CPSC 440: Advanced Machine Learning Empirical Bayes

Mark Schmidt

University of British Columbia

Winter 2021

Last Time: Bayesian Statistics

• For most of the course, we considered MAP estimation:

$$\begin{split} \hat{w} &\in \operatorname*{argmax}_{w} p(w \mid X, y) \\ \hat{y}^{i} &\in \operatorname*{argmax}_{\hat{y}} p(\hat{y} \mid \hat{x}^{i}, \hat{w}) \\ \end{split} \tag{train}$$

- But w was random: I have no justification to only base decision on \hat{w} .
 - ullet Ignores other reasonable values of w that could make opposite decision.
- Last time we introduced Bayesian approach:
 - Treat w as a random variable, and define probability over what we want given data:

$$\begin{split} \hat{y}^i \in \operatorname*{argmax} p(\hat{y} \mid \hat{x}^i, X, y) & \text{(posterior predictive)} \\ &\equiv \operatorname*{argmax} \int_w p(\hat{y} \mid \hat{x}^i, w) p(w \mid X, y) dw & \text{(average predictions, weighted by posterior)} \end{split}$$

• Directly follows from rules of probability, and no separate training/testing.

7 Ingredients of Bayesian Inference (MEMORIZE)

- **1** Likelihood $p(y \mid X, w)$ (discriminative) or $p(y, X \mid w)$ (generative).
 - Probability of seeing data given parameters.
- ② Prior $p(w \mid \lambda)$.
 - Belief that parameters are correct before we've seen data.
- **3** Posterior $p(w \mid X, y, \lambda)$.
 - Probability that parameters are correct after we've seen data.
 - We won't use the MAP "point estimate", we want the whole distribution.
- **9** Predictive $p(\tilde{y} \mid \tilde{x}, w)$.
 - Probability of test label \tilde{y} given parameters w and test features \tilde{x} .
 - For example, sigmoid function for logistic regression.

7 Ingredients of Bayesian Inference (MEMORIZE)

- **9** Posterior predictive $p(\tilde{y} \mid \tilde{x}, X, y, \lambda)$.
 - Probability of new data given old, integrating over parameters.
 - This tells us which prediction is most likely given data and prior.
- **1** Marginal likelihood $p(y \mid X, \lambda)$ (also called "evidence").
 - Probability of seeing data given hyper-parameters (integrating over parameters).
 - We'll use this later for hypothesis testing and setting hyper-parameters.
- \bigcirc Cost $C(\hat{y} \mid \tilde{y})$.
 - The penalty you pay for predicting \hat{y} when it was really was \tilde{y} .
 - Leads to Bayesian decision theory: predict to minimize expected cost.

Review: Decision Theory

- Are we equally concerned about "spam" vs. "not spam".
- Consider a scenario where different predictions have different costs:

Predict / True	True "spam"	True "not spam"
Predict "spam"	0	100
Predict "not spam"	10	0

• In 340 we discussed predictin \hat{y} given \hat{w} by minimizing expected cost:

$$\begin{split} \mathbb{E}[\mathsf{Cost}(\hat{y} = \text{``spam''})] &= p(\tilde{y} = \text{``spam''} \mid \tilde{x}, \hat{w}) C(\hat{y} = \text{``spam''} \mid \tilde{y} = \text{``spam''}) \\ &+ p(\tilde{y} = \text{``not spam''} \mid \tilde{x}, \hat{w}) C(\hat{y} = \text{``spam''} \mid \tilde{y} = \text{``not spam''}). \end{split}$$

- $\bullet \ \ \text{Consider a case where} \ p(\tilde{y} = \text{``spam''} \ | \ \tilde{x}, \hat{w}) > p(\tilde{y} = \text{``not spam''} \ | \ \tilde{x}, \hat{w}).$
 - We might still predict "not spam" if expected cost is lower.

Bayesian Decision Theory

- Bayesian decision theory:
 - Instead of using a MAP estimate \hat{w} , we should use posterior predictive,

$$\begin{split} \mathbb{E}[\mathsf{Cost}(\hat{y} = \text{"spam"})] &= p(\tilde{y} = \text{"spam"} \mid \tilde{x}, X, y)C(\hat{y} = \text{"spam"} \mid \tilde{y} = \text{"spam"}) \\ &+ p(\tilde{y} = \text{"not spam"} \mid \tilde{x}, X, y)C(\hat{y} = \text{"spam"} \mid \tilde{y} = \text{"not spam"}). \end{split}$$

- Minimizing this expected cost is the optimal action.
- Note that there is a lot going on here:
 - Expected cost depends on cost and posterior predictive.
 - Posterior predictive depends on predictive and posterior
 - Posterior depends on likelihood and prior.

