Last Time: Convex Optimization

- In machine learning we often need to solve *convex optimization* problems,

 \[
 \arg\min_{w \in C} f(w),
 \]

 where \(f \) is a *convex function* and \(C \) is a *convex set*.

 - Key property: all local optima are global optima.

- We say set \(C \) is convex if *convex combinations stay inside the set*,

 \[
 \theta w + (1 - \theta)v \in C \text{ for } 0 \leq \theta \leq 1.
 \]

- Important examples in ML of simple convex sets:
 - \(\mathbb{R}^d \), non-negative orthant, hyper-planes, half-spaces, and norm-balls.
Showing a Set is Convex from Intersections

- Useful property: the intersection of convex sets is convex.

- We can prove convexity of a set by showing it’s an intersection of convex sets.

- Example: “linear programs” have constraints of the form $Aw \leq b$.
 - Each constraint $a_i^T b_i$ defines a half-space.
 - Half-spaces are convex sets.
 - So the set of w satisfying $Aw \leq b$ is the intersection of convex sets.
Showing a Set is Convex from a Convex Function

- The set \mathcal{C} is often the intersection of a set of inequalities of the form

$$\{w \mid g(w) \leq \tau\},$$

for some function g and some number τ.

- Sets defined like this are **convex if g is a convex function** (see bonus).
 - This follows from the definition of a convex function (next topic).

- Example:
 - The set of w where $w^2 \leq 10$ forms a convex set by convexity of w^2.
 - Specifically, the set is $[-\sqrt{10}, \sqrt{10}]$.
Digression: \(k \)-way Convex Combinations and Differentiability Classes

- A convex combination of 2 vectors \(w_1 \) and \(w_2 \) is given by
 \[
 \theta w_1 + (1 - \theta)w_2, \quad \text{where} \quad 0 \leq \theta \leq 1.
 \]

- A convex combination of \(k \) vectors \(\{w_1, w_2, \ldots, w_k\} \) is given by
 \[
 \sum_{c=1}^{k} \theta_c w_c \quad \text{where} \quad \sum_{c=1}^{k} \theta_c = 1, \quad \theta_c \geq 0.
 \]

- We’ll define convex functions for different differentiability classes:
 - \(C^0 \) is the set of continuous functions.
 - \(C^1 \) is the set of continuous functions with continuous first-derivatives.
 - \(C^2 \) is the set of continuous functions with continuous first- and second-derivatives.
Definitions of Convex Functions

- Four equivalent definitions of convex functions (depending on differentiability):
 1. A C^0 function is convex if the area above the function is a convex set.
 2. A C^0 function is convex if the function is always below its “chords” between points.
 3. A C^1 function is convex if the function is always above its tangent planes.
 4. A C^2 function is convex if it is curved upwards everwhere.

 If the function is univariate this means $f''(w) \geq 0$ for all w.

- Univariate examples where you can show $f''(w) \geq 0$ for all w:
 - Quadratic $w^2 + bw + c$ with $a \geq 0$.
 - Linear: $aw + b$.
 - Constant: b.
 - Exponential: $\exp(aw)$.
 - Negative logarithm: $-\log(w)$.
 - Negative entropy: $w \log w$, for $w > 0$.
 - Logistic loss: $\log(1 + \exp(-w))$.
\textbf{C^0 Definitions of Convex Functions}

- A function f is convex iff the area above the function is a convex set.

- Equivalently, the function is always below its “chords” between points.

\[f(\theta w + (1 - \theta)v) \leq \theta f(w) + (1 - \theta)f(v), \quad \text{for all } w, v \in C, 0 \leq \theta \leq 1. \]

- Implies all local minima of convex functions are global minima.
 - Indeed, $\nabla f(w) = 0$ means w is a global minima.
Convexity of Norms

- The C^0 definition can be used to show that all norms are convex:
 - If $f(w) = \|w\|_p$ for a generic norm, then we have

 $$
 f(\theta w + (1 - \theta)v) = \|\theta w + (1 - \theta)v\|_p
 \leq \|\theta w\|_p + \|(1 - \theta)v\|_p \quad \text{(triangle inequality)}
 = |\theta| \cdot \|w\|_p + |1 - \theta| \cdot \|v\|_p \quad \text{(absolute homogeneity)}
 = \theta \|w\|_p + (1 - \theta)\|v\|_p \quad (0 \leq \theta \leq 1)
 = \theta f(w) + (1 - \theta)f(v), \quad \text{(definition of } f)$$

 so f is always below the “chord”.

