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Last Time: Bayesian Statistics

@ For most of the course, we considered MAP estimation:

w € argmax p(w | X, y) (train)
w

i e argmaxp(y | &, w) (test).
]

@ But w was random: | have no justification to only base decision on w.
e lIgnores other reasonable values of w that could make opposite decision.
@ Last time we introduced Bayesian approach:
o Treat w as a random variable, and define probability over what we want given data:

= argmaxp(7 | X, Y) (posterior predictive)
]

= argmax/ p(7 | &', w)p(w | X,y)dw (average predictions, weighted by posterior)
7l w

@ Directly follows from rules of probability, and no separate training/testing.
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7 Ingredients of Bayesian Inference (MEMORIZE)

@ Likelihood p(y | X, w) (discriminative) or p(y, X | w) (generative).
e Probability of seeing data given parameters.

@ Prior p(w | ).

o Belief that parameters are correct before we've seen data.

@ Posterior p(w | X, y, \).
o Probability that parameters are correct after we've seen data.
o We won't use the MAP “point estimate”, we want the whole distribution.

Q Predictive p(7 | Z,w).
e Probability of test label  given parameters w and test features z.
@ For example, sigmoid function for logistic regression.
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7 Ingredients of Bayesian Inference (MEMORIZE)

@ Posterior predictive p(7 | Z, X, y, A).
e Probability of new data given old, integrating over parameters.
e This tells us which prediction is most likely given data and prior.

@ Marginal likelihood p(y | X, A) (also called “evidence").

o Probability of seeing data given hyper-parameters (integrating over parameters).
o We'll use this later for hypothesis testing and setting hyper-parameters.

@ Cost C(y | 9).

e The penalty you pay for predicting y when it was really was .
o Leads to Bayesian decision theory: predict to minimize expected cost.
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Review: Decision Theory

@ Are we equally concerned about “spam” vs. “not spam”.

@ Consider a scenario where different predictions have different costs:

Predict / True True “spam”  True “not spam”
Predict “spam” 0 100
Predict “not spam” 10 0

@ In 340 we discussed predictin ¢ given w by minimizing expected cost:

E[Cost(§ = “spam")] = p(§ = "spam” | &,w)C(y = “spam” | § = “spam”)
+ p(g = “not spam” | Z,w)C(y = “spam” | § = "“not spam”).

o Consider a case where p(y = “spam” | Z,w) > p(g = “not spam” | Z, ).
o We might still predict “not spam” if expected cost is lower.
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Bayesian Decision Theory

@ Bayesian decision theory:
o Instead of using a MAP estimate w, we should use posterior predictive,

“spam’” | &, X,y)C(§ = “spam” | j = “spam’)

E[Cost(y = “spam”)] = p(y
(4 = “spam” | § = “not spam”).

= (]
+ p(g = “not spam” | &, X, y)C

e Minimizing this expected cost is the optimal action.

@ Note that there is a lot going on here:
e Expected cost depends on cost and posterior predictive.
e Posterior predictive depends on predictive and posterior
e Posterior depends on likelihood and prior.
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Bayesian Linear Regression

Consider linear regression with Gaussian likelihood and prior,
Y~ N(wzh o?), wj~N(O,N).

@ MAP estimation in this model corresponds to L2-regularized linear regression

1 A
in— || Xw —y| + = |lw|%
argmin 5| Xw = y|* + 3 ]

And the solution is given by a variant on the normal equations:

1 /1 -1
wap = — <02XTX + /\I) XTy.

In 340 we fixed 02 = 1 (changing 0% equivalent to changing \).
o In the Bayesian framework, both o2 and \ affect the predictions.

. ~ T ~
To predict on new examples we use § = wyapZ-
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Bayesian Linear Regression
@ Consider linear regression with Gaussian likelihood and prior,
Y~ Nzl o?), wj~N(O,N7D).

@ By some tedious Gaussian identities, the posterior has the form
1 -1
’LU‘X,yNN WMAP, <2XTX+/\I> s
o

which is a Gaussian centered at the MAP estimate.
e The variance tells us how much variance we have around the MAP estimate.
@ Note that usually the MAP is not the mean of the posterior.

@ By more tedious Gaussian identities the posterior predictive has the form
1 -1
7| X,y,& ~N(whapt,o? + &1 <2XTX + AI) ).
g

e Mode of posterior predictive is MAP predictions (not usually the case).
e And we now have variance of predictions.
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Bayesian Linear Regression

@ Bayesian perspective gives us variability in w and predictions:
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http://krasserm.github.i0/2019/02/23/bayesian-1linear-regression
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Bayesian Linear Regression

@ With Gaussian RBFs are features:
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Learning the Prior from Data?

