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Last Time: Bayesian Statistics

For most of the course, we considered MAP estimation:

ŵ ∈ argmax
w

p(w | X, y) (train)

ŷi ∈ argmax
ŷ

p(ŷ | x̂i, ŵ) (test).

But w was random: I have no justification to only base decision on ŵ.
Ignores other reasonable values of w that could make opposite decision.

Last time we introduced Bayesian approach:
Treat w as a random variable, and define probability over what we want given data:

ŷi ∈ argmax
ŷ

p(ŷ | x̂i, X, y) (posterior predictive)

≡ argmax
ŷ

∫
w
p(ŷ | x̂i, w)p(w | X, y)dw (average predictions, weighted by posterior)

Directly follows from rules of probability, and no separate training/testing.
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7 Ingredients of Bayesian Inference (MEMORIZE)

1 Likelihood p(y | X,w) (discriminative) or p(y,X | w) (generative).

Probability of seeing data given parameters.

2 Prior p(w | λ).
Belief that parameters are correct before we’ve seen data.

3 Posterior p(w | X, y, λ).
Probability that parameters are correct after we’ve seen data.
We won’t use the MAP “point estimate”, we want the whole distribution.

4 Predictive p(ỹ | x̃, w).
Probability of test label ỹ given parameters w and test features x̃.

For example, sigmoid function for logistic regression.
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7 Ingredients of Bayesian Inference (MEMORIZE)

5 Posterior predictive p(ỹ | x̃, X, y, λ).
Probability of new data given old, integrating over parameters.
This tells us which prediction is most likely given data and prior.

6 Marginal likelihood p(y | X,λ) (also called “evidence”).

Probability of seeing data given hyper-parameters (integrating over parameters).
We’ll use this later for hypothesis testing and setting hyper-parameters.

7 Cost C(ŷ | ỹ).
The penalty you pay for predicting ŷ when it was really was ỹ.
Leads to Bayesian decision theory: predict to minimize expected cost.
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Review: Decision Theory

Are we equally concerned about “spam” vs. “not spam”.

Consider a scenario where different predictions have different costs:

Predict / True True “spam” True “not spam”

Predict “spam” 0 100
Predict “not spam” 10 0

In 340 we discussed predictin ŷ given ŵ by minimizing expected cost:

E[Cost(ŷ = “spam”)] = p(ỹ = “spam” | x̃, ŵ)C(ŷ = “spam” | ỹ = “spam”)

+ p(ỹ = “not spam” | x̃, ŵ)C(ŷ = “spam” | ỹ = “not spam”).

Consider a case where p(ỹ = “spam” | x̃, ŵ) > p(ỹ = “not spam” | x̃, ŵ).
We might still predict “not spam” if expected cost is lower.
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Bayesian Decision Theory

Bayesian decision theory:

Instead of using a MAP estimate ŵ, we should use posterior predictive,

E[Cost(ŷ = “spam”)] = p(ỹ = “spam” | x̃, X, y)C(ŷ = “spam” | ỹ = “spam”)

+ p(ỹ = “not spam” | x̃, X, y)C(ŷ = “spam” | ỹ = “not spam”).

Minimizing this expected cost is the optimal action.

Note that there is a lot going on here:

Expected cost depends on cost and posterior predictive.
Posterior predictive depends on predictive and posterior
Posterior depends on likelihood and prior.
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Outline

1 Ingredients of Bayesian Inference

2 Empirical Bayes
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Bayesian Linear Regression

Consider linear regression with Gaussian likelihood and prior,

yi ∼ N (wTxi, σ2), wj ∼ N (0, λ−1).

MAP estimation in this model corresponds to L2-regularized linear regression

argmin
w

1

2σ2
‖Xw − y‖2 + λ

2
‖w‖2.

And the solution is given by a variant on the normal equations:

wMAP =
1

σ2

(
1

σ2
XTX + λI

)−1
XT y.

In 340 we fixed σ2 = 1 (changing σ2 equivalent to changing λ).
In the Bayesian framework, both σ2 and λ affect the predictions.

To predict on new examples we use ŷ = wTMAPx̃.



Ingredients of Bayesian Inference Empirical Bayes

Bayesian Linear Regression
Consider linear regression with Gaussian likelihood and prior,

yi ∼ N (wTxi, σ2), wj ∼ N (0, λ−1).

By some tedious Gaussian identities, the posterior has the form

w | X, y ∼ N

(
wMAP,

(
1

σ2
XTX + λI

)−1)
,

which is a Gaussian centered at the MAP estimate.
The variance tells us how much variance we have around the MAP estimate.

Note that usually the MAP is not the mean of the posterior.

By more tedious Gaussian identities the posterior predictive has the form

ỹ | X, y, x̃ ∼ N (wTMAPx̃, σ
2 + x̃T

(
1

σ2
XTX + λI

)−1
x̃).