- See course webpage notes on norms if the above steps aren’t familiar.

- Also note that all squared norms are convex.
 - These are all convex: $|w|, \|w\|, \|w\|_1, \|w\|^2, \|w_1\|^2, \|w\|_\infty, \ldots$
Operations that Preserve Convexity

- There are a few operations that preserve convexity.
 - Can show convexity by writing as sequence of convexity-preserving operations.

- If \(f \) and \(g \) are convex functions, the following preserve convexity:
 1. Non-negative scaling: \(h(w) = \alpha f(w) \), (for \(\alpha \geq 0 \))
 2. Sum: \(h(w) = f(w) + g(w) \).
 3. Maximum: \(h(w) = \max\{f(w), g(w)\} \).
 4. Composition with linear: \(h(w) = f(Aw) \),
 where \(A \) is a matrix (or another “linear operator”).

- Note that multiplication and composition do not preserve convexity in general.
 - \(f(w)g(w) \) is not a convex function in general, even if \(f \) and \(g \) are convex.
 - \(f(g(w)) \) is not a convex function in general, even if \(f \) and \(g \) are convex.
Convex Sets and Functions

Convexity of SVMs

- If f and g are convex functions, the following preserve convexity:
 1. Non-negative scaling.
 2. Sum.
 4. Composition with linear.

- We can use these to quickly show that SVMs are convex,

$$f(w) = \sum_{i=1}^{n} \max\{0, 1 - y^i w^\top x^i\} + \frac{\lambda}{2} \|w\|^2.$$

- Second term is squared norm multiplied by non-negative $\frac{\lambda}{2}$.
 - Squared norms are convex, and non-negative scaling preserves convexity.
- First term is sum(max(linear)). Linear is convex and sum/max preserve convexity.
- Since both terms are convex, and sums preserve convexity, SVMs are convex.
C^1 Definition of Convex Functions

- Convex functions must be **continuous**, and have a **domain** that is a convex set.
 - But they may be **non-differentiable**.

- A **differentiable** (C^1) function f is **convex** iff f is always above tangent planes.

$\quad \quad f(v) \geq f(w) + \nabla f(w)^\top (v - w), \quad \forall w \in \mathcal{C}, v \in \mathcal{C}.$

- Notice that $\nabla f(w) = 0$ implies $f(v) \geq f(w)$ for all v, so w is a global minimizer.
\(C^2 \) Definition of Convex Functions

- The multivariate \(C^2 \) definition is based on the Hessian matrix, \(\nabla^2 f(w) \).
 - The matrix of second partial derivatives,

 \[
 \nabla^2 f(w) = \begin{bmatrix}
 \frac{\partial}{\partial w_1} \frac{\partial}{\partial w_1} f(w) & \frac{\partial}{\partial w_1} \frac{\partial}{\partial w_2} f(w) & \cdots & \frac{\partial}{\partial w_1} \frac{\partial}{\partial w_d} f(w) \\
 \frac{\partial}{\partial w_2} \frac{\partial}{\partial w_1} f(w) & \frac{\partial}{\partial w_2} \frac{\partial}{\partial w_2} f(w) & \cdots & \frac{\partial}{\partial w_2} \frac{\partial}{\partial w_d} f(w) \\
 \vdots & \vdots & \ddots & \vdots \\
 \frac{\partial}{\partial w_d} \frac{\partial}{\partial w_1} f(w) & \frac{\partial}{\partial w_d} \frac{\partial}{\partial w_2} f(w) & \cdots & \frac{\partial}{\partial w_d} \frac{\partial}{\partial w_d} f(w)
 \end{bmatrix}
 \]

- In the case of least squares, we can write the Hessian for any \(w \) as

 \[
 \nabla^2 f(w) = X^\top X,
 \]

 see course webpage notes on the gradients/Hessians of linear/quadratic functions.
Convexity of Twice-Differentiable Functions

- A C^2 function is convex iff:
 \[\nabla^2 f(w) \succeq 0, \]
 for all w in the domain ("curved upwards" in every direction).

- This notation $A \succeq 0$ means that A is positive semidefinite.

