
Neural Networks

CPSC 440: Advanced Machine Learning
Neural Networks

Mark Schmidt

University of British Columbia

Winter 2021



Neural Networks

Last Time: Neural Networks

In 340 we discussed feedforward neural networks for supervised learning.

With 1 hidden layer the classic model has this structure:

Motivation:
For some problems it’s hard to find good features.
This learns features z that are good for particular supervised learning problem.

Can be view as a DAG where latent variables zc are deterministic.
Makes inference easy.



Neural Networks

Neural Network Notation

We’ll continue using our supervised learning notation:

X =


(x1)T

(x2)T

...
(xn)T

 , y =


y1

y2

...
yn

 ,

For the latent features and one hidden layer we’ll use

Z =


(z1)T

(z2)T

...
(zn)T

 , v =


v1
v2
...
vk

 , W =


w1

w2
...
wk

 ,

where Z is n by k and W is k by d.



Neural Networks

Introducing Non-Linearity

The obvious “linear-linear” model,

zi = Wxi, ŷi = vT zi,

is degenerate since it’s still a linear model.

The classic solution is to introduce a non-linearity,

zi = h(Wxi), ŷi = vT zi,

where a common-choice is applying sigmoid element-wise,

zic =
1

1 + exp(−wT
c x

i)
,

which is said to be the “activation” of neuron c on example i.
A universal approximator with k a function of n (also true for tanh, ReLU, etc.)



Neural Networks

Deep Neural Networks
In deep neural networks we add multiple hidden layers,

Mathematically, with 3 hidden layers the classic model uses

ŷi = vT h(W 3 h(W 2 h(W 1xi)︸ ︷︷ ︸
zi1

)

︸ ︷︷ ︸
zi2

)

︸ ︷︷ ︸
zi3

.



Neural Networks

Biological Motivation

Deep learning is motivated by theories of deep hierarchies in the brain.

https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing

But most research is about making models work better, not be more brain-like.

https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing


Neural Networks

Deep Neural Network History

Popularity of deep learning has come in waves over the years.

Currently, it is one of the hottest topics in science.

Recent popularity is due to unprecedented performance on some difficult tasks:

Speech recognition.
Computer vision.
Machine translation.

These are mainly due to big datasets, deep models, and tons of computation.

Plus tweaks to classic models and focus on structured networks (CNNs, LSTMs).

For a NY Times article discussing some of the history/successes/issues, see:
https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html


Neural Networks

Training Deep Neural Networks

If we’re training a network with 3 hidden layers and squared error, our objective is

f(v,W 1,W 2,W 3) =
1

2

n∑
i=1

(vTh(W 3h(W 2h(W 1xi)))︸ ︷︷ ︸
ŷi

−yi)2.

Usual training procedure is stochastic gradient.

Highly non-convex and notoriously difficult to tune.
But we’re discovering sets of tricks to make things easier to tune.

Recent empirical/theoretical work indicates non-convexity may not be an issue:

Local minima found by SGD may be good for “large enough” networks.



Neural Networks

Training Deep Neural Networks

Some common data/optimization tricks we discussed in 340:
Data transformations.

For images, translate/rotate/scale/crop each xi to make more data.

Data standardization: centering and whitening.
Adding bias variables.
Parameter initialization: “small but different”, standardizing within layers.
Step-size selection: “babysitting”, Bottou trick, Adam.
Momentum: heavy-ball and Nesterov-style modifications.
Batch normalization: adaptive standardizing within layers.
ReLU: replacing sigmoid with max{0, wT

c x
i}.

Avoids gradients extremely-close to zero.



Neural Networks

Training Deep Neural Networks

Common forms tricks to fight overfitting:
Standard L2-regularization or L1-regularization “weight decay”.

Sometimes with different λ for each layer.
Recent work shows this introduces bad local optima.

Early stopping of the optimization based on validation accuracy.
Dropout randomly zeroes z values to discourage dependence.
Implicit regularization from using SGD.
Hyper-parameter optimization to choose various tuning parameters.

“Neural architecture search”: recent methods include search over graph structures.

Special architectures like convolutional neural networks:

Yields Wm that are very sparse and have many tied parameters.



Neural Networks

“Residual” Networks (ResNets)
Suppose we fit a deep neural network to a linearly-separable dataset.

Original features x are sufficient to perfectly classify training data.
For a deep neural network to work, each layer needs to preserve information in x.

You might be “wasting” parameters just re-representing data from previous layers.

Consider residual networks:

https://en.wikipedia.org/wiki/Residual_neural_network

Take a previous (non-transformed) layer as input to current layer.
Also called “skip connections” or “highway networks”.

https://en.wikipedia.org/wiki/Residual_neural_network


Neural Networks

“Residual” Networks (ResNets)

ResNets seemingly make learning easier:

You can “default” to just copying the previous layer.
The non-linear transform is only learning how to modify the input.

“Fitting the residual”.

With ResNets, “you are done if problem is solved in any layer”.

Because you can “skip” the effects of the remaining layers.

This was a key idea behind first methods that used 100+ layers.

Easy for information about x to reach y through huge number of layers.
Won all tasks in ImageNet 2015 competition.
Evidence that biological networks have skip connections like this.

Dense networks (DenseNets): connect to many previous layers.

Basically gets rid of vanishing gradient issue.



Neural Networks

DenseNets

https://arxiv.org/pdf/1608.06993.pdf

https://arxiv.org/pdf/1608.06993.pdf


Neural Networks

Pre-Training

Suppose you want to solve a new object detection task.

Recognize a particular abnormality in radiology images.

You only have a few labeled images, so is deep learning useless?

An important concept in many computer vision applications is pre-training.

Learn new concepts faster by modifying networks trained on millions of images.
Uses that many “features” are common between tasks (edges, corners, shapes,. . . ).

Typical setup:

Take a network trained on ImageNet (typically VGG or ResNet).
Re-train the last layer to solve your problem (convex with usual losses).

A form of transfer learning.

When you try to “transfer” information between learning problems.



Neural Networks

Summary

We overview many of the standard neural network tricks.

Multiple “layers” of hidden features.
Sigmoid or ReLU non-linear transformations.
SGD training, with lots of tricks/tuning.
Residual/skip connections.
Pre-training on related tasks with lots of data.

Implicit regularization:

Some optimization methods may converge to regularized solutions.

Next time: combining neural networks with the rest of the course.


	Neural Networks