Outline

- Ingredients of Bayesian Inference
- 2 Empirical Bayes

• Consider linear regression with Gaussian likelihood and prior,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2), \quad w_i \sim \mathcal{N}(0, \lambda^{-1}).$$

• MAP estimation in this model corresponds to L2-regularized linear regression

$$\underset{w}{\operatorname{argmin}} \, \frac{1}{2\sigma^2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2.$$

• And the solution is given by a variant on the normal equations:

$$w_{\mathsf{MAP}} = rac{1}{\sigma^2} \left(rac{1}{\sigma^2} X^T X + \lambda I
ight)^{-1} X^T y.$$

- In 340 we fixed $\sigma^2=1$ (changing σ^2 equivalent to changing λ).
 - In the Bayesian framework, both σ^2 and λ affect the predictions.
- To predict on new examples we use $\hat{y} = w_{\text{MAP}}^T \tilde{x}$.

• Consider linear regression with Gaussian likelihood and prior,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2), \quad w_i \sim \mathcal{N}(0, \lambda^{-1}).$$

• By some tedious Gaussian identities, the posterior has the form

$$w \mid X, y \sim \mathcal{N}\left(w_{\mathsf{MAP}}, \left(\frac{1}{\sigma^2} X^T X + \lambda I\right)^{-1}\right),$$

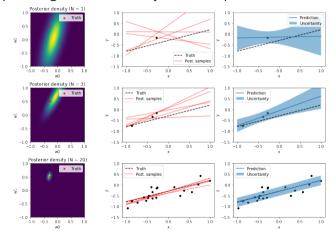
which is a Gaussian centered at the MAP estimate.

- The variance tells us how much variance we have around the MAP estimate.
 - Note that usually the MAP is not the mean of the posterior.
- By more tedious Gaussian identities the posterior predictive has the form

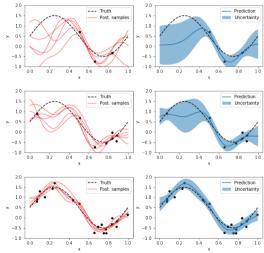
$$\tilde{y} \mid X, y, \tilde{x} \sim \mathcal{N}(w_{\mathsf{MAP}}^T \tilde{x}, \sigma^2 + \tilde{x}^T \left(\frac{1}{\sigma^2} X^T X + \lambda I\right)^{-1} \tilde{x}).$$

- Mode of posterior predictive is MAP predictions (not usually the case).
 - And we now have variance of predictions.

ullet Bayesian perspective gives us variability in w and predictions:



• With Gaussian RBFs are features:



Learning the Prior from Data?

- Can we use the training data to set the hyper-parameters?
- In theory: No!
 - It would not be a "prior".
 - It's no longer the right thing to do.
- In practice: Yes!
 - Approach 1: split into training/validation set or use cross-validation as before.
 - Approach 2: optimize the marginal likelihood ("evidence"):

$$p(y \mid X, \lambda) = \int_{w} p(y \mid X, w) p(w \mid \lambda) dw.$$

• Also called type II maximum likelihood or evidence maximization or empirical Bayes.

Digression: Marginal Likelihood in Gaussian-Gaussian Model

• Suppose we have a Gaussian likelihood and Gaussian prior,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2), \quad w_i \sim \mathcal{N}(0, \lambda^{-1}).$$

ullet The joint probability of y^i and w_j is the likelihood times the prior:

$$p(y, w \mid X) \propto \exp\left(-\frac{1}{2\sigma^2} ||Xw - y||^2 - \frac{\lambda}{2} ||w||^2\right).$$

• The marginal likelihood integrates the joint over the nuissance parameter w,

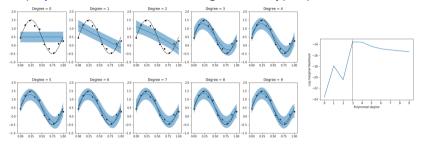
$$p(y\mid X) = \int p(y,w\mid X)dw = \int p(y\mid X,w)p(w)dw \quad (w\perp X).$$

• Solving the Gaussian integral gives a marginal likelihood of

$$p(y \mid X) = \frac{(\lambda)^{d/2}}{(\sigma\sqrt{2\pi})^n |\frac{1}{2}X^TX + \lambda I|^{1/2}} \exp\left(-\frac{1}{2\sigma^2} ||Xw_{\mathsf{MAP}} - y||^2 - \frac{\lambda}{2} ||w^+||^2\right).$$

Type II Maximum Likelihood for Basis Parameter

• Consider polynomial basis, and treat degree as a hyper-parameter:



http://krasserm.github.io/2019/02/23/bayesian-linear-regression

- Marginal likelihood (evidence) is highest for degree 3.
 - "Bayesian Occam's Razor": prefers simpler models that fit data well.
 - $p(y \mid X)$ is smaller for degree 4 polynomials since they can fit more datasets.
 - It's actually non-monotonic it prefers degree 1 and 3 over degree 2.
 - Model selection criteria like BIC are approximations to marginal likelihood as $n \to \infty$.