@ Can we use the training data to set the hyper-parameters?

@ In theory: No!

o It would not be a “prior”.
e It's no longer the right thing to do.

@ In practice: Yes!
e Approach 1: split into training/validation set or use cross-validation as before.

e Approach 2: optimize the marginal likelihood (“evidence"):

py | X,\) = / p(y | X, w)p(w | X)dw.

w

o Also called type Il maximum likelihood or evidence maximization or empirical Bayes.
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Digression: Marginal Likelihood in Gaussian-Gaussian Model
@ Suppose we have a Gaussian likelihood and Gaussian prior,
Y~ N(wzh o?), wj~N(O,XD).

@ The joint probability of y* and w; is the likelihood times the prior:

1 2 A 2
bl | X) o oxp (5ol Xw =l = Slwl?).

@ The marginal likelihood integrates the joint over the nuissance parameter w,
oy 120 = [ plyw | Xdw = [ ply| Xwp(wide (0 LX),
w w

@ Solving the Gaussian integral gives a marginal likelihood of

()\)d/Q

X) =
p(yl ) (a@)"‘%XTX-F)\IPﬂ

1 A
oxp (~gr P Kwmae — ol = S ).
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Type Il Maximum Likelihood for Basis Parameter

o Consider polynomial basis, and treat degree as a hyper-parameter:

Degree = 0 Degree =1 Degree =2 Degree =3 Degree =4

. 1] g
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http://krasserm.github.i0/2019/02/23/bayesian-linear-regression
e Marginal likelihood (evidence) is highest for degree 3.
“Bayesian Occam'’s Razor": prefers simpler models that fit data well.
p(y | X) is smaller for degree 4 polynomials since they can fit more datasets.
It's actually non-monotonic it prefers degree 1 and 3 over degree 2.
Model selection criteria like BIC are approximations to marginal likelihood as n — co.


http://krasserm.github.io/2019/02/23/bayesian-linear-regression
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Type Il Maximum Likelihood for Polynomial Basis

@ Why is the marginal likelihood higher for degree 3 than 77
e Marginal likelihood for degree 3:

mmmzﬁi;LAfMmemmm

e Marginal likelihood for degree 7:

MWFAALLLLLAMMMWWW

o Higher-degree integrates over high-dimensional volume:
@ A non-trivial proportion of degree 3 functions fit the data really well.

o There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions.

e Warning: this doesn't always work, sometimes becomes degenerate.
@ May need a non-vague prior on the hyper-parameters.
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Bayes Factors for Bayesian Hypothesis Testing

@ Suppose we want to compare hypotheses:
e E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.

@ Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)
p(y | X,degree 1)

o If very large then data is much more consistent with degree 2.
e A common variation also puts prior on degree.

@ A more direct method of hypothesis testing:

o No need for null hypothesis, “power” of test, p-values, and so on.
o As usual only says which model is more likely, not whether any are correct.
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American Statistical Assocation:

e “Statement on Statistical Significance and P-Values”.
@ http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory":

@ https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
@ https://en.wikipedia.org/wiki/Replication_crisis

@ http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

”T—TeStS Aren't MOnOtOniC”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don’t solve problems with p-values and multiple testing.
e But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:

@ http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf


http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
https://fivethirtyeight.com/features/science-isnt-broken
https://en.wikipedia.org/wiki/Replication_crisis
http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375
https://www.naftaliharris.com/blog/t-test-non-monotonic
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf
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Type Il Maximum Likelihood for Regularization Parameter

@ Type Il maximum likelihood maximizes probability of data given hyper-parameters,
A€ argmaxp(y | X,)), where p(y|X,\) = / p(y | X, w)p(w [ A)dw,
A w

and the integral has closed-form solution if everything is Gaussian.
e You can run gradient descent to choose .

e We are using the data to optimize the parameters of the prior (“empirical”
Bayes).
e "Optimizing hyper-parameters based on training data”.
@ Even if we have a complicated model, much less likely to overfit than MLE:
o Complicated models need to integrate over many more alternative hypotheses.
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Learning Principles (MEMORIZE)

@ Maximum likelihood:
w € argmax p(y | X, w) y € argmaxp(y | z,w).
w 9
o MAP:
w € argmaxp(w | X, y, \) 9 € argmaxp(y | Z,w).
w ]

