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Last Time: Bayesian Predictions and Empirical Bayes

@ We've discussed making predictions using posterior predictive,

S argmaX/ p(@ | 2, w)p(w | X,y, \)dw,
] w
which gives optimal predictions given your assumptions.

e We considered empirical Bayes (type || MLE),
A €argmaxp(y | X,)), where p(y|X,\) = / p(y | X, w)p(w | N)dw,
A w

where we optimize marginal likelihood to select model and/or hyper-parameters.
o Allows a huge number of hyper-parameters with less over-fitting than MLE.
e Can use gradient descent to optimize continuous hyper-parameters.
o Ratio of marginal likelihoods (Bayes factor) can be used for hypothesis testing.
o In many settings, naturally encourages sparsity (in parameters, data, clusters, etc.).



Conjugate Priors Hierarchical Bayes

Beta-Bernoulli Model

o Consider again a coin-flipping example with a Bernoulli variable,
x ~ Ber(6).

@ Previously we considered that either 8 =1 or § = 0.5.

o Today: 6 is a continuous variable coming from a beta distribution,
0 ~ B(a, B).

@ The parameters a and (3 of the prior are called hyper-parameters.

e Similar to A in regression, « and [ are parameters of the prior.
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Beta-Bernoulli Prior
Why the beta as a prior distribution?
@ “It's a flexible distribution that includes uniform as special case”.
@ "It makes the integrals easy”.
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https://en.wikipedia.org/wiki/Beta_distribution
@ Uniform distribution if « =1 and g = 1.
@ “Laplace smoothing” corresponds to MAP with o =2 and 8 = 2.
o Biased towards 0.5.


https://en.wikipedia.org/wiki/Beta_distribution
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Beta-Bernoulli Posterior

@ The PDF for the beta distribution has similar form to Bernoulli,
0], f~B(a,B) = p@]ap) oo (1-0)""
@ Observing HTH under Bernoulli likelihood and beta prior gives posterior of
p(0 | HTH, o, B) o< p(HTH | 0, ct, B)p(6 | v, B)
~ (92(1 —g)lgeta - 9)5—1)
= gte)=1(1 — g)(1+A)-1,
@ Since proportionality (<) constant is unique for probabilities, posterior is a beta:
0| HTH, o, ~ B2+ a,1+ f).

@ When the prior and posterior come from same family, it's called a conjugate prior.
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Conjugate Priors

@ Conjugate priors make Bayesian inference easier:

@ Posterior is prior with “updated” parameters.

o For Bernoulli-beta, if we observe h heads and ¢ tails then posterior is B(« + h, 8 + t).
@ Hyper-parameters o« and 3 are “pseudo-counts” in our mind before we flip.

@ We can update posterior sequentially as data comes in.
o For Bernoulli-beta, just update counts h and ¢.
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Conjugate Priors

o Conjugate priors make Bayesian inference easier:

© Marginal likelihood has closed-form, proportional to ratio of normalizing constants.
@ The beta distribution is written in terms of the beta function B,

1 a—1 B—1 _ a—1 _ B—1
B(a,ﬂ)e (1-6)""", where B(a,B)= /99 (1—-6)"""de.

and using the form of the posterior the marginal likelihood

p(0]a,B) =

1 B(h+a,t+ B)
B(a, ) B(a, 8)

o Empirical Bayes (type Il MLE) would optimize this in terms of « and 3.

p(HTH | o, B) = / g+l (1 — )t 1gg =
4

@ In many cases posterior predictive also has a nice form...
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Bernoulli-Beta Posterior Predictive

If we observe ‘HHH' then our different estimates are:
e MAP with uniform Beta(1,1) prior (maximum likelihood),

B4+a)—1 §_1

9:(3+a)+6—2:3

e MAP Beta(2,2) prior (Laplace smoothing),

S B+a)+B-2 5

Hierarchical Bayes
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Bernoulli-Beta Posterior Predictive

If we observe ‘"HHH' then our different estimates are:
@ Posterior predictive (Bayesian) with uniform Beta(1,1) prior,

1
p(H | HHH) = /0 p(H | 0)p(0 | HHH)d
- /1 Ber(H | 0)Beta(d | 3 + a, B)d6
0
_ /1 OBeta(d | 3 + a, B)d6 — E[0]
0

(mean of beta is a/(a + B))

(SR

@ Notice Laplace smoothing is not needed to avoid degeneracy under uniform prior.
e Here we had a “pseudo-count” of 1 head and 1 tail before we did our 3 flips.



Conjugate Priors

Effect of Prior and Improper Priors

@ We obtain different predictions under different priors:

e (3,3) prior is like seeing 3 heads and 3 tails (stronger prior towards 0.5),
o For HHH, posterior predictive is 0.667.

e (100, 1) prior is like seeing 100 heads and 1 tail (biased),
o For HHH, posterior predictive is 0.990.

e BB(.01,.01) biases towards having unfair coin (head or tail),

o For HHH, posterior predictive is 0.997.
o Called “improper” prior (does not integrate to 1), but posterior can be “proper”.

@ We might hope to use an uninformative prior to not bias results.
o But this is often hard/ambiguous/impossible to do (bonus slide).
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Back to Conjugate Priors
@ Basic idea of conjugate priors for abstract prior D and likelihood P:
r~D@®), 0~PN) = 0|xz~PWN).
@ Beta-bernoulli example (beta is also conjugate for binomial and geometric):
r ~Ber(), 6~ B(a,8), = 0|x~B(,p3),
@ Gaussian-Gaussian example:
e~ N, X),  p~N(po, o), = plo~NW,Y),

and posterior predictive is also a Gaussian.
o If X is also a random variable:
o Conjugate prior is normal-inverse-Wishart, posterior predictive is a student t.
@ For the conjugate priors of many standard distributions, see:
https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions


https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
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Back to Conjugate Priors

Conjugate priors make things easy because we have closed-form posterior.

