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Last Time: Conditional Random Fields (CRFs)

e Conditional random fields: supervised learning method for structured y variables.
e Models conditional density of y given fixed = values.

@ Example is logistic regression with an Ising dependence:

p(yhy%---,yk|513173327---7 ocexp Zycw ZTe + Z YeYc' |,
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@ Does not need to model any dependencies between features x.



Modeling OCR Dependencies

@ What dependencies should we model for this problem?

nput: (P (o)~ i (s

Output: "Paris"

(ye, x.): potential of individual letter given image.

(Ye—1,Yyc): dependency between adjacent letters (‘g-u').
(Ye—1, Yes Te—1,Zc): adjacent letters and image dependency.

e(Ye—1, yc): inhomogeneous dependency (French: ‘e-r’ ending).
e(Ye—2,Ye—1,Yc): third-order and inhomogeneous (English: ‘i-n-g’ end).
(y € D): is y in dictionary D?
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Tractability of Discriminative Models

@ Features can be very complicated, since we just condition on the z, .

o Given the x., tractability depends on the conditional UGM on the ..
o Inference tasks will be fast or slow, depending on the y. graph.

@ Besides “low treewidth”, some other cases where exact computation is possible:
o Semi-Markov chains (allow dependence on time you spend in a state).
o For example, in rain data the seasons will be approximately 3 months.
o Context-free grammars (allows potentials on recursively-nested parts of sequence).
o Sum-product networks (restrict potentials to allow exact computation).
e “Dictionary” feature is non-Markov, but exact computation still easy.

@ We can alternately use our previous approximations:
© Pseudo-likelihood (what we used).
@ Monte Carlo approximate inference (eventually better but probably much slower).
© Variational approximate inference (fast, quality varies).
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Motivation: Controlling Complexity

@ For many machine learning, we need very complicated models.
o We require multiple forms of regularization to prevent overfitting.

@ In 340 we saw two ways to reduce overfitting of a model:

o Model averaging (ensemble methods).
o Regularization (linear models).

@ Bayesian methods combine both of these.

o Average over models, weighted by posterior (which includes regularizer).
e Allows you to fit extremely-complicated models without overfitting.
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Most Frequent Keywords at International Confernce on Machine Learning

Bayesian learning includes:
@ Gaussian processes.
@ Approximate inference.
@ Bayesian nonparametrics.
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Why Bayesian Learning?

@ Standard L2-regularized logistic regression steup:
e Given finite dataset containing IID samples.
o For example, samples (z*,3") with z* € R? and ¢* € {—1,1}.
o Find “best” w by minimizing NLL with a regularizer to “prevent overfitting”.

n
. A
W € argmin — lo U atw) + =[Jwl?.
gn ; gp(y’ |+, w) + Sl
o Predict labels of new example Z using single weights w,
7 = sgn(w’ 7).

@ But data was random, so weight w is a random variables.
e This might put our trust in a w where posterior p(w | X, y) is tiny.

@ Bayesian approach: “all parameters are nuissance parameters”.
e Treat w as random and predict based on rules of probability.
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Problems with MAP Estimation

@ Does MAP make the right decision?

o Consider three hypothesese H = {“lands”, “crashes”, “explodes”} with posteriors:

p(“lands” | D) = 0.4, p(“crashes” | D) = 0.3, p(“explodes” | D) = 0.3.

e The MAP estimate is “plane lands”, with posterior probability 0.4.
@ But probability of dying is 0.6.
o If we want to live, MAP estimate doesn’t give us what we should do.

@ Bayesian approach considers all models: says don't take plane.

