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Supervised Learning Notation

 We are given training data where we know labels:

g | Wil Fish | Wheat | Shellsh | Peanuts | .
0 0.7 0 0.3 0 0 1

0.3 0.7 0 0.6 0 0.01 1
X 0 0 0 0.8 0 0 o 0
03 0.7 1.2 0 0.10 0.01 1
03 O 1.2 0.3 0.10 0.01 1

* But the goal is to do well on any possible testing data:
Egg | Milk | Fish | Wheat | Shellfish | Peanuts | ..
0.5 0 1 0.6 2 1 ?
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“Test Set” vs. “Test Error”

* Formally, the “test error” is the expected error of our model:
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— Here I’'m using absolute error between predictions and true labels.
* But you could use squared error or other losses.

— The expectation is taken over distribution of test examples.
* Think of this as the “error with infinite data”.

— We assume that our training examples are drawn |ID from this distribution.
* Otherwise, “training” might not help to reduce “test error”.

* Unfortunately, we cannot compute the test error.
— We don’t have access to the distribution over all test examples.



“Test Set” vs. “Test Error”

* We often approximate “test error” with the error on a “test set”:
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— Here, we are using ‘t” examples drawn |ID from the test distribution.

* Note that “test set error” is not the “test error”.
— The goal is have a low “test error”, not “test set error”.

* The “golden rule” of machine learning:
— A “test set” cannot influence the “training” in any way.
— Otherwise, “test set error” is not an unbiased “test error” approximation.
— We run the risk of “overfitting” to the “test set”.



Typical Supervised Learning Steps (Are Bad?)

e Given data {X,y}, a typical set of supervised learning steps:

— Data splitting:
* Split {X,y}into a train set {Xtrain,ytrain} and a validation set {Xvalid,yvalid}.
* We’re going to use the validation set error as an approximation of test error.

— Tune hyper-parameters (number of hidden units, A, polynomial degree,etc.):

* For each candidate value “\” of the hyper-parameters:
— Fit a model to the train set {Xtrain,ytrain} using the given hyper-parameters “\”.
— Evaluate the model on the validation set {Xvalid,yvalid}.

— Choose the model with the best performance on the validation set.

* And maybe re-train using hyper-parameter “A” on the full dataset.

e Can this overfit, even though we used a validation set?
— Yes, we’ve violated the golden rule. But maybe it’s not too bad...



Validation Error, Test Error, and Approximation Error

* 340 discusses the “Fundamental Trade-Off of Machine Learning”.
— Simple identity relating training set error to test error.

 We have a similar identity for the validation error.
— If E..; is the test error and E, ., is the error on the validation set, then:
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* If E pprox IS SMall, then E ;4 is @ good approximation of E;.

so how do we know if E is small?

)
— We can’t measure E,, approx



Bounding E

approx

e Let’s consider a simple case:
— Labels y' are binary, and we try 1 hyper-parameter setting.
— |ID assumption on validation set implies E ;.4 is unbiased: E[E ;4] = E -

* We can bound probability E, ., is greater than .

— Assumptions: data is IID (so E ;4 is unbiased) and loss is in [0,1].
— By using Hoeffding’s inequality:
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— Probability that E ., is far from E, . goes down exponentially with ‘t’.

* This is great: the bigger your validation set, the better approximation you get.


https://en.wikipedia.org/wiki/Hoeffding's_inequality

Bounding E

approx

e Let’s consider a slightly less-simple case:
— Labels are binary, and we tried ‘k’ hyper-parameter values.
— In this case it’s unbiased for each ‘k’: E[E, ;4] = E

test*

— So for each validation error E, ;4 We have:
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— But our final validation error is E,;y = min{E, 50y}, Which is biased.

* We can’t apply Hoeffding because we chose best among ‘k’ values.

* Fix: bound on probability that all |E..; — E,,iqn | Values are <&.
— We show it holds for all values of A, so it must hold for the best value.



