^2 f(w) = X^{\top} X,$$

see course webpage notes on the gradients/Hessians of linear/quadratic functions.

Convexity of Twice-Differentiable Functions

• A C^2 function is convex iff:

$$\nabla^2 f(w) \succeq 0$$
,

for all w in the domain ("curved upwards" in every direction).

- This notation $A \succeq 0$ means that A is positive semidefinite.
- Two equivalent definitions of a positive semidefinite matrix A:
 - \bigcirc All eigenvalues of A are non-negative.
 - 2 The quadratic $v^{\top}Av$ is non-negative for all vectors v.

Example: Convexity and Least Squares

• We can use twice-differentiable condition to show convexity of least squares,

$$f(w) = \frac{1}{2} ||Xw - y||^2.$$

ullet The Hessian of this objective for any w is given by

$$\nabla^2 f(w) = X^{\top} X.$$

- So we want to show that $X^{\top}X \succeq 0$ or equivalently that $v^{\top}X^{\top}Xv \geq 0$ for all v.
- We can show this by non-negativity of norms,

$$v^{\top} X^{\top} X v = \underbrace{(v^{\top} X^{\top})}_{(Xv)^{\top}} X w = \underbrace{(Xv)^{\top} (Xv)}_{u^{\top} u} = \underbrace{\|Xv\|^2}_{\|u\|^2} \ge 0,$$

so least squares is convex (and solving $\nabla f(w) = 0$ gives global minimum).

Showing that Function is Convex

- Most common approaches for showing that a function is convex:
 - lacksquare Show that f is constructed from operations that preserve convexity.
 - Non-negative scaling, sum, max, composition with linear.
 - ② Show that $\nabla^2 f(w)$ is positive semi-definite for all w (for C^2 functions),

$$abla^2 f(w) \succeq 0$$
 (zero matrix).

 \odot Show that f is below chord for any convex combination of points.

$$f(\theta w + (1 - \theta)v \le \theta f(w) + (1 - \theta)f(v).$$

- Post-lecture slides: convexity of logistic regression from C^2 definition.
 - And how to write logistic regression gradient and Hessian in matrix notation.

Outline

- Convex Sets and Functions
- 2 Strict-Convexity and Strong-Convexity

Positive Semi-Definite, Positive Definite, Generalized Inequality

- The notation $A \succeq 0$ indicates that A is positive semi-definite.
 - ullet The eigenvalues of A are all non-negative.
 - $v^{\top}Av \geq 0$ for all vectors v.
- The notation A > 0 indicates that A is positive definite.
 - ullet The eigenvalues of A are all positive.
 - $v^{\top}Av > 0$ for all vectors $v \neq 0$.
 - This implies that A is invertible (bonus).
- The notation $A \succeq B$ indicates that A B is positive semi-definite.
 - ullet The eigenvalues of A-B are all non-negative.
 - $v^{\top}Av \geq v^{\top}Bv$ for all vectors v.

MEMORIZE!

More Examples of Convex Functions

- Some convex sets based on these definitions that we'll use (for covariances):
 - The set of positive semidefinite matrices, $\{W \mid W \succeq 0\}$.
 - The set of positive definite matrices, $\{W \mid W \succ 0\}$.
- Some more exotic examples of convex functions we'll use in this course:
 - $f(W) = -\log \det W$ for $W \succ 0$ (negative log-determinant).
 - $f(W, v) = v^{\top} W^{-1} v$ for W > 0.
 - $f(w) = \log(\sum_{j=1}^{d} \exp(w_j))$ (log-sum-exp function).

Positive Semi-Definite, Positive Definite, Generalized Inequality

- Note that not every matrix can be compared.
- With these matrices:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

neither $A \succeq B$ nor $B \succeq A$ (the "generalized inequality" defines a "partial order").

- It's often useful to compare to the identity matrix I, which has eigenvalues 1.
 - ullet So a matrix of the form μI for a scalar μ has all eigenvalues equal to $\mu.$
- Writing $LI \succeq A \succeq \mu I$ means "eigenvalues of A are between μ and L".

Convexity, Strict Convexity, and Strong Convexity

• We say that a C^2 function is convex if for all w,

$$\nabla^2 f(w) \succeq 0,$$

and this implies any stationary point ($\nabla f(w) = 0$) is a global minimum.

• We say that a C^2 function is strictly convex if for all w,

$$\nabla^2 f(w) \succ 0$$
,

and this implies there is at most one stationary point (and $\nabla^2 f(w)$ is invertible).

