CPSC 440: Machine Learning

Fundamentals of Learning Winter 2021

Supervised Learning Notation

• We are given training data where we know labels:

	Egg	Milk	Fish	Wheat	Shellfish	Peanuts	•••		Sick?
X =	0	0.7	0	0.3	0	0		y =	1
	0.3	0.7	0	0.6	0	0.01			1
	0	0	0	0.8	0	0			0
	0.3	0.7	1.2	0	0.10	0.01			1
	0.3	0	1.2	0.3	0.10	0.01			1

• But the goal is to do well on any possible testing data:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts		Sick?
0.5	0	1	0.6	2	1		?
0	0.7	0	1	0	0	\widetilde{y} =	?
3	1	0	0.5	0	0		?

"Test Set" vs. "Test Error"

• Formally, the "test error" is the expected error of our model:

- Here I'm using absolute error between predictions and true labels.
 - But you could use squared error or other losses.
- The expectation is taken over distribution of test examples.
 - Think of this as the "error with infinite data".
- We assume that our training examples are drawn IID from this distribution.
 - Otherwise, "training" might not help to reduce "test error".
- Unfortunately, we cannot compute the test error.
 - We don't have access to the distribution over all test examples.

"Test Set" vs. "Test Error"

• We often approximate "test error" with the error on a "test set":

 $\frac{1}{4}\sum_{i=1}^{2} |\hat{y}' - \tilde{y}'|$

- Note that "test set error" is not the "test error".
 - The goal is have a low "test error", not "test set error".
- The "golden rule" of machine learning:
 - A "test set" cannot influence the "training" in any way.
 - Otherwise, "test set error" is not an unbiased "test error" approximation.
 - We run the risk of "overfitting" to the "test set".

Typical Supervised Learning Steps (Are Bad?)

- Given data {X,y}, a typical set of supervised learning steps:
 - Data splitting:
 - Split {X,y} into a train set {Xtrain,ytrain} and a validation set {Xvalid,yvalid}.
 - We're going to use the validation set error as an approximation of test error.
 - Tune hyper-parameters (number of hidden units, λ , polynomial degree, etc.):
 - For each candidate value " λ " of the hyper-parameters:
 - Fit a model to the train set {Xtrain, ytrain} using the given hyper-parameters " λ ".
 - Evaluate the model on the validation set {Xvalid,yvalid}.
 - Choose the model with the best performance on the validation set.
 - And maybe re-train using hyper-parameter " λ " on the full dataset.
- Can this overfit, even though we used a validation set?
 - Yes, we've violated the golden rule. But maybe it's not too bad...

Validation Error, Test Error, and Approximation Error

- 340 discusses the "Fundamental Trade-Off of Machine Learning".
 Simple identity relating training set error to test error.
- We have a similar identity for the validation error.
 - If E_{test} is the test error and E_{valid} is the error on the validation set, then:

$$E_{\text{test}} = (E_{\text{test}} - E_{\text{valid}}) + E_{\text{valid}}$$

$$E_{\text{approx}}$$

• If E_{approx} is small, then E_{valid} is a good approximation of E_{test} . – We can't measure E_{test} , so how do we know if E_{approx} is small?

- Let's consider a simple case:
 - Labels yⁱ are binary, and we try 1 hyper-parameter setting.
 - IID assumption on validation set implies E_{valid} is unbiased: $E[E_{valid}] = E_{test}$.
- We can bound probability E_{approx} is greater than ϵ .
 - Assumptions: data is IID (so E_{valid} is unbiased) and loss is in [0,1].
 - By using <u>Hoeffding's inequality</u>:

$$p(|E_{test} - E_{valid}| \ 7E) \leq 2exp(-2E^2t)$$

$$E_{approx}$$
Inumber of examples
in validation set

– Probability that E_{valid} is far from E_{test} goes down exponentially with 't'.

• This is great: the bigger your validation set, the better approximation you get.

- Let's consider a slightly less-simple case:
 - Labels are binary, and we tried 'k' hyper-parameter values.
 - In this case it's unbiased for each 'k': $E[E_{valid(\lambda)}] = E_{test}$.
 - So for each validation error $E_{\text{valid}(\lambda)}$ we have:

$$p(|\epsilon_{te,1} - \epsilon_{vul_2(2)}| > \epsilon) \leq 2exp(-2\epsilon^2 t)$$

- But our final validation error is $E_{valid} = min\{E_{valid(\lambda)}\}$, which is biased.
 - We can't apply Hoeffding because we chose best among 'k' values.
- Fix: bound on probability that all $|E_{test} E_{valid(\lambda)}|$ values are $\leq \varepsilon$. — We show it holds for all values of λ , so it must hold for the best value.