Bounding E

approx

* The “union bound” for any events {A,, A,, ..., A } is that:
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Bounding E

approx

* So if we choose best E, ;4 among k’ A values, we have:
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* So optimizing over ‘k’ models is ok if we have a large ‘t’.
— But if 'k’ is too large or ‘t’ is too small the validation error isn’t useful.

 Examples:
— If k=10 and t=1000, probability that |E, .,
— If k=10 and t=10000, probability that |E
— If k=10 and t=1000, probability that |E, .,
— If k=100 and t=100000, probability that |E

| >.05 is less than 0.14.

approx| > 05 is less than 10-°.
| >.01is less than 2.7 (useless).
| >.01 is less than 10°.

approx



Bounding E
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e Validation error vs. test error for fixed ‘t’.

— E,.iq 80€s down as we increase ‘k’, but E

e Overfitting of validation set.

can go up.
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Discussion

Bound is usually very loose, but data is probably not fully IID.
— Similar bounds are possible for cross-validation.

Similar arguments apply for the E_ ., of the training error.
— Value ‘k’ is the number of hyper-parameters you are optimizing over (even if don’t try them all).
— So ‘k’ is usually huge: you try out k=O(nd) decision stumps.

What if we train by gradient descent?
— We're optimizing on continuous space, so k=o= and the bound is useless.

— In this case, VC-dimension is one way to replace ‘k’ (doesn’t need union bound).
e “Simpler” models like decision stumps and linear models will have lower VC-dimension.

Learning theory keywords if you want to go deeper into this topic:

— Bias-variance (see bonus slides for details and why this is weird), sample complexity, PAC
learning, VC dimension, Rademacher complexity.

— A gentle place to start is the Learning from Data book.



https://work.caltech.edu/telecourse.html

Summary

e Test error vs. test set error
— What we care about is the test error.

* Overfitting hyper-parameters on a validation set:

— Depends on how many hyper-parameters you try and number of validation
examples.

. “bias-variance decomposition”.

* Next time:
— More about convexity than you ever wanted to know.



Bias-Variance Decomposition

* You may have seen “bias-variance decomposition” in other classes:

— Assumes y. = . + €, where € has mean 0 and variance o?.
— Assumes we have a “learner” that can take ‘n’ training examples and use these to
make predictions ..

. Expected squared test error in this setting is
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— Where expectations are taken over possible training sets of ‘n’” examples.
— Bias is expected error due to having wrong model.

— Variance is expected error due to sensitivity to the training set.

— Noise (irreducible error) is the best can hope for given the noise (E, .,).



Bias-Variance vs. Fundamental Trade-Off

 Both decompositions serve the same purpose:
— Trying to evaluate how different factors affect test error.

* They both lead to the same 3 conclusions:

1. Simple models can have high E, .. /bias, low Eapprox/variance.
/bias, high E_ .,

/variance goes down (for fixed complexity).

train

2. Complex models can have low E /variance.

train

: (.7
3. Asyouincrease 'n, E .,



Bias-Variance vs. Fundamental Trade-Off

* So why focus on fundamental trade-off and not bias-variance?
— Simplest viewpoint that gives these 3 conclusions.
— No assumptions like being restricted to squared error.

— You can measure E;, butnot £, (1 known and 1 unknown).

* If E,.;,islow andyou expect E to be low, then you are happy.

— E.g., you fit a very simple model or you used a huge independent validation set.

approx

— You can’t measure bias, variance, or noise (3 unknowns).

* IfE. . islow, bias-variance decomposition doesn’t say anything about test error.

— You only have your training set, not distribution over possible datasets.

train

— Doesn’t say if high E.__. is due to bias or variance or noise.

test



Learning Theory

* Bias-variance decomposition is a bit weird:

— Considers expectation over possible training sets.

* Bias-variance says nothing about your training set.
— This is different than Hoeffding bounds:

* Bound the test error based on your actual training set and training/validation error.