Bayesian (no “learning”):

y € argmaxp(y | 7, X,y,\) = argmaX/ p(¥ | 2, w)p(w | X, y,N)dw.
1] Y w

Type Il maximum likelihood ( “learn hyper-parameters”):

= argmaxp(y | X, \) g € argmaxp(y | Z, X, y, \)
A g



Ingredients of Bayesian Inference Empirical Bayes

Type Il Maximum Likelihood for Individual Regularization Parameter

o Consider having a hyper-parameter \; for each wj,
Yt~ N(wlz',0%),  w; N./\/(O,)\j_l).

@ Too expensive for cross-validation, but type Il MLE works.
e You can do gradient descent to optimize the ;.

@ Weird fact: this yields sparse solutions.

e “Automatic relevance determination” (ARD)
e Can send A\; — oo, concentrating posterior for w; at exactly 0.

o It tries to “remove some of the integrals”.
e This is L2-regularization, but empirical Bayes naturally encourages sparsity.

@ Non-convex and theory not well understood:
o Tends to yield much sparser solutions than L1-regularization.



Ingredients of Bayesian Inference Empirical Bayes

Type Il Maximum Likelihood for Other Hyper-Parameters

Consider also having a hyper-parameter o; for each 1,
Y~ N(wls' o),  w; N./\/'(O,)\j_l).

@ You can also use type Il MLE to optimize these values.

@ The "automatic relevance determination” selects training examples (o; — 00).
e This is like the support vectors in SVMs, but tends to be much more sparse.

Type Il MLE can also be used to learn kernel parameters like RBF variance.
e Do gradient descent on the ¢ values in the Gaussian kernel.

@ It may also do something sensible if you use it to choose number of clusters k.
e Or number of states in hidden Markov model, number of latent factors in PCA, etc.

Bonus slides: Bayesian feature selection gives probability that w; is non-zero.
e Posterior is much more informative than standard sparse MAP methods.
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Summary

7 ingredients of Bayesian inference:
e Likelihood, prior, posterior, predictive, posterior predictive, marginal likelihood, cost.

Bayesian decision theory:
e Optimal predictions based on cost functions and rules of probability.

Marginal likelihood is probability seeing data given hyper-parameters.
e Bayes factors compute ratios between models to test hypotheses.

Empirical Bayes optimizes marginal likelihood to set hyper-parameters:
o Allows tuning a large number of hyper-parameters.
e Bayesian Occam’s razor: naturally encourages sparsity and simplicity.

Next time: which priors yield closed-form solutions?
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Gradient on Validation/Cross-Validation Error

It's also possible to do gradient descent on A to optimize
validation /cross-validation error of model fit on the training data.

For L2-regularized least squares, define w()\) = (X7X + )71 XTy.
You can use chain rule to get derivative of validation error E,iq with respect to A:

%Evalid(’IU(A)): ! (WO ().

For more complicated models, you can use total derivative to get gradient with
respect to A in terms of gradient/Hessian with respect to w.

However, this is often more sensitive to over-fitting than empirical Bayes approach.
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Bayesian Feature Selection

o Classic feature selection methods don't work when d >> n;:
o AIC, BIC, Mallow's, adjusted-R?, and L1-regularization return very different results.

@ Here maybe all we can hope for is posterior probability of w; = 0.
o Consider all models, and weight by posterior the ones where w; = 0.

o If we fix A and use L1-regularization, posterior is not sparse.

e Probability that a variable is exactly 0 is zero.
e L1-regularization only leads to sparse MAP, not sparse posterior.
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Bayesian Feature Selection

@ Type Il MLE gives sparsity because posterior variance goes to zero.
o But this doesn’t give probability of individual w; values being 0.

@ We can encourage sparsity in Bayesian models using a spike and slab prior:

e ———
)

e Mixture of Dirac delta function at 0 and another prior with non-zero variance.
o Places non-zero posterior weight at exactly 0.
e Posterior is still non-sparse, but answers the question:

@ “What is the probability that variable is non-zero"?



e Requires “trans-dimensional”

Bayesian Feature Selection

Monte Carlo samples of w; for 18 features when classifying 2" vs. ‘3"
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“Positive” variables had w; > 0 when fit with L1-regularization.
o “Negative” variables had w; < 0 when fit with L1-regularization.
“Neutral’ variables had w; = 0 when fit with L1-regularization.
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