
Metropolis-Hastings Neural Networks

CPSC 440: Advanced Machine Learning
Metropolis-Hastings

Mark Schmidt

University of British Columbia

Winter 2021

Metropolis-Hastings Neural Networks

Last Time: A Simple Example of Metropolis-Hastings
Consider a loaded di that rolls a 6 half the time (all others equally likely).

So p(x = 6) = 1/2 and p(x = 1) = p(x = 2) = · · · = p(x = 5) = 1/10.

Consider the following “less stupid” MCMC algorithm:
At each step, we start with an old state x.
Generate a random number x uniformly between 1 and 6 (roll a fair di),
and generate a random number u in the interval [0, 1].
“Accept” this roll

u <
p(x̂)

p(x)
=
p̃(x̂)

p̃(x)
,

and otherwise “reject” the roll and keep x on the next iteration.
So if we roll x̂ = 6, we accept it: u < 1 (‘’always move to higher probability”).
If x = 2 and roll x̂ = 1, accept it: u < 1 (“always move to same probability”).
If x = 6 and roll x̂ = 1, we accept it with probability 1/5.

We prefer high probability states, but sometimes move to low probability states.

Markov chain spends half its time in state 6, 10% in state 1, 10% in state 2.,. . .

Metropolis-Hastings Neural Networks

Metropolis Algorithm

The Metropolis algorithm for sampling from a continuous target p(x):

On each iteration add zero-mean Gaussian noise to xt to give proposal x̂t.
Generate u uniformly between 0 and 1.
“Accept” the sample and set xt+1 = x̂t if

u ≤ p̃(x̂t)

p̃(xt)
,

(probability of proposed)

(probability of current)

Otherwise “reject” the sample and use xt again as the next sample xt+1.

A random walk, but sometimes rejecting steps that decrease probability:

A valid MCMC algorithm on continuous densities, but convergence may be slow.
You can implement this even if you don’t know normalizing constant.

Metropolis-Hastings Neural Networks

Metropolis Algorithm in Action

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/

styled-11/code-5

Pseudo-code:
eps = randn(d,1)

xhat = x + eps

u = rand()

if u < (p(xhat) / p(x))

set x = xhat

otherwise

keep x

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5

Metropolis-Hastings Neural Networks

Metropolis Algorithm Analysis
Markov chain with transitions qss′ = q(xt = s′ | xt−1 = s) is reversible if

π(s)qss′ = π(s′)qs′s,

for some distribution π (this condition is called detailed balance).

Reversibility implies π is a stationary distribution,

∑
s

π(s)qss′ =
∑
s

π(s′)qs′s (sum reversibility over s values)∑
s

π(s)qss′ = π(s′)
∑
s

qs′s︸ ︷︷ ︸
=1∑

s

π(s)qss′ = π(s′) (stationary condition).

Metropolis is reversible with π = p (bonus slide) so p is stationary distribution.
Though we still need extra assumptions to ensure it’s unique and we reach it.

Metropolis-Hastings Neural Networks

Metropolis-Hastings

Gibbs and Metropolis are special cases of Metropolis-Hastings.
Uses a proposal distribution q(x̂ | x), giving probability of proposing x̂ at x.

In Metropolis, q is a Gaussian with mean x.

Metropolis-Hastings accepts a proposed x̂t if

u ≤ p̃(x̂t)q(xt | x̂t)
p̃(xt)q(x̂t | xt)

,

where extra terms ensures reversibility for asymmetric q:

E.g., if you are more likely to propose to go from xt to x̂t than the reverse.

This works under very weak conditions, such as q(x̂t | xt) > 0.

But you can make performance much better/worse with an appropriate q.

Metropolis-Hastings Neural Networks

Metropolis-Hastings Example: Rolling Dice with Coins
Suppose we want to sample from a fair 6-sided di.

p(x=1) = p(x=2) = p(x=3) = p(x=4) = p(x=5) = p(x=6) = 1/6.
But don’t have a di or a computer and can only flip coins.

Consider the following random walk on the numbers 1-6:
If x = 1, always propose 2.
If x = 2, 50% of the time propose 1 and 50% of the time propose 3.
If x = 3, 50% of the time propose 2 and 50% of the time propose 4.
If x = 4, 50% of the time propose 3 and 50% of the time propose 5.
If x = 5, 50% of the time propose 4 and 50% of the time propose 6.
If x = 6, always propose 5.

“Flip a coin: go up if it’s heads and go down it it’s tails”.
The PageRank “random surfer” applied to this graph:

Metropolis-Hastings Neural Networks

Metropolis-Hastings Example: Rolling Dice with Coins

“Roll a di with a coin” by using random walk as transitions q in
Metropolis-Hastings to:

q(x̂ = 2 | x = 1) = 1, q(x̂ = 1 | x = 2) = 1
2 , q(x̂ = 2 | x = 3) = 1/2,. . .

If x is in the “middle” (2-5), we’ll always accept the random walk.

If x = 3 and we propose x̂ = 2, then:

u <
p(x̂ = 2)

p(x = 3)

q(x = 3 | x̂ = 2)

q(x̂ = 2 | x = 3)
=

1/6

1/6

1/2

1/2
= 1.

If x = 2 and we propose x̂ = 1, then we test u < 2 which is also always true.

If x is at the end (1 or 6), you accept with probability 1/2:

u <
p(x̂ = 2)

p(x = 1)

q(x = 1 | x̂ = 2)

q(x̂ = 2 | x = 1)
=

1/6

1/6

1/2

1
=

1

2
.