• We say that a C^2 function is strongly convex if for all w.

$$\nabla^2 f(w) \succeq \mu I$$
, for some $\mu > 0$,

and this implies there exists a minimum (if domain C is closed).

• Strong convxity affects speed of gradient descent, and how much data you need.

Convexity, Strict Convexity, and Strong Convexity

- These definitions simplify for univariate functions:
 - Convex: $f''(w) \ge 0$.
 - Strictly convex: f''(w) > 0.
 - Strongly convex: $f''(w) \ge \mu$ for $\mu > 0$.
- Examples:
 - Convex: f(w) = w.
 - Since f''(w) = 0.
 - Strictly convex: $f(w) = \exp(w)$.
 - Since $f''(w) = \exp(w) > 0$.
 - Strongly convex: $f(w) = \frac{1}{2}w^2$.
 - Since f''(w) = 1 so it is strongly convex with $\mu = 1$.

Strict Convexity of L2-Regularized Least Squares

• In L2-regularized least squares, the Hessian matrix is

$$\nabla^2 f(w) = (X^\top X + \lambda I).$$

• We can show that this is positive-definite, so the problem is strictly convex,

$$v^{\top} \nabla^2 f(w) v = v^{\top} (X^{\top} X + \lambda I) v = \underbrace{\|Xv\|^2}_{\geq 0} + \underbrace{\lambda \|v\|^2}_{> 0} > 0,$$

where we used that $\lambda > 0$ and ||v|| > 0 for $v \neq 0$.

- This implies that the matrix $(X^TX + \lambda I)$ is invertible, and solution is unique.
 - Similar argument shows it's strongly-convex with $\mu = \lambda$.
 - Value μ can be larger if columns of X are independent (no collinearity).
 - In this case, $||Xv|| \neq 0$ for $v \neq 0$ so even least squares is strongly-convex.

Strong-Convexity Discussion

- We can also define strict and strong convexity for C^1 and C^0 functions (bonus).
 - And note that (strong convexity) implies (strict convexity) implies (convexity).
- ullet For example, we say that a C^0 function f is strongly convex if the function

$$f(w) - \frac{\mu}{2} ||w||^2$$

is a convex function for some $\mu > 0$.

- "If you 'un-regularize' by μ then it's still convex."
- If we have a convex loss f, adding L2-regularization makes it strongly-convex,

$$f(w) + \frac{\lambda}{2} ||w||^2,$$

with μ being at least λ .

• So L2-regularization guarantees a solution exists, and that it is unique.

Summary

- Showing functions and sets are convex.
 - Either from definitions or convexity-preserving operations.
- \bullet C^2 definition of convex functions that the Hessian is positive semidefinite.

$$\nabla^2 f(w) \succeq 0.$$

- Strict and strong convexity guarantee uniqueness and existense of solutions.
 - Adding L2-regularization to a convex function gives you these.
- Post-lecture slides: matrix notation and convexity of logistic regerssion.
 - This will help with your assignments.
- How much data do we need?

Example: Convexity of Logistic Regression

Consider the binary logistic regression model,

$$f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^{i}w^{T}x^{i})).$$

With some tedious manipulations, gradient in matrix notation is

$$\nabla f(w) = X^T r.$$

where the vector r has elements $r_i = -y^i h(-y^i w^T x^i)$.

- And h is the sigmoid function, $h(\alpha) = 1/1 + \exp(-\alpha)$.
- We know the gradient has this form from the multivariate chain rule.
 - Functions for the form f(Xw) always have $\nabla f(w) = X^T r$ (see bonus slide).

Example: Convexity of Logistic Regression

• With some more tedious manipulations we get the Hessian in matrix notation as

$$\nabla^2 f(w) = X^T D X.$$

where D is a diagonal matrix with $d_{ii} = h(y_i w^T x^i) h(-y^i w^T x^i)$.

- The f(Xw) structure leads to a X^TDX Hessian structure.
- ullet For other problems D may not be diagonal.
- ullet Since the sigmoid function h is non-negative, we can compute $D^{rac{1}{2}}$, and

$$v^T X^T D X v = v^T X^T D^{\frac{1}{2}} D^{\frac{1}{2}} X v = (D^{\frac{1}{2}} X v)^T (D^{\frac{1}{2}} X v) = \|X D^{\frac{1}{2}} v\|^2 \ge 0,$$

so X^TDX is positive semidefinite and logistic regression is convex.

