In 340 we discussed **convolutional neural networks** (CNNs):

- **Convolutional layers** where W acts like a convolution (sparse with tied parameters).
- **Pooling layers** that usually take maximum among a small spatial neighbourhood.
- **Fully-connected layers** that use an unrestricted W.

http://blog.csdn.net/strint/article/details/44163869
Motivation: Beyond Classification

- **Convolutional** structure simplifies the learning task:
 - **Parameter tying** means we have more data to estimate each parameter.
 - **Sparsity** drastically reduces number of parameters.

We discussed CNNs for **image classification**: “is this an image of a cat?”. But many vision tasks are not **image classification** tasks.
Object Localization

- **Object localization** is task of finding locations of objects:
 - Need to find *where* in the image the object is.
 - May need to recognize *more than one* object.
Region Convolutional Neural Networks: “Pipeline” Approach

- Early approach (region CNN):
 1. Propose a bunch of potential boxes.
 2. Compute features of box using a CNN.
 3. Classify each box based on an SVM.
 4. Refine each box using linear regression.

Improved on state of the art, but not very elegant with its 4 steps.

Region Convolutional Neural Networks: “End to End” Approach

- Modern approaches try to do the whole task with one neural network.
- The network extracts features, proposes boxes, and classifies boxes.

This is called an end-to-end model.
End-to-End Computer Vision Models

- Key ideas behind end-to-end systems:
 1. Write each step as a differentiable operator.
 2. Train all steps using backpropagation and stochastic gradient.

- Has been called differentiable programming.

- There now exist end-to-end models for all the standard vision tasks.
 - Depth estimation, pose estimation, optical flow, tracking, 3D geometry, and so on.
 - A bit hard to track the progress at the moment.
 - A survey of \(\approx 200 \) papers from 2016:
 - http://www.themtank.org/a-year-in-computer-vision

- We’ll focus on the task of pixel labeling...
Outline

1. End-to-End Learning

2. Fully-Convolutional Networks
Approach 1: apply an existing CNN to classify pixel given neighbourhood.
- Misses long range dependencies in the image.
- It’s slow: for 200 by 200 image, need to do forward propagation 40000 times.

Approach 2: add per-pixel labels to final layer of an existing CNN.
- Fully-connected layers lose spatial information.
- Relies on having fixed-size images.
Fully-Convolutional Neural Networks

- Classic CNN architecture:

https://leonardoaraujosantos.gitbooks.io/artificial-intelligence/content/image_segmentation.html
Fully-Convolutional Neural Networks

- **Fully-convolutional neural networks** (FCNs): CNNs with no fully-connected layers.
 - All layers maintain spatial information.

- Final layer upsamples to original image size.
 - With a learned “transposed convolution”.

- Parameter tying within convolutions allows images of different sizes.
Transposed Convolution Layer

- The upsampling layer is also called a transposed convolution or “deconvolution”.
- Implemented as another convolution.

Reasons for the names:
- “Tranposed” because sparsity pattern is transpose of a downsampling convolution.
- “Deconvolution” is not related to the “deconvolution” in signal processing.
Fully-Convolutional Neural Networks

- FCNs quickly achieved state of the art results on many tasks.

![Figure 6. Fully convolutional segmentation nets produce state-of-the-art performance on PASCAL. The left column shows the output of our highest performing net, FCN-8s. The second shows the segmentations produced by the previous state-of-the-art system](https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf)

- FCN **end-to-end** solution is very elegant compared to previous “pipelines”:
 - No super-pixels, object proposals, merging results from multiple classifiers, and so on.
Variations on FCNs

- The transposed convolution at the last layer can lose a lot of resolution.
- One option is adding “skip” connections from earlier higher-resolution layers.

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
Variations on FCNs

Another approach to preserving resolution is deconvolutional networks:

https://leonardoaraujosantos.gitbooks.io/artificial-intelligence/content/image_segmentation.html
Combining FCNs and CRFs

- Another way to address this is combining FCNs and CRFs.

- DeepLab uses a **fully-connected** pairwise CRF on output layer.
 - Though most recent version **removed CRF**.

Image Colourization

- An end-to-end **image colorization** network:

- Trained to reproduce colour of existing images after removing colour.
Image Colourization

- Image colorization results:

![Image Examples](http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en)

- Gallery:
 [Link](http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/extra.html)

- Video: [Link](https://www.youtube.com/watch?v=ys5nM04Q0iY)
R-CNNs for Pixel Labeling

- An alternative approach: learn to apply binary mask to R-CNN results:

Where does data come from?

- Unfortunately, getting densely-labeled data is often hard.

- For pixel labeling and depth estimation, we explored getting data from GTA V:

 ![Video game](image1.png) ![Google street view](image2.png)

- Easy to collect data at night, in fog, or in dangerous situations.
Where does data come from?

- Recent works use that you don’t need full labeling.
 - Unobserved children in DAG don’t induce dependencies.
 - Although you would do better if you have an accurate dense labeling.

- Test object segmentation based on “single pixel” labels from training data:
 - And some tricks to separate objects and remove false positives.

Show video...
Summary

- **End to end models**: use a neural network to do all steps.
 - Write each step in a vision “pipeline” as a differentiable operator.
 - Train entire network using SGD.

- **Fully-convolutional networks**:
 - Network where every layer maintains spatial information.
 - Elegant way to apply convolutional networks for dense labeling problems.
 - Allows training/prediction on images of different sizes.

- Next time: generating poetry, music, and dance moves.