# CPSC 440: Advanced Machine Learning Metropolis-Hastings

Mark Schmidt

University of British Columbia

Winter 2021

# Last Time: A Simple Example of Metropolis-Hastings

- Consider a loaded di that rolls a 6 half the time (all others equally likely).
  - So p(x=6) = 1/2 and  $p(x=1) = p(x=2) = \cdots = p(x=5) = 1/10$ .
- Consider the following "less stupid" MCMC algorithm:
  - At each step, we start with an old state x.
  - Generate a random number x uniformly between 1 and 6 (roll a fair di), and generate a random number u in the interval [0, 1].
  - "Accept" this roll

$$u < \frac{p(\hat{x})}{p(x)} = \frac{\tilde{p}(\hat{x})}{\tilde{p}(x)},$$

and otherwise "reject" the roll and keep x on the next iteration.

- So if we roll  $\hat{x} = 6$ , we accept it: u < 1 ("always move to higher probability").
- If x = 2 and roll  $\hat{x} = 1$ , accept it: u < 1 ("always move to same probability").
- If x = 6 and roll  $\hat{x} = 1$ , we accept it with probability 1/5.
  - We prefer high probability states, but sometimes move to low probability states.
- Markov chain spends half its time in state 6, 10% in state 1, 10% in state 2.,...

# Metropolis Algorithm

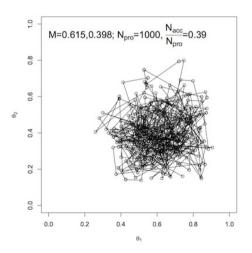
- The Metropolis algorithm for sampling from a continuous target p(x):
  - On each iteration add zero-mean Gaussian noise to  $x^t$  to give proposal  $\hat{x}^t$ .
  - Generate u uniformly between 0 and 1.
  - "Accept" the sample and set  $x^{t+1} = \hat{x}^t$  if

$$u \leq rac{ ilde{p}(\hat{x}^t)}{ ilde{p}(x^t)}, \quad rac{( extsf{probability of proposed})}{( extsf{probability of current})}$$

- Otherwise "reject" the sample and use  $x^t$  again as the next sample  $x^{t+1}$ .
- A random walk, but sometimes rejecting steps that decrease probability:
  - A valid MCMC algorithm on continuous densities, but convergence may be slow.
  - You can implement this even if you don't know normalizing constant.

Neural Networks

### Metropolis Algorithm in Action



```
Pseudo-code:
eps = randn(d,1)
xhat = x + eps
u = rand()
if u < ( p(xhat) / p(x) )
set x = xhat
otherwise
keep x
```

# Metropolis Algorithm Analysis

• Markov chain with transitions  $q_{ss^\prime} = q(x^t = s^\prime \mid x^{t-1} = s)$  is reversible if

$$\pi(s)q_{ss'} = \pi(s')q_{s's},$$

for some distribution  $\pi$  (this condition is called detailed balance).

• Reversibility implies  $\pi$  is a stationary distribution,

- Metropolis is reversible with  $\pi = p$  (bonus slide) so p is stationary distribution.
  - Though we still need extra assumptions to ensure it's unique and we reach it.

- Gibbs and Metropolis are special cases of Metropolis-Hastings.
  - Uses a proposal distribution  $q(\hat{x} \mid x)$ , giving probability of proposing  $\hat{x}$  at x.
    - In Metropolis, q is a Gaussian with mean x.
- Metropolis-Hastings accepts a proposed  $\hat{x}^t$  if

$$u \leq \frac{\tilde{p}(\hat{x}^t)q(x^t \mid \hat{x}^t)}{\tilde{p}(x^t)q(\hat{x}^t \mid x^t)},$$

where extra terms ensures reversibility for asymmetric q:

- E.g., if you are more likely to propose to go from  $x^t$  to  $\hat{x}^t$  than the reverse.
- This works under very weak conditions, such as  $q(\hat{x}^t \mid x^t) > 0$ .
  - $\bullet\,$  But you can make performance much better/worse with an appropriate q.