Metropolis-Hastings Neural Networks

Metropolis-Hastings Example: Rolling Dice with Coins

So Metropolis-Hastings modifies random walk probabilities:

If you’re at the end (1 or 6), stay there half the time.
This accounts for the fact that 1 and 6 have only one neighbour.

Which means they aren’t visited as often by the random walk.

Could also be viewed as a random surfer in a different graph:

You can think of Metropolis-Hastings as the modification that
“makes the random walk have the right probabilities”.

For any (reasonable) proposal distribution q.

Metropolis-Hastings Neural Networks

Metropolis-Hastings

Simple choices for proposal distribution q:

Metropolis originally used random walks: xt = xt−1 + ε for ε ∼ N (0,Σ).
Hastings originally used independent proposal: q(xt | xt−1) = q(xt).
Gibbs sampling updates single variable based on conditional:

In this case the acceptance rate is 1 so we never reject.

Mixture model for q: e.g., between big and small moves.
“Adaptive MCMC”: tries to update q as we go: needs to be done carefully.
“Particle MCMC”: use particle filter to make proposal.

Unlike rejection sampling, we don’t want acceptance rate as high as possible:

High acceptance rate may mean we’re not moving very much.
Low acceptance rate definitely means we’re not moving very much.
Designing q is an “art”.

Metropolis-Hastings Neural Networks

Mixture Proposal Distribution
Metropolis-Hastings for sampling from mixture of Gaussians:

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

With a random walk q we may get stuck in one mode.
We could have proposal be mixture between random walk and “mode jumping”.

Bonus slides discuss some more-advanced MCMC methods.

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

Metropolis-Hastings Neural Networks

Outline

1 Metropolis-Hastings

2 Neural Networks

Metropolis-Hastings Neural Networks

Learning for Structured Prediction (Big Picture)
3 types of classifiers discussed in CPSC 340/440:

Model “Classic ML” Structured Prediction

Generative model p(y, x) Naive Bayes, GDA UGM (or “MRF”)
Discriminative model p(y | x) Logistic regression CRF

Discriminant function y = f(x) SVM Structured SVM

Discriminative models don’t need to model x.
Don’t need “naive Bayes” or Gaussian assumptions.

Discriminant functions don’t even worry about probabilities.
Based on decoding, which is different than inference in structured case.
Useful when inference is hard but decoding is easy.
Examples include “attractive” graphical models, matching problems, and ranking.
I put my material on structured SVMs here:

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf

Metropolis-Hastings Neural Networks

Feedforward Neural Networks

In 340 we discussed feedforward neural networks for supervised learning.

With 1 hidden layer the classic model has this structure:

Motivation:

For some problems it’s hard to find good features.
This learns features z that are good for particular supervised learning problem.

Metropolis-Hastings Neural Networks

Neural Networks as DAG Models

It’s a DAG model but there is an important difference with our previous models:

In neural nets we make latent variables zc are deterministic functions of the xj .

Makes inference given x trivial: if you observe all xj you also observe all zc.

In this case y is the only random variable.

Metropolis-Hastings Neural Networks

Summary

Metropolis-Hastings: MCMC method allowing arbitrary “proposals”.

With good proposals works much better than Gibbs sampling.

3 types of structured prediction:

Generative models, discriminative models, discriminant functions.

Neural networks learn features for supervised learning.

DAG model with deterministic conditionals, which makes inference easy.

Next time: why don’t neural networks just wildly overfit?

Metropolis-Hastings Neural Networks

Metropolis Algorithm Analysis
Metropolis algorithm has qss′ > 0 (sufficient to guarantee stationary distribution is
unique and we reach it) and satisfies detailed balance with target distribution p,

p(s)qss′ = p(s′)qs′s.

We can show this by defining transition probabilities

qss′ = min

{
1,
p̃(s′)

p̃(s)

}
,

and observing that

p(s)qss′ = p(s) min

{
1,
p̃(s′)

p̃(s)

}
= p(s) min

{
1,

1
Z p̃(s

′)
1
Z p̃(s)

}

= p(s) min

{
1,
p(s′)

p(s)

}
= min

{
p(s), p(s′)

}
= p(s′) min

{
1,
p(s)

p(s′)

}
= p(s′)qs′s.

Metropolis-Hastings Neural Networks

Advanced Monte Carlo Methods

Some other more-powerful MCMC methods:

Block Gibbs sampling improves over single-variable Gibb sampling.

Collapsed Gibbs sampling (Rao-Blackwellization): integrate out variables that are
not of interest.

E.g., integrate out hidden states in Bayesian hidden Markov model.
E.g., integrate over different components in topic models.
Provably decreases variance of sampler (if you can do it, you should do it).

Auxiliary-variable sampling: introduce variables to sample bigger blocks:

E.g., introduce z variables in mixture models.
Also used in Bayesian logistic regression (beginning with Albert and Chib).

Metropolis-Hastings Neural Networks

Advanced Monte Carlo Methods

Trans-dimensional MCMC:

Needed when dimensionality of problem can change on different iterations.
Most important application is probably Bayesian feature selection.

Hamiltonian Monte Carlo:

Faster-converging method based on Hamiltonian dynamics.

Population MCMC:

Run multiple MCMC methods, each having different “move” size.
Large moves do exploration and small moves refine good estimates.

With mechanism to exchange samples between chains.

	Metropolis-Hastings
	Neural Networks