Mode of posterior predictive is MAP predictions (not usually the case).
And we now have variance of predictions.
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Bayesian Linear Regression

Bayesian perspective gives us variability in w and predictions:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

http://krasserm.github.io/2019/02/23/bayesian-linear-regression
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Bayesian Linear Regression
With Gaussian RBFs are features:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

http://krasserm.github.io/2019/02/23/bayesian-linear-regression
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Learning the Prior from Data?

Can we use the training data to set the hyper-parameters?

In theory: No!

It would not be a “prior”.
It’s no longer the right thing to do.

In practice: Yes!

Approach 1: split into training/validation set or use cross-validation as before.

Approach 2: optimize the marginal likelihood (“evidence”):

p(y | X,λ) =
∫
w

p(y | X,w)p(w | λ)dw.

Also called type II maximum likelihood or evidence maximization or empirical Bayes.
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Digression: Marginal Likelihood in Gaussian-Gaussian Model

Suppose we have a Gaussian likelihood and Gaussian prior,

yi ∼ N (wTxi, σ2), wj ∼ N (0, λ−1).

The joint probability of yi and wj is the likelihood times the prior:

p(y, w | X) ∝ exp

(
− 1

2σ2
‖Xw − y‖2 − λ

2
‖w‖2

)
.

The marginal likelihood integrates the joint over the nuissance parameter w,

p(y | X) =

∫
w
p(y, w | X)dw =

∫
w
p(y | X,w)p(w)dw (w ⊥ X).

Solving the Gaussian integral gives a marginal likelihood of

p(y | X) =
(λ)d/2

(σ
√
2π)n| 1

σ2XTX + λI|1/2
exp

(
− 1

2σ2
‖XwMAP − y‖2 −

λ

2
‖w+‖2

)
.
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Type II Maximum Likelihood for Basis Parameter

Consider polynomial basis, and treat degree as a hyper-parameter:

http://krasserm.github.io/2019/02/23/bayesian-linear-regression

Marginal likelihood (evidence) is highest for degree 3.
“Bayesian Occam’s Razor”: prefers simpler models that fit data well.
p(y | X) is smaller for degree 4 polynomials since they can fit more datasets.
It’s actually non-monotonic it prefers degree 1 and 3 over degree 2.
Model selection criteria like BIC are approximations to marginal likelihood as n→∞.

http://krasserm.github.io/2019/02/23/bayesian-linear-regression
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Type II Maximum Likelihood for Polynomial Basis
Why is the marginal likelihood higher for degree 3 than 7?

Marginal likelihood for degree 3:

p(y | X) =

∫
w0

∫
w1

∫
w2

∫
w3

p(y | X,w)p(w | λ)dw

Marginal likelihood for degree 7:

p(y | X) =

∫
w0

∫
w1

∫
w2

∫
w3

∫
w4

∫
w5

∫
w6

∫
w7

p(y | X,w)p(w | λ)dw.

Higher-degree integrates over high-dimensional volume:
A non-trivial proportion of degree 3 functions fit the data really well.

There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions.

Warning: this doesn’t always work, sometimes becomes degenerate.
May need a non-vague prior on the hyper-parameters.
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Bayes Factors for Bayesian Hypothesis Testing

Suppose we want to compare hypotheses:

E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.

Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)

p(y | X, degree 1)
.

If very large then data is much more consistent with degree 2.
A common variation also puts prior on degree.

A more direct method of hypothesis testing:

No need for null hypothesis, “power” of test, p-values, and so on.
As usual only says which model is more likely, not whether any are correct.
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American Statistical Assocation:
“Statement on Statistical Significance and P-Values”.
http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory”:
https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
https://en.wikipedia.org/wiki/Replication_crisis

http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

“T-Tests Aren’t Monotonic”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don’t solve problems with p-values and multiple testing.
But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf

http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
https://fivethirtyeight.com/features/science-isnt-broken
https://en.wikipedia.org/wiki/Replication_crisis
http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375
https://www.naftaliharris.com/blog/t-test-non-monotonic
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf
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Type II Maximum Likelihood for Regularization Parameter

Type II maximum likelihood maximizes probability of data given hyper-parameters,

λ̂ ∈ argmax
λ

p(y | X,λ), where p(y | X,λ) =
∫
w
p(y | X,w)p(w | λ)dw,

and the integral has closed-form solution if everything is Gaussian.

You can run gradient descent to choose λ.

We are using the data to optimize the parameters of the prior (“empirical”
Bayes).

“Optimizing hyper-parameters based on training data”.