- Two equivalent definitions of a positive semidefinite matrix A:
 1. All eigenvalues of A are non-negative.
 2. The quadratic $v^\top Av$ is non-negative for all vectors v.
Example: Convexity and Least Squares

- We can use twice-differentiable condition to show convexity of least squares,

\[f(w) = \frac{1}{2} \|Xw - y\|^2. \]

- The Hessian of this objective for any \(w \) is given by

\[\nabla^2 f(w) = X^\top X. \]

- So we want to show that \(X^\top X \succeq 0 \) or equivalently that \(v^\top X^\top X v \geq 0 \) for all \(v \).

- We can show this by non-negativity of norms,

\[v^\top X^\top X v = (v^\top X^\top) X w = (Xv)^\top (Xv) = \|Xv\|^2 \geq 0, \]

so least squares is convex (and solving \(\nabla f(w) = 0 \) gives global minimum).
Showing that Function is Convex

Most common approaches for showing that a function is convex:

1. Show that \(f \) is constructed from operations that preserve convexity.
 - Non-negative scaling, sum, max, composition with linear.

2. Show that \(\nabla^2 f(w) \) is positive semi-definite for all \(w \) (for \(C^2 \) functions),
 \[
 \nabla^2 f(w) \succeq 0 \quad \text{(zero matrix)}.
 \]

3. Show that \(f \) is below chord for any convex combination of points.
 \[
 f(\theta w + (1 - \theta)v) \leq \theta f(w) + (1 - \theta)f(v).
 \]

Post-lecture slides: convexity of logistic regression from \(C^2 \) definition.
 - And how to write logistic regression gradient and Hessian in matrix notation.
Outline

1. Convex Sets and Functions
2. Strict-Convexity and Strong-Convexity
Positive Semi-Definite, Positive Definite, Generalized Inequality

- The notation $A \succeq 0$ indicates that A is positive semi-definite.
 - The eigenvalues of A are all non-negative.
 - $v^\top A v \geq 0$ for all vectors v.

- The notation $A \succ 0$ indicates that A is positive definite.
 - The eigenvalues of A are all positive.
 - $v^\top A v > 0$ for all vectors $v \neq 0$.
 - This implies that A is invertible (bonus).

- The notation $A \succeq B$ indicates that $A - B$ is positive semi-definite.
 - The eigenvalues of $A - B$ are all non-negative.
 - $v^\top A v \geq v^\top B v$ for all vectors v.

MEMORIZE!
More Examples of Convex Functions

- Some convex sets based on these definitions that we’ll use (for covariances):
 - The set of positive semidefinite matrices, $\{W \mid W \succeq 0\}$.
 - The set of positive definite matrices, $\{W \mid W \succ 0\}$.

- Some more exotic examples of convex functions we’ll use in this course:
 - $f(W) = -\log \det W$ for $W \succ 0$ (negative log-determinant).
 - $f(W, v) = v^\top W^{-1}v$ for $W \succ 0$.
 - $f(w) = \log(\sum_{j=1}^{d} \exp(w_j))$ (log-sum-exp function).
Positive Semi-Definite, Positive Definite, Generalized Inequality

- Note that not every matrix can be compared.
- With these matrices:

\[
A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},
\]

neither \(A \succeq B \) nor \(B \succeq A \) (the “generalized inequality” defines a “partial order”).

- It’s often useful to compare to the identity matrix \(I \), which has eigenvalues 1.
 - So a matrix of the form \(\mu I \) for a scalar \(\mu \) has all eigenvalues equal to \(\mu \).

- Writing \(LI \succeq A \succeq \mu I \) means “eigenvalues of \(A \) are between \(\mu \) and \(L \)”.

- Note that not every matrix can be compared.
Convexity, Strict Convexity, and Strong Convexity

- We say that a C^2 function is **convex** if for all w,
 \[\nabla^2 f(w) \succeq 0, \]
 and this implies any stationary point ($\nabla f(w) = 0$) is a global minimum.

- We say that a C^2 function is **strictly convex** if for all w,
 \[\nabla^2 f(w) \succ 0, \]
 and this implies there is at most one stationary point (and $\nabla^2 f(w)$ is invertible).

- We say that a C^2 function is **strongly convex** if for all w.
 \[\nabla^2 f(w) \succeq \mu I, \quad \text{for some} \ \mu > 0, \]
 and this implies there exists a minimum (if domain \mathcal{C} is closed).