Type II Maximum Likelihood for Polynomial Basis

- Why is the marginal likelihood higher for degree 3 than 7?
 - Marginal likelihood for degree 3:

$$p(y\mid X) = \int_{w_0} \int_{w_1} \int_{w_2} \int_{w_3} p(y\mid X, w) p(w\mid \lambda) dw$$

• Marginal likelihood for degree 7:

$$p(y \mid X) = \int_{w_0} \int_{w_1} \int_{w_2} \int_{w_3} \int_{w_4} \int_{w_5} \int_{w_6} \int_{w_7} p(y \mid X, w) p(w \mid \lambda) dw.$$

- Higher-degree integrates over high-dimensional volume:
 - A non-trivial proportion of degree 3 functions fit the data really well.
 - There are many degree 7 functions that fit the data even better, but they are a much smaller proportion of all degree 7 functions.
- Warning: this doesn't always work, sometimes becomes degenerate.
 - May need a non-vague prior on the hyper-parameters.

Bayes Factors for Bayesian Hypothesis Testing

- Suppose we want to compare hypotheses:
 - E.g., "this data is best fit with linear model" vs. a degree-2 polynomial.
- Bayes factor is ratio of marginal likelihoods,

$$\frac{p(y\mid X, \mathsf{degree}\ 2)}{p(y\mid X, \mathsf{degree}\ 1)}.$$

- If very large then data is much more consistent with degree 2.
- A common variation also puts prior on degree.
- A more direct method of hypothesis testing:
 - No need for null hypothesis, "power" of test, p-values, and so on.
 - As usual only says which model is more likely, not whether any are correct.

- American Statistical Assocation:
 - "Statement on Statistical Significance and P-Values".
 - http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
- "Hack Your Way To Scientific Glory":
 - https://fivethirtyeight.com/features/science-isnt-broken
- "Replicability crisis" in social psychology and many other fields:
 - https://en.wikipedia.org/wiki/Replication_crisis
 - http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375
- "T-Tests Aren't Monotonic": https://www.naftaliharris.com/blog/t-test-non-monotonic
- Bayes factors don't solve problems with p-values and multiple testing.
 - But they give an alternative view, are more intuitive, and make assumptions clear.
- Some notes on various issues associated with Bayes factors:
 - http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf

Type II Maximum Likelihood for Regularization Parameter

• Type II maximum likelihood maximizes probability of data given hyper-parameters,

$$\hat{\lambda} \in \operatorname*{argmax} p(y \mid X, \lambda), \quad \text{where} \quad p(y \mid X, \lambda) = \int_w p(y \mid X, w) p(w \mid \lambda) dw,$$

and the integral has closed-form solution if everything is Gaussian.

- You can run gradient descent to choose λ .
- We are using the data to optimize the parameters of the prior ("empirical" Bayes).
 - "Optimizing hyper-parameters based on training data".
- Even if we have a complicated model, much less likely to overfit than MLE:
 - Complicated models need to integrate over many more alternative hypotheses.

Learning Principles (MEMORIZE)

• Maximum likelihood:

$$\hat{w} \in \operatorname*{argmax}_{w} p(y \mid X, w) \qquad \qquad \hat{y} \in \operatorname*{argmax}_{\tilde{y}} \underline{p(\tilde{y} \mid \tilde{x}, \hat{w})}.$$

MAP:

$$\hat{w} \in \operatorname*{argmax}_{w} p(w \mid X, y, \lambda) \qquad \qquad \hat{y} \in \operatorname*{argmax}_{\tilde{y}} \underline{p(\tilde{y} \mid \tilde{x}, \hat{w})}.$$

Bayesian (no "learning"):

$$\hat{y} \in \operatorname*{argmax}_{\tilde{y}} p(\tilde{y} \mid \tilde{x}, X, y, \lambda) \equiv \operatorname*{argmax}_{\tilde{y}} \int_{w} p(\tilde{y} \mid \tilde{x}, w) p(w \mid X, y, \lambda) dw.$$

• Type II maximum likelihood ("learn hyper-parameters"):

$$\hat{\lambda} \in \operatorname*{argmax}_{\lambda} p(y \mid X, \lambda) \qquad \qquad \tilde{y} \in \operatorname*{argmax}_{\tilde{y}} p(\tilde{y} \mid \tilde{x}, X, y, \lambda)$$