@ Some “non-named” conjugate priors:
e Discrete priors are “conjugate” to all likelihoods:
@ Posterior will be discrete, although it still might be NP-hard to use.
e Mixtures of conjugate priors are also conjugate priors.
@ Posterior will have simple form, though again some comptuations may be difficult.

Do conjugate priors always exist?
o No, they only exist for exponential family likelihoods (next slides).

Bayesian inference is ugly when you leave exponential family (e.g., student t).

e Can use numerical integration for low-dimensional integrals.
e For high-dimensional integrals, need Monte Carlo methods or variational inference.
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Digression: Exponential Family

Exponential family distributions can be written in the form
p(@ | w) o h(z) exp(w’ F(z)).

e We often have h(x) =1, or an indicator that x satisfies constraints.

@ F'(z) is called the sufficient statistics.
o F(z) tells us everything that is relevant about data .

If F(x) = z, we say that the w are cannonical parameters.

Exponential family distributions can be derived from maximum entropy principle.

o Distribution that is “most random” that agrees with the sufficient statistics F'(z).
e Argument is based on “convex conjugate” of — log p.
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Digression: Bernoulli Distribution as Exponential Family

@ We often define linear models by setting w”z* equal to cannonical parameters.
o If we start with the Gaussian (fixed variance), we obtain least squares.

@ For Bernoulli, the cannonical parameterization is in terms of “log-odds”,

p(z | 6) = 67(1 - 6)'" = exp(log(6”(1 - 6)' "))
= exp(zlogf + (1 — z)log(1 — 0))

)

o Setting w'z’ = log(y'/(1 — y')) and solving for 4 yields logistic regression.
e You can obtain regression models for other settings using this approach.
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Conjugate Graphical Models

@ DAG computations simplify if parents are conjugate to children.

@ Examples:

Bernoulli child with Beta parent.

Gaussian belief networks.

Discrete DAG models.

Hybrid Gaussian/discrete, where discrete nodes can't have Gaussian parents.
Gaussian graphical model with normal-inverse-Wishart parents.



Outline

@ Conjugate Priors

© Hierarchical Bayes



Conjugate Priors Hierarchical Bayes

Hierarchical Bayesian Models

@ Type Il maximum likelihood is not really Bayesian:

o We're dealing with w using the rules of probability.
o But we're treating A as a parameter, not a nuissance variable.
@ You could overfit A.

@ Hierarchical Bayesian models introduce a hyper-prior p(\ | ).
o We can be “very Bayesian” and treat the hyper-parameter as a nuissance parameter.

@ Now use Bayesian inference for dealing with A:
e Work with posterior over A, p(A | X,y,~), if integral over w is easy.
e Or work with posterior over w and A.
e You could also consider a Bayes factor for comparing A values:

p(A1L | X,y,7)/p(A2 | X,9,7),

which now account for belief in different hyper-parameter settings.
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Model Selection and Averaging: Hyper-Parameters as Variables
@ Bayesian model selection (“type Il MAP"): maximizes hyper-parameter posterior,
A = argmaxp(X | X,y,7)
A
= Einerdeliy | 2% Ao [

further taking us away from overfitting (thus allowing more complex models).
e We could do the same thing to choose order of polynomial basis, o in RBFs, etc.

@ Bayesian model averaging considers posterior predictive over hyper-parameters,
= argmax// )p(w, A | X, y,v)dwdA.
@ Could maximize marginal likelihood of hyper-hyper-parameter ~, (“type Il ML"),

y = argmaxp(y | X,7) = argmaX/A/ p(y | X,w)p(w | A)p(A | v)dwdA.
Y i w
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Application: Automated Statistician

@ Hierarchical Bayes approach to regression:
© Put a hyper-prior over possible hyper-parameters.
@ Use type Il MAP to optimize hyper-parameters of your regression model.

@ Can be viewed as an automatic statistician:
http://www.automaticstatistician.com/examples
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http://www.automaticstatistician.com/examples
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Discussion of Hierarchical Bayes

@ “Super Bayesian” approach:

o Go up the hierarchy until model includes all assumptions about the world.
e Some people try to do this, and have argued that this may be how humans reason.

o Key advantage:
o Mathematically simple to know what to do as you go up the hierarchy:
e Same math for w, z, A, , and so on (all are nuissance parameters).

@ Key disadvantages:

e It can be hard to exactly encode your prior beliefs.
e The integrals get ugly very quickly.
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Summary

Conjugate priors are priors that lead to posteriors of the same form.

o They make Bayesian inference much easier.
e Posterior is prior distribution with “updated” parameters.
e Marginal likelihood proportional to ratio of normalizing constants.

Exponential family distributions are the only distributions with conjugate priors.
e Most standard distributions are exponential family, or integral of exponential family.

Hierarchical Bayes goes even more Bayesian with prior on hyper-parameters.
o Leads to Bayesian model selection and Bayesian model averaging.

Next time: modeling cancer mutation signatures.



Uninformative Priors and Jeffreys Prior

@ We might want to use an uninformative prior to not bias results.
e But this is often hard/impossible to do.

@ We might think the uniform distribution, B(1,1), is uninformative.

e But posterior will be biased towards 0.5 compared to MLE.
e And if you re-parameterize distribution it won't stay uniform.

e We might think to use “pseudo-count” of 0, B(0,0), as uninformative.
e But posterior isn't a probability until we see at least one head and one tail.

@ Some argue that the “correct” uninformative prior is 5(0.5,0.5).

e This prior is invariant to the parameterization, which is called a Jeffreys prior.

Hierarchical Bayes
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