### Metropolis-Hastings Example: Rolling Dice with Coins

- Suppose we want to sample from a fair 6-sided di.
  - p(x=1) = p(x=2) = p(x=3) = p(x=4) = p(x=5) = p(x=6) = 1/6.
  - But don't have a di or a computer and can only flip coins.
- Consider the following random walk on the numbers 1-6:
  - If x = 1, always propose 2.
  - If x = 2, 50% of the time propose 1 and 50% of the time propose 3.
  - If x = 3, 50% of the time propose 2 and 50% of the time propose 4.
  - If x = 4, 50% of the time propose 3 and 50% of the time propose 5.
  - If x = 5, 50% of the time propose 4 and 50% of the time propose 6.
  - If x = 6, always propose 5.
- "Flip a coin: go up if it's heads and go down it it's tails".
  - The PageRank "random surfer" applied to this graph:



### Metropolis-Hastings Example: Rolling Dice with Coins

- "Roll a di with a coin" by using random walk as transitions q in Metropolis-Hastings to:
  - $q(\hat{x}=2 \mid x=1) = 1$ ,  $q(\hat{x}=1 \mid x=2) = \frac{1}{2}$ ,  $q(\hat{x}=2 \mid x=3) = 1/2,...$
  - If x is in the "middle" (2-5), we'll always accept the random walk.
    - If x = 3 and we propose  $\hat{x} = 2$ , then:

$$u < \frac{p(\hat{x}=2)}{p(x=3)} \frac{q(x=3 \mid \hat{x}=2)}{q(\hat{x}=2 \mid x=3)} = \frac{1/6}{1/6} \frac{1/2}{1/2} = 1.$$

• If x = 2 and we propose  $\hat{x} = 1$ , then we test u < 2 which is also always true.

• If x is at the end (1 or 6), you accept with probability 1/2:

$$u < \frac{p(\hat{x}=2)}{p(x=1)} \frac{q(x=1 \mid \hat{x}=2)}{q(\hat{x}=2 \mid x=1)} = \frac{1/6}{1/6} \frac{1/2}{1} = \frac{1}{2}.$$

# Metropolis-Hastings Example: Rolling Dice with Coins

- So Metropolis-Hastings modifies random walk probabilities:
  - If you're at the end (1 or 6), stay there half the time.
  - This accounts for the fact that 1 and 6 have only one neighbour.
    - Which means they aren't visited as often by the random walk.
- Could also be viewed as a random surfer in a different graph:



- You can think of Metropolis-Hastings as the modification that "makes the random walk have the right probabilities".
  - For any (reasonable) proposal distribution q.

#### Neural Networks

### **Metropolis-Hastings**

• Simple choices for proposal distribution q:

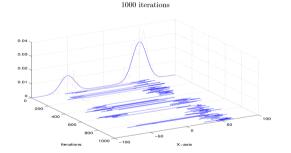
- Metropolis originally used random walks:  $x^t = x^{t-1} + \epsilon$  for  $\epsilon \sim \mathcal{N}(0, \Sigma)$ .
- Hastings originally used independent proposal:  $q(x^t \mid x^{t-1}) = q(x^t)$ .
- Gibbs sampling updates single variable based on conditional:

 $\bullet~$  In this case the acceptance rate is 1 so we never reject.

- Mixture model for q: e.g., between big and small moves.
- "Adaptive MCMC": tries to update q as we go: needs to be done carefully.
- "Particle MCMC": use particle filter to make proposal.
- Unlike rejection sampling, we don't want acceptance rate as high as possible:
  - High acceptance rate may mean we're not moving very much.
  - Low acceptance rate definitely means we're not moving very much.
  - Designing q is an "art".

# Mixture Proposal Distribution

### Metropolis-Hastings for sampling from mixture of Gaussians:



http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

- With a random walk q we may get stuck in one mode.
- We could have proposal be mixture between random walk and "mode jumping".
  - Bonus slides discuss some more-advanced MCMC methods.

