
CPSC 440: Machine Learning

Fundamentals of Learning

Winter 2021

Supervised Learning Notation

• We are given training data where we know labels:

• But the goal is to do well on any possible testing data:

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

X = y =

Egg Milk Fish Wheat Shellfish Peanuts …

0.5 0 1 0.6 2 1

0 0.7 0 1 0 0

3 1 0 0.5 0 0

Sick?

?

?

?

෨𝑋= 𝑦 =

“Test Set” vs. “Test Error”

• Formally, the “test error” is the expected error of our model:

– Here I’m using absolute error between predictions and true labels.
• But you could use squared error or other losses.

– The expectation is taken over distribution of test examples.
• Think of this as the “error with infinite data”.

– We assume that our training examples are drawn IID from this distribution.
• Otherwise, “training” might not help to reduce “test error”.

• Unfortunately, we cannot compute the test error.
– We don’t have access to the distribution over all test examples.

“Test Set” vs. “Test Error”

• We often approximate “test error” with the error on a “test set”:

– Here, we are using ‘t’ examples drawn IID from the test distribution.

• Note that “test set error” is not the “test error”.
– The goal is have a low “test error”, not “test set error”.

• The “golden rule” of machine learning:
– A “test set” cannot influence the “training” in any way.

– Otherwise, “test set error” is not an unbiased “test error” approximation.

– We run the risk of “overfitting” to the “test set”.

Typical Supervised Learning Steps (Are Bad?)

• Given data {X,y}, a typical set of supervised learning steps:

– Data splitting:
• Split {X,y} into a train set {Xtrain,ytrain} and a validation set {Xvalid,yvalid}.

• We’re going to use the validation set error as an approximation of test error.

– Tune hyper-parameters (number of hidden units, λ, polynomial degree,etc.):
• For each candidate value “λ” of the hyper-parameters:

– Fit a model to the train set {Xtrain,ytrain} using the given hyper-parameters “λ”.

– Evaluate the model on the validation set {Xvalid,yvalid}.

– Choose the model with the best performance on the validation set.
• And maybe re-train using hyper-parameter “λ” on the full dataset.

• Can this overfit, even though we used a validation set?

– Yes, we’ve violated the golden rule. But maybe it’s not too bad…

Validation Error, Test Error, and Approximation Error

• 340 discusses the “Fundamental Trade-Off of Machine Learning”.

– Simple identity relating training set error to test error.

• We have a similar identity for the validation error.

– If Etest is the test error and Evalid is the error on the validation set, then:

• If Eapprox is small, then Evalid is a good approximation of Etest.

– We can’t measure Etest, so how do we know if Eapprox is small?

Bounding Eapprox

• Let’s consider a simple case:

– Labels yi are binary, and we try 1 hyper-parameter setting.

– IID assumption on validation set implies Evalid is unbiased: E[Evalid] = Etest.

• We can bound probability Eapprox is greater than ε.

– Assumptions: data is IID (so Evalid is unbiased) and loss is in [0,1].

– By using Hoeffding’s inequality:

– Probability that Evalid is far from Etest goes down exponentially with ‘t’.

• This is great: the bigger your validation set, the better approximation you get.

https://en.wikipedia.org/wiki/Hoeffding's_inequality

Bounding Eapprox

• Let’s consider a slightly less-simple case:

– Labels are binary, and we tried ‘k’ hyper-parameter values.

– In this case it’s unbiased for each ‘k’: E[Evalid(λ)] = Etest.

– So for each validation error Evalid(λ) we have:

– But our final validation error is Evalid = min{Evalid(λ}}, which is biased.

• We can’t apply Hoeffding because we chose best among ‘k’ values.

• Fix: bound on probability that all |Etest – Evalid(λ)| values are ≤ ε.

– We show it holds for all values of λ, so it must hold for the best value.

