CPSC 540: Machine Learning

More Fundamentals of Learning
Winter 2021



Last Time: Violating the Golden Rule?

Usual strategy for hyper-parameter tuning:
— Optimize performance on a validation set.

This can lead to overfitting to the validation set.

We showed a bound on the amount of overfitting:
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— Probability of overfitting increases linearly in ‘k’:

* “Number of hyper-parameter values you are optimizing over.
— Probability of overfitting decreases exponentially in ‘t":

* Number of IID examples in validation set.

You can violate the golden rule, even quite a bit, with a big validation set.



Generalization Error

e An alternative measure of performance is the generalization error:
— Average error over the set of x' values that are not seen in the training set.
— “How well we expect to do for a completely unseen feature vector”.

* Test error vs. generalization error when labels are deterministic:

tm [L [y - ‘M’ ] C e =) l}\ Y, l
LLGAP’} - Je{ﬂmwﬂ([ numéer of l\

bt we still {ake & Valoos ni
Over YhSee n

@er(,TGITQII\ over (Jc;}o\ JIS‘I\'.A?\;“O‘ N ’IVovm.v,) 561, ) -
X \/all\,«{)~

avtr “(/C Crvor



“Best” and the “Good” Machine Learning Models

* Question 1: what is the “best” machine learning model?
— The model that gets lower generalization error than all other models.

* Question 2: which models always do better than random guessing?
— Models with lower generalization error than “predict 0” for all problems.

e No free lunch theorem:

— There is no “best” model achieving the best generalization error for every
problem.

— If model A generalizes better to new data than model B on one dataset,
there is another dataset where model B works better.



No Free Lunch Theorem

e Let’s show the “no free lunch” theorem in a simple setting:
— The x' and y' are binary, and y' being a deterministic function of x'.

« With ‘d’ features, each “learning problem” is a map from {0,1}4 -> {0,1}.
— Assigning a binary label to each of the 29 feature combinations.
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* Let’s pick one of these ‘y’ vectors (“maps” or “learning problems”) and:
— Generate a set training set of ‘n’ [ID samples.
— Fit model A (convolutional neural network) and model B (naive Bayes).



No Free Lunch Theorem

Define the “unseen” examples as the (29— n) not seen in training.

— Assuming no repetitions of x' values, and n < 29.
— Generalization error is the average error on these “unseen” examples.

Suppose that model A got 1% error and model B got 60% error.

— We want to show model B beats model A on another “learning problem”.

Among our set of “learning problems” find the one where:
— The labels y' agree on all training examples.

— The labels y' disagree on all “unseen” examples.

On this other “learning problem”:

— Model A gets 99% error and model B gets 40% error.
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No Free Lunch Theorem

* Further, across all “learning problems” with these ‘n” examples:

— Average generalization error of every model is 50% on unseen examples.

* It’s right on each unseen example in exactly half the learning problems.

— With ‘k’ classes, the average error is (k-1)/k (random guessing).

* This is kind of depressing:
— For general problems, no “machine learning” is better than “predict 0”.



(pause)



Limit of No Free Lunch Theorem

Fortunately, the world is structured:

— Some “learning problems” are more likely than others.
For example, it’s usually the case that “similar” x' have similar y'.

— Datasets with properties like this are more likely.
— Otherwise, you probably have no hope of learning.

Models with right “similarity” assumptions (“bias”) can beat “predict 0”.

With assumptions like this, you can consider consistency:

— As ‘n’ grows, model A converges to the optimal test error.



Refined Fundamental Trade-Off

* Let E_ . be theirreducible error (lowest possible error for any model).
— For example, irreducible error for predicting coin flips is 0.5.

* Some learning theory results use E, ., to further decompose E,_;:
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 This is similar to the bias-variance trade-off (bonus slide):
— E measures how sensitive we are to training data (like “variance”).

approx

E...qe Measures if our model is complicated enough to fit data (like “bias”).
E,.: measures how low can any model make test error (“irreducible” error).



Refined Fundamental Trade-Off

* Let E_ . be theirreducible error (lowest possible error for any model).
— For example, irreducible error for predicting coin flips is 0.5.

* Some learning theory results use E, ., to further decompose E
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 This is similar to the bias-variance trade-off (bonus slide):

— You need to trade between having low E_, ., and having low E

— Powerful models have low E_ 4. but can have high E
E,...; does not depend on what model you choose.

model*

approx*



Consistency and Universal Consistency

A model is consistent for a particular learning problem if:
— E,.. cOnverges to E, ., as ‘n’ goes to infinity, for that particular problem.

A model is universally consistent for a class of learning problems if:
— E,.. converges to E, ., as ‘n’ goes to infinity, for all problems in the class.

* Class of learning problems is usually be “all problems satisfying”:
— A continuity assumption on the labels y' as a function of x.

* E.g., if x'is close to X then they are likely to receive the same label.

— A boundedness assumption of the set of x'.



K-Nearest Neighbours (KNN)

* Classical consistency results focus on k-nearest neighbours (KNN).

* To classify an object X :
1. Findthe ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” examples.
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Consistency of KNN (Discrete/Deterministic Case)

e Let’s show universal consistency of KNN in a simplified setting.

— The x' and y' are binary, and y' being a deterministic function of x'.
* Deterministic y' implies that E,_, is 0.

e Consider KNN with k=1:

— After we observe an x!, KNN makes right test prediction for that vector.
— As ‘n’ goes to oo, each feature vectors with non-zero probability is observed.
— We have E, ., = 0 once we’ve seen all feature vectors with non-zero probability.

* Notes:

— No free lunch isn’t relevant as ‘n’ goes to o= here: we eventually see everything.
* There are 29 possible feature vectors, so might need a huge number of training examples.

— It’s more complicated if labels aren’t deterministic and features are continuous.



Consistency of KNN (Continuous/Non-Deterministic)

 KNN consistency properties (under reasonable assumptions):

— As‘n’goestoeo, E_, < 2E, ..
* For fixed ‘k” and binary labels.

e Stone’s Theorem: KNN is “universally consistent”.

— If ‘k” converges to = as ‘n’ converges to oo,
but k/n converges to 0, E,, converges to E .

* For example, k = O(log n).
* First algorithm shown to have this property.

* Consistency says nothing about finite ‘n’.
— See "Dont Trust Asymptotics”.



https://www.naftaliharris.com/blog/asymptotics/

Consistency of Non-Parametric Models

* Universal consistency can be been shown for a variety of models:
— Linear models with polynomial basis.
— Linear models with Gaussian RBFs.

— Neural networks with one hidden layer and standard activations.
e Sigmoid, tanh, RelLU, etc.

* |t's non-parametric versions that are consistent:
— Size of model is a function of ‘n’.

— Examples:
 KNN needs to store all ‘'n’ training examples.
* Degree of polynomial must grow with ‘n’ (not true for fixed polynomial).
 Number of hidden units must grow with ‘n’ (not true for fixed neural network).



Parametric vs. Non-Parametric Models
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Parametric vs. Non-Parametric Models
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Summary

e No free lunch theorem:

— There is no “best” or even “good” machine learning models across all
problems.

* Universal consistency:

— Some non-parametric models can solve any continuous learning problem.

* Next time:
— More about convexity than you ever wanted to know.