 Strong convexity affects speed of gradient descent, and how much data you need.
Convexity, Strict Convexity, and Strong Convexity

These definitions simplify for univariate functions:

- Convex: $f''(w) \geq 0$.
- Strictly convex: $f''(w) > 0$.
- Strongly convex: $f''(w) \geq \mu$ for $\mu > 0$.

Examples:

- Convex: $f(w) = w$.
 - Since $f''(w) = 0$.
- Strictly convex: $f(w) = \exp(w)$.
 - Since $f''(w) = \exp(w) > 0$.
- Strongly convex: $f(w) = \frac{1}{2}w^2$.
 - Since $f''(w) = 1$ so it is strongly convex with $\mu = 1$.
Strict Convexity of L2-Regularized Least Squares

- In L2-regularized least squares, the Hessian matrix is
 \[\nabla^2 f(w) = (X^\top X + \lambda I). \]

- We can show that this is positive-definite, so the problem is strictly convex,
 \[v^\top \nabla^2 f(w)v = v^\top (X^\top X + \lambda I)v = \|Xv\|^2 + \lambda\|v\|^2 \geq 0, \]
 \[> 0 \]
 where we used that \(\lambda > 0 \) and \(\|v\| > 0 \) for \(v \neq 0 \).

- This implies that the matrix \((X^\top X + \lambda I)\) is invertible, and solution is unique.
 - Similar argument shows it’s strongly-convex with \(\mu = \lambda \).
 - Value \(\mu \) can be larger if columns of \(X \) are independent (no collinearity).
 - In this case, \(\|Xv\| \neq 0 \) for \(v \neq 0 \) so even least squares is strongly-convex.
Strong-Convexity Discussion

- We can also define strict and strong convexity for C^1 and C^0 functions (bonus).
 - And note that (strong convexity) implies (strict convexity) implies (convexity).

- For example, we say that a C^0 function f is strongly convex if the function
 \[f(w) - \frac{\mu}{2} \|w\|^2, \]
 is a convex function for some $\mu > 0$.
 - “If you ‘un-regularize’ by μ then it’s still convex.”

- If we have a convex loss f, adding L2-regularization makes it strongly-convex,
 \[f(w) + \frac{\lambda}{2} \|w\|^2, \]
 with μ being at least λ.
 - So L2-regularization guarantees a solution exists, and that it is unique.
Summary

- **Showing functions and sets are convex.**
 - Either from definitions or convexity-preserving operations.
- **C^2 definition of convex functions** that the Hessian is positive semidefinite.
 \[\nabla^2 f(w) \succeq 0. \]
- **Strict and strong convexity** guarantee uniqueness and existence of solutions.
 - Adding L2-regularization to a convex function gives you these.
- Post-lecture slides: matrix notation and convexity of logistic regression.
 - This will help with your assignments.
- How much data do we need?
Example: Convexity of Logistic Regression

- Consider the binary logistic regression model,
 \[f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y_i w^T x^i)). \]

- With some tedious manipulations, gradient in matrix notation is
 \[\nabla f(w) = X^T r. \]

 where the vector \(r \) has elements \(r_i = -y_i h(-y_i w^T x^i). \)
 - And \(h \) is the sigmoid function, \(h(\alpha) = 1/(1 + \exp(-\alpha)). \)

- We know the gradient has this form from the multivariate chain rule.
 - Functions for the form \(f(Xw) \) always have \(\nabla f(w) = X^T r \) (see bonus slide).
Example: Convexity of Logistic Regression

- With some more tedious manipulations we get the Hessian in matrix notation as
 \[\nabla^2 f(w) = X^T D X. \]

 where \(D \) is a diagonal matrix with \(d_{ii} = h(y_i w^T x_i) h(-y_i w^T x_i) \).
 - The \(f(Xw) \) structure leads to a \(X^T D X \) Hessian structure.
 - For other problems \(D \) may not be diagonal.