Bounding Eapprox

• The “union bound” for any events {A1, A2, …, Ak} is that:

• Combining with Hoeffding we can get:

Bounding Eapprox

• So if we choose best Evalid(λ) among ‘k’ λ values, we have:

• So optimizing over ‘k’ models is ok if we have a large ‘t’.

– But if ‘k’ is too large or ‘t’ is too small the validation error isn’t useful.

• Examples:

– If k=10 and t=1000, probability that |Eapprox| > .05 is less than 0.14.

– If k=10 and t=10000, probability that |Eapprox| > .05 is less than 10-20.

– If k=10 and t=1000, probability that |Eapprox| > .01 is less than 2.7 (useless).

– If k=100 and t=100000, probability that |Eapprox| > .01 is less than 10-6.

Bounding Eapprox

• Validation error vs. test error for fixed ‘t’.

– Evalid goes down as we increase ‘k’, but Eapprox can go up.

• Overfitting of validation set.

Discussion
• Bound is usually very loose, but data is probably not fully IID.

– Similar bounds are possible for cross-validation.

• Similar arguments apply for the Eapprox of the training error.
– Value ‘k’ is the number of hyper-parameters you are optimizing over (even if don’t try them all).
– So ‘k’ is usually huge: you try out k=O(nd) decision stumps.

• What if we train by gradient descent?
– We’re optimizing on continuous space, so k=∞ and the bound is useless.
– In this case, VC-dimension is one way to replace ‘k’ (doesn’t need union bound).

• “Simpler” models like decision stumps and linear models will have lower VC-dimension.

• Learning theory keywords if you want to go deeper into this topic:
– Bias-variance (see bonus slides for details and why this is weird), sample complexity, PAC

learning, VC dimension, Rademacher complexity.
– A gentle place to start is the Learning from Data book.

https://work.caltech.edu/telecourse.html

Summary

• Test error vs. test set error

– What we care about is the test error.

• Overfitting hyper-parameters on a validation set:

– Depends on how many hyper-parameters you try and number of validation
examples.

• Post-lecture bonus slides: “bias-variance decomposition”.

• Next time:

– More about convexity than you ever wanted to know.

Bias-Variance Decomposition

• You may have seen “bias-variance decomposition” in other classes:
– Assumes 𝑦i = ത𝑦i + ε, where ε has mean 0 and variance σ2.

– Assumes we have a “learner” that can take ‘n’ training examples and use these to
make predictions ො𝑦i.

• Expected squared test error in this setting is

– Where expectations are taken over possible training sets of ‘n’ examples.

– Bias is expected error due to having wrong model.

– Variance is expected error due to sensitivity to the training set.

– Noise (irreducible error) is the best can hope for given the noise (Ebest).

Bias-Variance vs. Fundamental Trade-Off

• Both decompositions serve the same purpose:

– Trying to evaluate how different factors affect test error.

• They both lead to the same 3 conclusions:

1. Simple models can have high Etrain/bias, low Eapprox/variance.

2. Complex models can have low Etrain/bias, high Eapprox/variance.

3. As you increase ‘n’, Eapprox/variance goes down (for fixed complexity).

Bias-Variance vs. Fundamental Trade-Off

• So why focus on fundamental trade-off and not bias-variance?

– Simplest viewpoint that gives these 3 conclusions.

– No assumptions like being restricted to squared error.

– You can measure Etrain but not Eapprox (1 known and 1 unknown).

• If Etrain is low and you expect Eapprox to be low, then you are happy.
– E.g., you fit a very simple model or you used a huge independent validation set.

– You can’t measure bias, variance, or noise (3 unknowns).

• If Etrain is low, bias-variance decomposition doesn’t say anything about test error.
– You only have your training set, not distribution over possible datasets.

– Doesn’t say if high Etest is due to bias or variance or noise.

Learning Theory

• Bias-variance decomposition is a bit weird:

– Considers expectation over possible training sets.

• Bias-variance says nothing about your training set.

– This is different than Hoeffding bounds:

• Bound the test error based on your actual training set and training/validation error.

