CPSC 540: Machine Learning

More Fundamentals of Learning Winter 2021

Last Time: Violating the Golden Rule?

- Usual strategy for hyper-parameter tuning:
 - Optimize performance on a validation set.
- This can lead to overfitting to the validation set.
- We showed a bound on the amount of overfitting:

$$p(|E_{test} - E_{value(\lambda)}| > \varepsilon \text{ for any } \lambda) \leq K 2exp(-2\varepsilon^2 t)$$

- Probability of overfitting increases linearly in 'k':
 - "Number of hyper-parameter values you are optimizing over.
- Probability of overfitting decreases exponentially in 't':
 - Number of IID examples in validation set.
- You can violate the golden rule, even quite a bit, with a big validation set.

Generalization Error

- An alternative measure of performance is the generalization error:
 - Average error over the set of xⁱ values that are not seen in the training set.
 "How well we expect to do for a *completely unseen* feature vector".
- Test error vs. generalization error when labels are deterministic:

Etest = E[[y'-y']] Egeneralize =] [y'-y']
Labels are deterministic,
but we still take
expectation over data distribution

$$x' values not$$

 $x' values not$
 $x' values$

"Best" and the "Good" Machine Learning Models

- Question 1: what is the "best" machine learning model?
 - The model that gets lower generalization error than all other models.
- Question 2: which models always do better than random guessing?
 - Models with lower generalization error than "predict 0" for all problems.
- No free lunch theorem:
 - There is **no** "best" model achieving the best generalization error for every problem.
 - If model A generalizes better to new data than model B on one dataset, there is another dataset where model B works better.

No Free Lunch Theorem

- Let's show the "no free lunch" theorem in a simple setting:
 The xⁱ and yⁱ are binary, and yⁱ being a deterministic function of xⁱ.
- With 'd' features, each "learning problem" is a map from {0,1}^d -> {0,1}.
 - Assigning a binary label to each of the 2^d feature combinations.

Feature 1	Feature 2	Feature 3	y (map 1)	y (map 2)	y (map 3)	
0	0	0	0	1	0	
0	0	1	0	0	1	
0	1	0	0	0	0	

- Let's pick one of these 'y' vectors ("maps" or "learning problems") and:
 - Generate a set training set of 'n' IID samples.
 - Fit model A (convolutional neural network) and model B (naïve Bayes).

No Free Lunch Theorem

- Define the "unseen" examples as the (2^d n) not seen in training.
 - Assuming no repetitions of x^i values, and $n < 2^d$.
 - Generalization error is the average error on these "unseen" examples.
- Suppose that model A got 1% error and model B got 60% error.
 We want to show model B beats model A on another "learning problem".
- Among our set of "learning problems" find the one where:
 - The labels yⁱ agree on all training examples.
 - The labels yⁱ disagree on all "unseen" examples.
- On this other "learning problem":
 - Model A gets 99% error and model B gets 40% error.

No Free Lunch Theorem

- Further, across all "learning problems" with these 'n' examples:
 - Average generalization error of every model is 50% on unseen examples.
 - It's right on each unseen example in exactly half the learning problems.
 - With 'k' classes, the average error is (k-1)/k (random guessing).
- This is kind of depressing:
 - For general problems, no "machine learning" is better than "predict 0".

(pause)

Limit of No Free Lunch Theorem

- Fortunately, the world is structured:
 - Some "learning problems" are more likely than others.
- For example, it's usually the case that "similar" xⁱ have similar yⁱ.
 - Datasets with properties like this are more likely.
 - Otherwise, you probably have no hope of learning.
- Models with right "similarity" assumptions ("bias") can beat "predict 0".
- With assumptions like this, you can consider consistency:
 - As 'n' grows, model A converges to the optimal test error.

Refined Fundamental Trade-Off

- Let E_{best} be the irreducible error (lowest possible error for *any* model).
 - For example, irreducible error for predicting coin flips is 0.5.
- Some learning theory results use E_{best} to further decompose E_{test} :

- This is similar to the bias-variance trade-off (bonus slide):
 - E_{approx} measures *how sensitive we are to training data* (like "variance").
 - E_{model} measures if our model is complicated enough to fit data (like "bias").
 - E_{best} measures how low can **any** model make test error ("irreducible" error).

Refined Fundamental Trade-Off

- Let E_{best} be the irreducible error (lowest possible error for *any* model).
 For example, irreducible error for predicting coin flips is 0.5.
- Some learning theory results use E_{best} to further decompose E_{test} :

- This is similar to the bias-variance trade-off (bonus slide):
 - You need to trade between having low E_{approx} and having low E_{model} .
 - Powerful models have low E_{model} but can have high E_{approx} .
 - E_{best} does not depend on what model you choose.

Consistency and Universal Consistency

- A model is consistent for a particular learning problem if:
 - E_{test} converges to E_{best} as 'n' goes to infinity, for that particular problem.
- A model is universally consistent for a class of learning problems if:
 E_{test} converges to E_{best} as 'n' goes to infinity, for all problems in the class.
- Class of learning problems is usually be "all problems satisfying":
 - A continuity assumption on the labels y^i as a function of x^i .
 - E.g., if xⁱ is close to x^j then they are likely to receive the same label.
 - A boundedness assumption of the set of x^{i} .

K-Nearest Neighbours (KNN)

- Classical consistency results focus on k-nearest neighbours (KNN).
- To classify an object \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" examples.

Consistency of KNN (Discrete/Deterministic Case)

- Let's show universal consistency of KNN in a simplified setting.
 - The x^i and y^i are binary, and y^i being a deterministic function of x^i .
 - Deterministic y^i implies that E_{best} is 0.
- Consider KNN with k=1:
 - After we observe an xⁱ, KNN makes right test prediction for that vector.
 - As 'n' goes to ∞, each feature vectors with non-zero probability is observed.
 - We have $E_{test} = 0$ once we've seen all feature vectors with non-zero probability.
- Notes:
 - No free lunch isn't relevant as 'n' goes to ∞ here: we eventually see everything.
 - There are 2^d possible feature vectors, so might need a huge number of training examples.
 - It's more complicated if labels aren't deterministic and features are continuous.

Consistency of KNN (Continuous/Non-Deterministic)

- KNN consistency properties (under reasonable assumptions):
 - − As 'n' goes to ∞ , $E_{test} \le 2E_{best}$.
 - For fixed 'k' and binary labels.
- Stone's Theorem: KNN is "universally consistent".
 - If 'k' converges to ∞ as 'n' converges to ∞, but k/n converges to 0, E_{test} converges to E_{best}.
 - For example, k = O(log n).
 - First algorithm shown to have this property.
- Consistency says nothing about finite 'n'.
 - See "<u>Dont Trust Asymptotics</u>".

Consistency of Non-Parametric Models

- Universal consistency can be been shown for a variety of models:
 - Linear models with polynomial basis.
 - Linear models with Gaussian RBFs.
 - Neural networks with one hidden layer and standard activations.
 - Sigmoid, tanh, ReLU, etc.
- It's non-parametric versions that are consistent:
 - Size of model is a function of 'n'.
 - Examples:
 - KNN needs to store all 'n' training examples.
 - Degree of polynomial must grow with 'n' (not true for fixed polynomial).
 - Number of hidden units must grow with 'n' (not true for fixed neural network).

Parametric vs. Non-Parametric Models

Summary

- No free lunch theorem:
 - There is no "best" or even "good" machine learning models across all problems.
- Universal consistency:
 - Some non-parametric models can solve any continuous learning problem.
- Next time:
 - More about convexity than you ever wanted to know.