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Last Time: Violating the Golden Rule?

• Usual strategy for hyper-parameter tuning:
– Optimize performance on a validation set.

• This can lead to overfitting to the validation set.

• We showed a bound on the amount of overfitting:

– Probability of overfitting increases linearly in ‘k’:
• “Number of hyper-parameter values you are optimizing over.

– Probability of overfitting decreases exponentially in ‘t’:
• Number of IID examples in validation set.

• You can violate the golden rule, even quite a bit, with a big validation set.



Generalization Error

• An alternative measure of performance is the generalization error:

– Average error over the set of xi values that are not seen in the training set.

– “How well we expect to do for a completely unseen feature vector”.

• Test error vs. generalization error when labels are deterministic:



“Best” and the “Good” Machine Learning Models

• Question 1: what is the “best” machine learning model?

– The model that gets lower generalization error than all other models.

• Question 2: which models always do better than random guessing?

– Models with lower generalization error than “predict 0” for all problems.

• No free lunch theorem:

– There is no “best” model achieving the best generalization error for every 
problem.

– If model A generalizes better to new data than model B on one dataset, 
there is another dataset where model B works better.



No Free Lunch Theorem

• Let’s show the “no free lunch” theorem in a simple setting:
– The xi and yi are binary, and yi being a deterministic function of xi.

• With ‘d’ features, each “learning problem” is a map from {0,1}d -> {0,1}.
– Assigning a binary label to each of the 2d feature combinations.

• Let’s pick one of these ‘y’ vectors (“maps” or “learning problems”) and:
– Generate a set training set of ‘n’ IID samples.

– Fit model A (convolutional neural network) and model B (naïve Bayes).
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No Free Lunch Theorem

• Define the “unseen” examples as the (2d – n) not seen in training.
– Assuming no repetitions of xi values, and n < 2d.

– Generalization error is the average error on these “unseen” examples.

• Suppose that model A got 1% error and model B got 60% error.
– We want to show model B beats model A on another “learning problem”.

• Among our set of “learning problems” find the one where:
– The labels yi agree on all training examples.

– The labels yi disagree on all “unseen” examples.

• On this other “learning problem”:
– Model A gets 99% error and model B gets 40% error.



No Free Lunch Theorem

• Further, across all “learning problems” with these ‘n’ examples:

– Average generalization error of every model is 50% on unseen examples.

• It’s right on each unseen example in exactly half the learning problems.

– With ‘k’ classes, the average error is (k-1)/k (random guessing).

• This is kind of depressing: 

– For general problems, no “machine learning” is better than “predict 0”.



(pause)



Limit of No Free Lunch Theorem

• Fortunately, the world is structured:

– Some “learning problems” are more likely than others.

• For example, it’s usually the case that “similar” xi have similar yi.

– Datasets with properties like this are more likely.

– Otherwise, you probably have no hope of learning.

• Models with right “similarity” assumptions (“bias”) can beat “predict 0”.

• With assumptions like this, you can consider consistency:

– As ‘n’ grows, model A converges to the optimal test error.



Refined Fundamental Trade-Off

• Let Ebest be the irreducible error (lowest possible error for any model).

– For example, irreducible error for predicting coin flips is 0.5.

• Some learning theory results use Ebest to further decompose Etest:

• This is similar to the bias-variance trade-off (bonus slide):

– Eapprox measures how sensitive we are to training data (like “variance”).

– Emodel measures if our model is complicated enough to fit data (like “bias”).

– Ebest measures how low can any model make test error (“irreducible” error).



Refined Fundamental Trade-Off

• Let Ebest be the irreducible error (lowest possible error for any model).
– For example, irreducible error for predicting coin flips is 0.5.

• Some learning theory results use Ebest to further decompose Etest:

• This is similar to the bias-variance trade-off (bonus slide):
– You need to trade between having low Eapprox and having low Emodel.

– Powerful models have low Emodel but can have high Eapprox.

– Ebest does not depend on what model you choose.



Consistency and Universal Consistency

• A model is consistent for a particular learning problem if:

– Etest converges to Ebest as ‘n’ goes to infinity, for that particular problem.

• A model is universally consistent for a class of learning problems if:

– Etest converges to Ebest as ‘n’ goes to infinity, for all problems in the class.

• Class of learning problems is usually be “all problems satisfying”:

– A continuity assumption on the labels yi as a function of xi.

• E.g., if xi is close to xj then they are likely to receive the same label.

– A boundedness assumption of the set of xi.



K-Nearest Neighbours (KNN)

• Classical consistency results focus on k-nearest neighbours (KNN).

• To classify an object ෤𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to ෤𝑥i.

2. Classify using the most common label of “nearest” examples.
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Consistency of KNN (Discrete/Deterministic Case) 

• Let’s show universal consistency of KNN in a simplified setting.
– The xi and yi are binary, and yi being a deterministic function of xi.

• Deterministic yi implies that Ebest is 0.

• Consider KNN with k=1:
– After we observe an xi, KNN makes right test prediction for that vector.

– As ‘n’ goes to ∞, each feature vectors with non-zero probability is observed.

– We have Etest = 0 once we’ve seen all feature vectors with non-zero probability.

• Notes:
– No free lunch isn’t relevant as ‘n’ goes to ∞ here: we eventually see everything.

• There are 2d possible feature vectors, so might need a huge number of training examples.

– It’s more complicated if labels aren’t deterministic and features are continuous.



Consistency of KNN (Continuous/Non-Deterministic)

• KNN consistency properties (under reasonable assumptions):
– As ‘n’ goes to ∞, Etest ≤ 2Ebest.

• For fixed ‘k’ and binary labels.

• Stone’s Theorem: KNN is “universally consistent”.
– If ‘k’ converges to ∞ as ‘n’ converges to ∞,

but k/n converges to 0, Etest converges to Ebest.
• For example, k = O(log n).

• First algorithm shown to have this property.

• Consistency says nothing about finite ‘n’.
– See "Dont Trust Asymptotics”.

https://www.naftaliharris.com/blog/asymptotics/


Consistency of Non-Parametric Models

• Universal consistency can be been shown for a variety of models:
– Linear models with polynomial basis.

– Linear models with Gaussian RBFs.

– Neural networks with one hidden layer and standard activations.
• Sigmoid, tanh, ReLU, etc.

• It’s non-parametric versions that are consistent:
– Size of model is a function of ‘n’.

– Examples:
• KNN needs to store all ‘n’ training examples.

• Degree of polynomial must grow with ‘n’ (not true for fixed polynomial).

• Number of hidden units must grow with ‘n’ (not true for fixed neural network).



Parametric vs. Non-Parametric Models



Parametric vs. Non-Parametric Models



Summary

• No free lunch theorem:

– There is no “best” or even “good” machine learning models across all 
problems.

• Universal consistency:

– Some non-parametric models can solve any continuous learning problem.

• Next time:

– More about convexity than you ever wanted to know.