Showing that Hyper-Planes are Convex

- Hyper-plane: $C = \{w \mid a^{\top}w = b\}.$
 - If $w \in \mathcal{C}$ and $v \in \mathcal{C}$, then we have $a^{\top}w = b$ and $a^{\top}v = b$.
 - To show $\mathcal C$ is convex, we can show that $a^\top u = b$ for u between w and v.

$$a^{\top}u = a^{\top}(\theta w + (1 - \theta)v)$$
$$= \theta(a^{\top}w) + (1 - \theta)(a^{\top}v)$$
$$= \theta b + (1 - \theta)b = b.$$

• Alternately, if you knew that linear functions $a^\top w$ are convex, then $\mathcal C$ is the intersection of $\{w \mid a^\top w \leq b\}$ and $\{w \mid a^\top w \geq b\}$.

Convex Sets from Functions

For sets of the form

$$\mathcal{C} = \{ w \mid g(w) \le \tau \},\$$

If q is a convex function, then C is a convex set:

$$g(\underbrace{\theta w + (1 - \theta)v}_{\text{convex comb}}) \leq \underbrace{\theta g(w) + (1 - \theta)g(v)}_{\text{by convexity}} \leq \underbrace{\theta \tau + (1 - \theta)\tau}_{\text{definition of }g} = \tau$$

which means convex combinations are in the set.

Multivariate Chain Rule

• If $g: \mathbb{R}^d \mapsto \mathbb{R}^n$ and $f: \mathbb{R}^n \mapsto \mathbb{R}$, then h(x) = f(g(x)) has gradient

$$\nabla h(x) = \nabla g(x)^T \nabla f(g(x)),$$

where $\nabla g(x)$ is the Jacobian (since g is multi-output).

• If g is an affine map $x \mapsto Ax + b$ so that h(x) = f(Ax + b) then we obtain

$$\nabla h(x) = A^T \nabla f(Ax + b).$$

Further, for the Hessian we have

$$\nabla^2 h(x) = A^T \nabla^2 f(Ax + b) A.$$

Positive-Definite implies Invertibility

- If $A \succ 0$, then all the eigenvalues of A are positive.
- If each eigenvalue is positive, the product of the eigenvalues is positive.
- The product of the eigenvalues is equal to the determinant.
- Thus, the determinant is positive.
- The determinant not being 0 implies the matrix is invertible.

Strong Convexity of L2-Regularized Least Squares

• In L2-regularized least squares, the Hessian matrix is

$$\nabla^2 f(w) = (X^\top X + \lambda I).$$

$$v^\top \nabla^2 f(w) v = v^\top (X \top X + \lambda I) v = \underbrace{\|Xv\|^2}_{} + v^\top (\lambda I) v \ge v^\top (\lambda I) v,$$

so we've shown that $\nabla^2 f(w) \succeq \lambda I$, which implies strong-convexity with $\mu = \lambda$.

- This implies that a solution exists, and that the solution is unique.
- Note that we have strong convexity with $\mu > \lambda$ if $X^{\top}X$ is positive definite.
 - Which happens iff the features are independent (not collinear).

Strictly-Convex Functions

• A function is strictly-convex if the convexity definitions hold strictly:

$$f(\theta w + (1 - \theta)v) < \theta f(w) + (1 - \theta)f(v), \quad 0 < \theta < 1$$

$$f(v) > f(w) + \nabla f(w)^{\top}(v - w)$$

$$\nabla^{2} f(w) > 0$$
(C¹)
(C²)

- Function is always strictly below any chord, strictly above any tangent, and curved upwards in every direction.
- Strictly-convex function have at most one global minimum:
 - w and v can't both be global minima if $w \neq v$: it would imply convex combinations u of w and v would have f(u) below the global minimum.

A C^0 Definition of Strict and Strong Convexity

- There are many equivalent definitions of the convexities, here is one set for C^0 functions:
 - Convex (usual definition):

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v).$$

• Strictly convex (strict version, exclusindg $\theta = 0$ or $\theta = 1$):

$$f(\theta w + (1 - \theta)v) < \theta f(w) + (1 - \theta)f(v).$$

• Strong convexity (need an "extra" bit of decrease as you move away from endpoints):

$$f(\theta w + (1 - \theta)v) \le \theta f(w) + (1 - \theta)f(v) - \frac{\theta(1 - \theta)\mu}{2} ||w - v||^2.$$