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Machine Learning and Optimization

In machine learning, training is typically written as an optimization problem:

We optimize parameters w of model, given data.

There are some exceptions:
1 Methods based on counting and distances (KNN, random forests).

See CPSC 340.

2 Methods based on averaging and integration (Bayesian learning).

Later in course.

But even these models have parameters to optimize.

Important class of optimization problems: convex optimization problems.
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Convex Optimization

Consider an optimization problem of the form

min
w∈C

f(w).

where we are minimizing a function f subject to w being in the set C.

For least squares we have f(w) = ‖Xw − y‖2 and C ≡ Rd

If we had non-negative constraints, we would have C ≡ {w | w ≥ 0}.
Notation: when I write w ≥ 0 for a vector w I mean inequality holds for each row.

We say that this is a convex optimization problem if:

The set C is a convex set.
The function f is a convex function.

This lecture is boring, but convexity ideas will show up throughout the course.
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Convex Optimization

Key property of convex optimization problems:

All local optima are global optima.

Convexity is usually a good indicator of tractability:

Minimizing convex functions is usually easy.
Minimizing non-convex functions is usually hard.

Off-the-shelf software solves many classes of convex problems (MathProgBase).
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Definition of Convex Sets

A set C is convex if the line between any two points stays also in the set.
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Definition of Convex Sets

To formally define convex sets, we use the notion of convex combination:

A convex combination of two variables w and v is given by

θw + (1− θ)v for any 0 ≤ θ ≤ 1,

which characterizes the points on the line between w and v.

A set C is convex if convex combinations of points in the set are also in the set:

For all w ∈ C and v ∈ C we have θw + (1− θ)v︸ ︷︷ ︸
convex comb

∈ C for 0 ≤ θ ≤ 1.

This definition allows us to prove the convexity of many simple sets.
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Examples of Simple Convex Sets

Real space Rd.

Positive orthant Rd
+ : {w | w ≥ 0}.

Hyper-plane: {w | a>w = b}.
Half-space: {w | a>w ≤ b}.
Norm-ball: {w | ‖w‖p ≤ τ}.
Norm-cone: {(w, τ) | ‖w‖p ≤ τ}.
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Summary

Convex optimization problems are a class that we can usually efficiently solve.

Next time: more about convexity than you ever wanted to know.
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