Even if we have a complicated model, much less likely to overfit than MLE:

Complicated models need to integrate over many more alternative hypotheses.
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Learning Principles (MEMORIZE)

Maximum likelihood:

ŵ ∈ argmax
w

p(y | X,w) ŷ ∈ argmax
ỹ

p(ỹ | x̃, ŵ).

MAP:

ŵ ∈ argmax
w

p(w | X, y, λ) ŷ ∈ argmax
ỹ

p(ỹ | x̃, ŵ).

Bayesian (no “learning”):

ŷ ∈ argmax
ỹ

p(ỹ | x̃, X, y, λ) ≡ argmax
ỹ

∫
w
p(ỹ | x̃, w)p(w | X, y, λ)dw.

Type II maximum likelihood (“learn hyper-parameters”):

λ̂ ∈ argmax
λ

p(y | X,λ) ỹ ∈ argmax
ỹ

p(ỹ | x̃, X, y, λ)
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Type II Maximum Likelihood for Individual Regularization Parameter

Consider having a hyper-parameter λj for each wj ,

yi ∼ N (wTxi, σ2), wj ∼ N (0, λ−1j ).

Too expensive for cross-validation, but type II MLE works.
You can do gradient descent to optimize the λj .

Weird fact: this yields sparse solutions.
“Automatic relevance determination” (ARD)
Can send λj →∞, concentrating posterior for wj at exactly 0.

It tries to “remove some of the integrals”.

This is L2-regularization, but empirical Bayes naturally encourages sparsity.

Non-convex and theory not well understood:
Tends to yield much sparser solutions than L1-regularization.



Ingredients of Bayesian Inference Empirical Bayes

Type II Maximum Likelihood for Other Hyper-Parameters
Consider also having a hyper-parameter σi for each i,

yi ∼ N (wTxi, σ2i ), wj ∼ N (0, λ−1j ).

You can also use type II MLE to optimize these values.

The “automatic relevance determination” selects training examples (σi →∞).
This is like the support vectors in SVMs, but tends to be much more sparse.

Type II MLE can also be used to learn kernel parameters like RBF variance.
Do gradient descent on the σ values in the Gaussian kernel.

It may also do something sensible if you use it to choose number of clusters k.
Or number of states in hidden Markov model, number of latent factors in PCA, etc.

Bonus slides: Bayesian feature selection gives probability that wj is non-zero.
Posterior is much more informative than standard sparse MAP methods.
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Summary

7 ingredients of Bayesian inference:
Likelihood, prior, posterior, predictive, posterior predictive, marginal likelihood, cost.

Bayesian decision theory:
Optimal predictions based on cost functions and rules of probability.

Marginal likelihood is probability seeing data given hyper-parameters.
Bayes factors compute ratios between models to test hypotheses.

Empirical Bayes optimizes marginal likelihood to set hyper-parameters:
Allows tuning a large number of hyper-parameters.
Bayesian Occam’s razor: naturally encourages sparsity and simplicity.

Next time: which priors yield closed-form solutions?
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Gradient on Validation/Cross-Validation Error

It’s also possible to do gradient descent on λ to optimize
validation/cross-validation error of model fit on the training data.

For L2-regularized least squares, define w(λ) = (XTX + λI)−1XT y.

You can use chain rule to get derivative of validation error Evalid with respect to λ:

d

dλ
Evalid(w(λ)) = E′valid(w(λ))w

′(λ).

For more complicated models, you can use total derivative to get gradient with
respect to λ in terms of gradient/Hessian with respect to w.

However, this is often more sensitive to over-fitting than empirical Bayes approach.
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Bayesian Feature Selection

Classic feature selection methods don’t work when d >> n:

AIC, BIC, Mallow’s, adjusted-R2, and L1-regularization return very different results.

Here maybe all we can hope for is posterior probability of wj = 0.

Consider all models, and weight by posterior the ones where wj = 0.

If we fix λ and use L1-regularization, posterior is not sparse.

Probability that a variable is exactly 0 is zero.
L1-regularization only leads to sparse MAP, not sparse posterior.
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Bayesian Feature Selection

Type II MLE gives sparsity because posterior variance goes to zero.

But this doesn’t give probability of individual wj values being 0.

We can encourage sparsity in Bayesian models using a spike and slab prior:

Mixture of Dirac delta function at 0 and another prior with non-zero variance.
Places non-zero posterior weight at exactly 0.
Posterior is still non-sparse, but answers the question:

“What is the probability that variable is non-zero”?
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Bayesian Feature Selection
Monte Carlo samples of wj for 18 features when classifying ‘2’ vs. ‘3’:

Requires “trans-dimensional” MCMC since dimension of w is changing.

“Positive” variables had wj > 0 when fit with L1-regularization.
“Negative” variables had wj < 0 when fit with L1-regularization.
“Neutral’ variables had wj = 0 when fit with L1-regularization.
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