- Since the sigmoid function \(h \) is non-negative, we can compute \(D^{\frac{1}{2}} \), and
 \[v^T X^T D X v = v^T X^T D^{\frac{1}{2}} D^{\frac{1}{2}} X v = (D^{\frac{1}{2}} X v)^T (D^{\frac{1}{2}} X v) = \|X D^{\frac{1}{2}} v\|^2 \geq 0, \]
 so \(X^T D X \) is positive semidefinite and logistic regression is convex.
Showing that Hyper-Planes are Convex

- Hyper-plane: \(C = \{ w \mid a^\top w = b \} \).
 - If \(w \in C \) and \(v \in C \), then we have \(a^\top w = b \) and \(a^\top v = b \).
 - To show \(C \) is convex, we can show that \(a^\top u = b \) for \(u \) between \(w \) and \(v \).

\[
\begin{align*}
a^\top u &= a^\top (\theta w + (1 - \theta)v) \\
&= \theta (a^\top w) + (1 - \theta) (a^\top v) \\
&= \theta b + (1 - \theta)b = b.
\end{align*}
\]

- Alternately, if you knew that linear functions \(a^\top w \) are convex, then \(C \) is the intersection of \(\{ w \mid a^\top w \leq b \} \) and \(\{ w \mid a^\top w \geq b \} \).
For sets of the form

\[C = \{ w \mid g(w) \leq \tau \}, \]

If \(g \) is a convex function, then \(C \) is a convex set:

\[
g(\theta w + (1 - \theta)v) \leq \theta g(w) + (1 - \theta)g(v) \leq \theta \tau + (1 - \theta)\tau = \tau,
\]

which means convex combinations are in the set.
Multivariate Chain Rule

- If \(g : \mathbb{R}^d \mapsto \mathbb{R}^n \) and \(f : \mathbb{R}^n \mapsto \mathbb{R} \), then \(h(x) = f(g(x)) \) has gradient
 \[
 \nabla h(x) = \nabla g(x)^T \nabla f(g(x)),
 \]
 where \(\nabla g(x) \) is the Jacobian (since \(g \) is multi-output).

- If \(g \) is an affine map \(x \mapsto Ax + b \) so that \(h(x) = f(Ax + b) \) then we obtain
 \[
 \nabla h(x) = A^T \nabla f(Ax + b).
 \]

- Further, for the Hessian we have
 \[
 \nabla^2 h(x) = A^T \nabla^2 f(Ax + b) A.
 \]
Positive-Definite implies Invertibility

- If $A \succ 0$, then all the eigenvalues of A are positive.
- If each eigenvalue is positive, the product of the eigenvalues is positive.
- The product of the eigenvalues is equal to the determinant.
- Thus, the determinant is positive.
- The determinant not being 0 implies the matrix is invertible.
In L2-regularized least squares, the Hessian matrix is

$$\nabla^2 f(w) = (X^\top X + \lambda I).$$

$$v^\top \nabla^2 f(w)v = v^\top (X^\top X + \lambda I)v = \|Xv\|^2 + v^\top (\lambda I)v \geq v^\top (\lambda I)v,$$

so we’ve shown that $\nabla^2 f(w) \succeq \lambda I$, which implies strong-convexity with $\mu = \lambda$.

This implies that a solution exists, and that the solution is unique.

Note that we have strong convexity with $\mu > \lambda$ if $X^\top X$ is positive definite.

Which happens iff the features are independent (not collinear).
A function is **strictly-convex** if the convexity definitions hold strictly:

\[
f(\theta w + (1 - \theta)v) < \theta f(w) + (1 - \theta)f(v), \quad 0 < \theta < 1 \quad (C^0)
\]

\[
f(v) > f(w) + \nabla f(w)^\top (v - w) \quad (C^1)
\]

\[
\nabla^2 f(w) \succ 0 \quad (C^2)
\]

Function is always strictly below any chord, strictly above any tangent, and curved upwards in every direction.

Strictly-convex function have at most one global minimum:

- \(w\) and \(v\) can't both be global minima if \(w \neq v\):
 - it would imply convex combinations \(u\) of \(w\) and \(v\) would have \(f(u)\) below the global minimum.
A C^0 Definition of Strict and Strong Convexity

- There are many equivalent definitions of the convexities, here is one set for C^0 functions:
 - Convex (usual definition):
 \[f(\theta w + (1 - \theta)v) \leq \theta f(w) + (1 - \theta)f(v). \]
 - Strictly convex (strict version, excluding $\theta = 0$ or $\theta = 1$):
 \[f(\theta w + (1 - \theta)v) < \theta f(w) + (1 - \theta)f(v). \]
 - Strong convexity (need an “extra” bit of decrease as you move away from endpoints):
 \[f(\theta w + (1 - \theta)v) \leq \theta f(w) + (1 - \theta)f(v) - \frac{\theta(1 - \theta)\mu}{2}||w - v||^2. \]