Type II Maximum Likelihood for Individual Regularization Parameter

• Consider having a hyper-parameter λ_j for each w_j ,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma^2), \quad w_j \sim \mathcal{N}(0, \lambda_j^{-1}).$$

- Too expensive for cross-validation, but type II MLE works.
 - You can do gradient descent to optimize the λ_i .
- Weird fact: this yields sparse solutions.
 - "Automatic relevance determination" (ARD)
 - Can send $\lambda_i \to \infty$, concentrating posterior for w_i at exactly 0.
 - It tries to "remove some of the integrals".
 - This is L2-regularization, but empirical Bayes naturally encourages sparsity.
- Non-convex and theory not well understood:
 - Tends to yield much sparser solutions than L1-regularization.

Type II Maximum Likelihood for Other Hyper-Parameters

• Consider also having a hyper-parameter σ_i for each i,

$$y^i \sim \mathcal{N}(w^T x^i, \sigma_i^2), \quad w_j \sim \mathcal{N}(0, \lambda_j^{-1}).$$

- You can also use type II MLE to optimize these values.
- The "automatic relevance determination" selects training examples $(\sigma_i \to \infty)$.
 - This is like the support vectors in SVMs, but tends to be much more sparse.
- Type II MLE can also be used to learn kernel parameters like RBF variance.
 - Do gradient descent on the σ values in the Gaussian kernel.
- It may also do something sensible if you use it to choose number of clusters k.
 - Or number of states in hidden Markov model, number of latent factors in PCA, etc.
- Bonus slides: Bayesian feature selection gives probability that w_i is non-zero.
 - Posterior is much more informative than standard sparse MAP methods.

Summary

- 7 ingredients of Bayesian inference:
 - Likelihood, prior, posterior, predictive, posterior predictive, marginal likelihood, cost.
- Bayesian decision theory:
 - Optimal predictions based on cost functions and rules of probability.
- Marginal likelihood is probability seeing data given hyper-parameters.
 - Bayes factors compute ratios between models to test hypotheses.
- Empirical Bayes optimizes marginal likelihood to set hyper-parameters:
 - Allows tuning a large number of hyper-parameters.
 - Bayesian Occam's razor: naturally encourages sparsity and simplicity.
- Next time: which priors yield closed-form solutions?

Gradient on Validation/Cross-Validation Error

- It's also possible to do gradient descent on λ to optimize validation/cross-validation error of model fit on the training data.
- For L2-regularized least squares, define $w(\lambda) = (X^T X + \lambda I)^{-1} X^T y$.
- You can use chain rule to get derivative of validation error E_{valid} with respect to λ :

$$\frac{d}{d\lambda}E_{\mathsf{valid}}(w(\lambda)) = E'_{\mathsf{valid}}(w(\lambda))w'(\lambda).$$

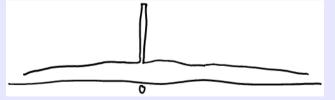
- For more complicated models, you can use total derivative to get gradient with respect to λ in terms of gradient/Hessian with respect to w.
- However, this is often more sensitive to over-fitting than empirical Bayes approach.

Bayesian Feature Selection

- Classic feature selection methods don't work when d >> n:
 - AIC, BIC, Mallow's, adjusted-R², and L1-regularization return very different results.
- Here maybe all we can hope for is posterior probability of $w_i = 0$.
 - Consider all models, and weight by posterior the ones where $w_i = 0$.
- If we fix λ and use L1-regularization, posterior is not sparse.
 - Probability that a variable is exactly 0 is zero.
 - L1-regularization only leads to sparse MAP, not sparse posterior.

Bayesian Feature Selection

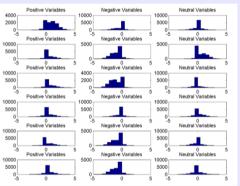
- Type II MLE gives sparsity because posterior variance goes to zero.
 - But this doesn't give probability of individual w_i values being 0.
- We can encourage sparsity in Bayesian models using a spike and slab prior:



- Mixture of Dirac delta function at 0 and another prior with non-zero variance.
- Places non-zero posterior weight at exactly 0.
- Posterior is still non-sparse, but answers the question:
 - "What is the probability that variable is non-zero"?

Bayesian Feature Selection

- Monte Carlo samples of w_i for 18 features when classifying '2' vs. '3':
 - ullet Requires "trans-dimensional" MCMC since dimension of w is changing.



- "Positive" variables had $w_i > 0$ when fit with L1-regularization.
- "Negative" variables had $w_i < 0$ when fit with L1-regularization.
- "Neutral' variables had $w_i = 0$ when fit with L1-regularization.