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Overview of Bayesian Inference Tasks

In Bayesian approach, we typically work with the posterior

p(θ | x) = 1

Z
p(x | θ)p(θ),

where Z makes the distribution sum/integrate to 1.

Typically, we need to compute expectation of some f with respect to posterior,

E[f(θ)] =

∫
θ
f(θ)p(θ | x)dθ.

Examples:

If f(θ) = θ, we get posterior mean of θ.
If f(θ) = p(x̃ | θ), we get posterior predictive.
If f(θ) = I(θ ∈ S) we get probability of S (e.g., marginals or conditionals).
If f(θ) = 1 and we use p̃(θ | x), we get marginal likelihood Z.
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Need for Approximate Integration

Bayesian models allow things that aren’t possible in other frameworks:

Optimize the regularizer (empirical Bayes).
Relax IID assumption (hierarchical Bayes).
Have clustering happen on multiple levels (topic models).

But posterior often doesn’t have a closed-form expression.

We don’t just want to flip coins and multiply Gaussians.

We once again need approximate inference:
1 Variational methods.
2 Monte Carlo methods.

Classic ideas from statistical physics, that revolutionized Bayesian stats/ML.
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Variational Inference vs. Monte Carlo
Two main strategies for approximate inference:

1 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x).

Turns inference into optimization (need to find best q).

Called variational Bayes.

2 Monte Carlo methods:

Approximate p with empirical distribution over samples,

p(x) ≈ 1

n

n∑
i=1

I[xi = x].

Turns inference into sampling.

For Bayesian methods, we’ll typically need to sample from posterior.
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Conjugate Graphical Models: Ancestral and Gibbs Sampling

For conjugate DAGs, we can use ancestral sampling for unconditional sampling.

By using inverse transform to sample 1D conditionals.

Examples:

For Markov chains, sample x1 then x2 and so on.
For HMMs, sample the hidden zj then sample the xj .
For LDA, sample π then sample the zj then sample the xj .

We can also often use Gibbs sampling as an approximate sampler.

If neighbours are conjugate in UGMs.
To generate conditional samples in conjugate DAGs.

However, without conjugacy our inverse transform trick doesn’t work.

We can’t even sample from the 1D conditionals with this method.
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Beyond Inverse Transform and Conjugacy

We want to use simple distributions to sample from complex distributions.

Two common strategies are rejection sampling and importance sampling.

We’ve previously seen rejection sampling to do conditional sampling:

Example: sampling from a Gaussian subject to x ∈ [−1, 1].

Generate unconditional samples, throw out (“reject”) the ones that aren’t in [−1, 1].
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General Rejection Sampling Algorithm
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General Rejection Sampling Algorithm

Ingredients of a more general rejection sampling algorithm:
1 Ability to evaluate unnormalized p̃(x),

p(x) =
p̃(x)

Z
.

2 A distribution q that is easy to sample from.
3 An upper bound M on p̃(x)/q(x).

Rejection sampling algorithm:
1 Sample x from q(x).
2 Sample u from U(0, 1).
3 Keep the sample if u ≤ p̃(x)

Mq(x) .

The accepted samples will be from p(x).
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General Rejection Sampling Algorithm

We can use general rejection sampling for:

Sample from Gaussian q to sample from student t.
Sample from prior to sample from posterior (M = 1 for discrete x),

p̃(θ | x) = p(x | θ)︸ ︷︷ ︸
≤1

p(θ).

Drawbacks:
You may reject a large number of samples.

Most samples are rejected for high-dimensional complex distributions.

You need to know M .

If − log p(x) is convex and x is 1D there is a fancier version:

Adaptive rejection sampling refines piecewise-linear q after each rejection.



Rejection and Importance Sampling Metropolis-Hastings Motivation

Importance Sampling
Importance sampling is a variation that accepts all samples.

Key idea is similar to EM analysis,

Ep[f(x)] =
∑
x

p(x)f(x)

=
∑
x

q(x)
p(x)f(x)

q(x)

= Eq

[
p(x)

q(x)
f(x)

]
≈ 1

n

n∑
i=1

p(x)

q(x)
f(x),

where the Monte Carlo approximation uses samples from q.
Replace sum over x with integral for continuous distributions.

We can sample from q but reweight by p(x)/q(x) to sample from p.
Only assumption is that q is non-zero when p is non-zero.
If you only know unnormalized p̃(x), a variant gives approximation of Z.
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Importance Sampling

As with rejection sampling, only efficient if q is close to p.
Otherwise, weights will be huge for a small number of samples.

Even though unbiased, variance can be huge.

Can be problematic if q has lighter “tails” than p:
You rarely sample the tails, so those samples get huge weights.