Neural Networks

### Outline



### 2 Neural Networks

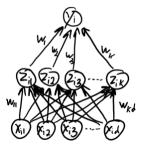
## Learning for Structured Prediction (Big Picture) 3 types of classifiers discussed in CPSC 340/440:

| Model                              | "Classic ML"        | Structured Prediction |
|------------------------------------|---------------------|-----------------------|
| Generative model $p(y, x)$         | Naive Bayes, GDA    | UGM (or "MRF")        |
| Discriminative model $p(y \mid x)$ | Logistic regression | CRF                   |
| Discriminant function $y = f(x)$   | SVM                 | Structured SVM        |

- Discriminative models don't need to model x.
  - Don't need "naive Bayes" or Gaussian assumptions.
- Discriminant functions don't even worry about probabilities.
  - Based on decoding, which is different than inference in structured case.
  - Useful when inference is hard but decoding is easy.
  - Examples include "attractive" graphical models, matching problems, and ranking.
  - I put my material on structured SVMs here:
    - https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf

## Feedforward Neural Networks

- In 340 we discussed feedforward neural networks for supervised learning.
- With 1 hidden layer the classic model has this structure:

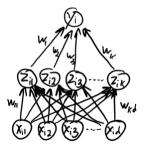


- Motivation:
  - For some problems it's hard to find good features.
  - This learns features z that are good for particular supervised learning problem.

## Neural Networks as DAG Models

• It's a DAG model but there is an important difference with our previous models:

• In neural nets we make latent variables  $z_c$  are deterministic functions of the  $x_j$ .



- Makes inference given x trivial: if you observe all  $x_j$  you also observe all  $z_c$ .
  - In this case y is the only random variable.

# Summary

- Metropolis-Hastings: MCMC method allowing arbitrary "proposals".
  - With good proposals works much better than Gibbs sampling.
- 3 types of structured prediction:
  - Generative models, discriminative models, discriminant functions.
- Neural networks learn features for supervised learning.
  - DAG model with deterministic conditionals, which makes inference easy.
- Next time: why don't neural networks just wildly overfit?

## Metropolis Algorithm Analysis

• Metropolis algorithm has  $q_{ss'} > 0$  (sufficient to guarantee stationary distribution is unique and we reach it) and satisfies detailed balance with target distribution p,

$$p(s)q_{ss'} = p(s')q_{s's}.$$

• We can show this by defining transition probabilities

$$q_{ss'} = \min\left\{1, \frac{\tilde{p}(s')}{\tilde{p}(s)}\right\},$$

and observing that

$$p(s)q_{ss'} = p(s)\min\left\{1, \frac{\tilde{p}(s')}{\tilde{p}(s)}\right\} = p(s)\min\left\{1, \frac{\frac{1}{Z}\tilde{p}(s')}{\frac{1}{Z}\tilde{p}(s)}\right\}$$
$$= p(s)\min\left\{1, \frac{p(s')}{p(s)}\right\} = \min\left\{p(s), p(s')\right\}$$
$$= p(s')\min\left\{1, \frac{p(s)}{p(s')}\right\} = p(s')q_{s's}.$$

# Advanced Monte Carlo Methods

- Some other more-powerful MCMC methods:
  - Block Gibbs sampling improves over single-variable Gibb sampling.
  - Collapsed Gibbs sampling (Rao-Blackwellization): integrate out variables that are not of interest.
    - E.g., integrate out hidden states in Bayesian hidden Markov model.
    - E.g., integrate over different components in topic models.
    - Provably decreases variance of sampler (if you can do it, you should do it).
  - Auxiliary-variable sampling: introduce variables to sample bigger blocks:
    - E.g., introduce *z* variables in mixture models.
    - Also used in Bayesian logistic regression (beginning with Albert and Chib).

# Advanced Monte Carlo Methods

### • Trans-dimensional MCMC:

- Needed when dimensionality of problem can change on different iterations.
- Most important application is probably Bayesian feature selection.
- Hamiltonian Monte Carlo:
  - Faster-converging method based on Hamiltonian dynamics.
- Population MCMC:
  - Run multiple MCMC methods, each having different "move" size.
  - Large moves do exploration and small moves refine good estimates.
    - With mechanism to exchange samples between chains.