• The "union bound" for any events {A₁, A₂, ..., A_k} is that:

$$p(A, UA_{\lambda} U \cdots UA_{\kappa}) \leq \sum_{i=1}^{k} p(A_{i})$$

• Combining with Hoeffding we can get:

 $p(|E_{trst} - \min_{\lambda} [E_{val}(\lambda)] > E) \leq p(E_{xisls o} \lambda \text{ where } |E_{trst} - E_{val}(\lambda)| > E)$ $\leq \sum_{\lambda} p(|E_{tost} - E_{val}(\lambda)| > E)$ $\leq \sum_{\lambda} 2exp(-2E^{2}t)$ $= k 2exp(-2E^{2}t)$

• So if we choose best $\mathsf{E}_{\mathsf{valid}(\lambda)}$ among 'k' λ values, we have:

$$p(|E_{test} - E_{value(a)}| > \varepsilon$$
 for any $\lambda) \leq K 2 exp(-2\varepsilon^2 t)$

- So optimizing over 'k' models is ok if we have a large 't'.
 But if 'k' is too large or 't' is too small the validation error isn't useful.
- Examples:
 - If k=10 and t=1000, probability that $|E_{approx}| > .05$ is less than 0.14.
 - If k=10 and t=10000, probability that $|E_{approx}| > .05$ is less than 10^{-20} .
 - If k=10 and t=1000, probability that $|E_{approx}| > .01$ is less than 2.7 (useless).
 - If k=100 and t=100000, probability that $|E_{approx}| > .01$ is less than 10^{-6} .

- Validation error vs. test error for fixed 't'.
 - E_{valid} goes down as we increase 'k', but E_{approx} can go up.
 - Overfitting of validation set.

Discussion

- Bound is usually very loose, but data is probably not fully IID.
 - Similar bounds are possible for cross-validation.
- Similar arguments apply for the E_{approx} of the training error.
 - Value 'k' is the number of hyper-parameters you are optimizing over (even if don't try them all).
 - So 'k' is usually huge: you try out k=O(nd) decision stumps.
- What if we train by gradient descent?
 - We're optimizing on continuous space, so $k=\infty$ and the bound is useless.
 - In this case, VC-dimension is one way to replace 'k' (doesn't need union bound).
 - "Simpler" models like decision stumps and linear models will have lower VC-dimension.
- Learning theory keywords if you want to go deeper into this topic:
 - Bias-variance (see bonus slides for details and why this is weird), sample complexity, PAC learning, VC dimension, Rademacher complexity.
 - A gentle place to start is the <u>Learning from Data book</u>.

Summary

- Test error vs. test set error
 - What we care about is the test error.
- Overfitting hyper-parameters on a validation set:
 - Depends on how many hyper-parameters you try and number of validation examples.
- Post-lecture bonus slides: "bias-variance decomposition".
- Next time:
 - More about convexity than you ever wanted to know.

Bias-Variance Decomposition

- You may have seen "bias-variance decomposition" in other classes:
 - Assumes $\tilde{y}_i = \bar{y}_i + \varepsilon$, where ε has mean 0 and variance σ^2 .
 - Assumes we have a "learner" that can take 'n' training examples and use these to make predictions \hat{y}_{i} .
- - Where expectations are taken over possible training sets of 'n' examples.
 - Bias is expected error due to having wrong model.
 - Variance is expected error due to sensitivity to the training set.
 - Noise (irreducible error) is the best can hope for given the noise (E_{best}).

Bias-Variance vs. Fundamental Trade-Off

- Both decompositions serve the same purpose:
 - Trying to evaluate how different factors affect test error.
- They both lead to the same 3 conclusions:
 - 1. Simple models can have high E_{train} /bias, low E_{approx} /variance.
 - 2. Complex models can have low E_{train} /bias, high E_{approx} /variance.
 - 3. As you increase 'n', E_{approx}/variance goes down (for fixed complexity).

Bias-Variance vs. Fundamental Trade-Off

- So why focus on fundamental trade-off and not bias-variance?
 - Simplest viewpoint that gives these 3 conclusions.
 - No assumptions like being restricted to squared error.
 - You can measure E_{train} but not E_{approx} (1 known and 1 unknown).
 - If E_{train} is low and you expect E_{approx} to be low, then you are happy.
 - E.g., you fit a very simple model or you used a huge independent validation set.
 - You can't measure bias, variance, or noise (3 unknowns).
 - If E_{train} is low, bias-variance decomposition doesn't say anything about test error.
 - You only have your training set, not distribution over possible datasets.
 - Doesn't say if high E_{test} is due to bias or variance or noise.

Learning Theory

- Bias-variance decomposition is a bit weird:
 - Considers expectation over *possible training sets*.
- Bias-variance says nothing about your training set.
 - This is different than Hoeffding bounds:
 - Bound the test error based on your actual training set and training/validation error.