As with rejection sampling, doesn’t tend to work well in high dimensions.
Though there is room to cleverly design q, like using mixtures.
For example, q could sample from mixture of Gaussians with different variances.
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Outline

1 Rejection and Importance Sampling

2 Metropolis-Hastings Motivation
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Limitations of Simple Monte Carlo Methods

The basic ingredients of our previous sampling methods:
Sampling in low dimensions: Inverse CDF, rejection sampling, importance sampling.
Sampling in higher dimensions: ancestral sampling, Gibbs sampling.

These work well in low dimensions or for posteriors with analytic properties.

But we want to solve high-dimensional integration problems in other settings:
Deep belief networks and Boltzmann machines.
Bayesian graphical models and Bayesian neural networks.
Hierarchical Bayesian models.

Our previous methods tend not to work in complex situations:
Inverse CDF may not be available.
Conditionals needed for ancestral/Gibbs sampling may be hard to compute.
Rejection sampling tends to reject almost all samples.
Importance sampling tends to give almost zero weight to all samples.
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Dependent-Sample Monte Carlo Methods

We want an algorithm whose samples get better over time.

Two main strategies for generating dependent samples:
Sequential Monte Carlo:

Importance sampling where proposal qt changes over time from simple to posterior.
AKA sequential importance sampling, annealed importance sampling, particle filter.
Usual application: Markov and HMM models with continuous non-Gaussian states.
“Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBa1zMKv4

Markov chain Monte Carlo (MCMC).

Design Markov chain whose stationary distribution is the posterior.

These are the main tools to sample from high-dimensional distributions.

https://www.youtube.com/watch?v=aUkBa1zMKv4
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Markov Chain Monte Carlo

We’ve previously discussed Markov chain Monte Carlo (MCMC).
1 Based on generating samples from a Markov chain q.
2 Designed so stationary distribution π of q is target distribution p.

If we run the chain long enough, it gives us samples from p.

Gibbs sampling is an example of an MCMC method.

Sample xj conditioned on all other variables x−j .

Note that before we were sampling states according to a UGM,
in Bayesian models we’re sampling parameters according to the posterior.

But we use the same methods for both tasks.
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Limitations of Gibbs Sampling

Gibbs sampling is nice because it has no parameters:

You just need to decide on the blocks and figure out the conditionals.

But it isn’t always ideal:

Samples can be very correlated: slow progress.
Conditionals may not have a nice form:

If Markov blanket is not conjugate, need rejection sampling (or numerical CDF).

Generalization that can address these is Metropolis-Hastings:

Oldest algorithm among the “10 Best of the 20th Century”.
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Warm-Up to Metropolis-Hastings: “Stupid MCMC”

Consider finding the expected value of a fair di:

For a 6-sided di, the expected value is 3.5.

Consider the following “stupid MCMC” algorithm:

Start with some initial value, like “4”.

At each step, roll the di and generate a random number u:

If u < 0.5, “accept” the roll and take the roll as the next sample.

Othewise, “reject” the roll and take the old value (“4”) as the next sample.
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Warm-Up to Metropolis-Hastings: “Stupid MCMC”

Example:

Start with “4”, so record “4”.
Roll a “6” and generate 0.234, so record “6”.
Roll a “3” and generate 0.612, so record “6”.
Roll a “2” and generate 0.523, so record “6”.
Roll a “3” and generate 0.125, so record “3”.

So our samples are 4,6,6,6,3,. . .

If you run this long enough, you will spend 1/6 of the time on each number.
So the dependent samples from this Markov chain could be used within Monte Carlo.

It is “stupid” since you should just accept every sample (they are IID samples).

It works but it is twice as slow.
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A Simple Example of Metropolis-Hastings
Consider a loaded di that rolls a 6 half the time (all others equally likely).

So p(x = 6) = 1/2 and p(x = 1) = p(x = 2) = · · · = p(x = 5) = 1/10.

Consider the following “less stupid” MCMC algorithm:
At each step, we start with an old state x.
Generate a random number x̂ uniformly between 1 and 6 (roll a fair di),
and generate a random number u in the interval [0, 1].
“Accept” this roll if

u <
p(x̂)

p(x)
.

So if we roll x̂ = 6, we accept it: u < 1 (‘’always move to higher probability”).
If x = 2 and roll x̂ = 1, accept it: u < 1 (“always move to same probability”).
If x = 6 and roll x̂ = 1, we accept it with probability 1/5.

We prefer high probability states, but sometimes move to low probability states.

This has right probabilities as the stationary distribution (not yet obvious).
And accepts most samples.
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Summary

Rejection sampling: generate exact samples from complicated distributions.

Tends to reject too many samples in high dimensions.

Importance sampling: reweights samples from the wrong distribution.

Tends to have high variance in high dimensions.

Markov chain Monte Carlo generates a sequence of dependent samples:

But asymptotically these samples look like they come from the posterior.

Next time: we actually start deep learning?
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