@ Bayesian decision theory: accounts for costs of different errors.
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MAP vs. Bayes

e MAP (regularized optimization) approach maximizes over w:

w € argmaxp(w | X, y)
w
= argmaxp(y | X, w)p(w) (Bayes’ rule, w L X)
w
g € argmaxp(y | T, ).
y

@ Bayesian approach predicts by integrating over possible w:

p(y|z,X,y) = / p(y,w | Z, X, y)dw marginalization rule
w

= / p(g | w, 2, X, y)p(w | Z, X, y)dw product rule
w

— [ 90| w2l | X y)dw jLXy|du
w

@ Considers all possible w, and weights prediction by posterior for w.
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Motivation for Bayesian Learning

@ Motivation for studying Bayesian learning:

@ Optimal decisions using rules of probability (and possibly error costs).
@ Gives estimates of variability/confidence.

e E.g., this gene has a 70% chance of being relevant.
© Elegant approaches for model selection and model averaging.
o E.g., optimize A or optimize grouping of w elements.
@ Easy to relax [ID assumption.
o E.g., hierarchical Bayesian models for data from different sources.

© Bayesian optimization: fastest rates for some non-convex problems.
O Allows models with unknown/infinite number of parameters.

o E.g., number of clusters or number of states in hidden Markov model.

@ Why isn't everyone using this?
e Philosophical: Some people don't like that results depend on “subjective” prior.
o Computational: Typically leads to nasty integration problems.
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Coin Flipping Example: MAP Approach

@ MAP vs. Bayesian for a simple coin flipping scenario:
@ Our likelihood is a Bernoulli,
p(H | 6) =6.
@ Our prior assumes that we are in one of two scenarios:

@ The coin has a 50% chance of being fair (6 = 0.5).
@ The coin has a 50% chance of being rigged (6 = 1).

© Our data consists of three consecutive heads: ‘HHH'.

@ What is the probability that the next toss is a head?
o MAP estimate is § = 1, since p(§ =1 | HHH) > p(6 = 0.5 | HHH).
e So MAP says the probability is 1.

e But MAP overfits: we believed there was a 50% chance the coin is fair.
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Coin Flipping Example: Posterior Distribution

@ Bayesian method needs posterior probability over 6,

p(HHH |0 =1)p(f = 1)
p(HHH)
p(HHH |0 =1)p(0 = 1)
p(HHH |0 =0.5)p(0 = 0.5) + p(HHH | 6 = 1)p(6 = 1)

(1)(0.5) 8

(1/8)(0.5) + (1)(0.5) 9’

p0=1|HHH) = (Bayes rule)

(marg and prod rule) =

and similarly we have p(§ = 0.5 | HHH) = 3.

@ So given the data, we should believe with probability g that coin is rigged.
o There is still a % probability that it is fair that MAP is ignoring.
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Coin Flipping Example: Posterior Predictive

Posterior predictive gives probability of head given data and prior,
p(H|HHH)=p(H,0=1|HHH)+p(H,0 =0.5| HHH)
=pH|0=1,HHH)p(6 =1| HHH)
+p(H|0=05 HHH)p(0=05| HHH)
=p(H|0=1)p@=1|HHH)+p(H|0=0.5)p(@ =0.5| HHH)
= (1)(8/9) + (0.5)(1/9) = 0.94.

So the correct probability given our assumptions/data is 0.94, and not 1.
e Though with a different prior we would get a different answer.

@ Notice that there was no optimization of the parameter 6:
e In Bayesian stats we condition on data and integrate over unknowns.

In Bayesian stats/ML: “all parameters are nuissance parameters”.
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Coin Flipping Example: Discussion

Comments on coin flipping example:

(]

Bayesian prediction uses that HHH could come from fair coin.
@ As we see more heads, posterior converges to 1.
o MLE/MAP/Bayes usually agree as data size increases.

o If we ever see a tail, posterior of # = 1 becomes 0.

If the prior is correct, then Bayesian estimate is optimal:
e Bayesian decision theory gives optimal action incorporating costs.

If the prior is incorrect, Bayesian estimate may be worse.
e This is where people get uncomfortable about “subjective” priors.

But MLE/MAP are also based on “subjective” assumptions.
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Bayesian Model Averaging

@ In 340 we saw that model averaging can improve performance.
e E.g., random forests average over random trees that overfit.

@ But should all models get equal weight?
e What if we find a random decision stump that fits the data perfectly?
@ Should this get the same weight as deep random trees that likely overfit?

e In science, research may be fraudulent or not based on evidence.
@ Should *“vaccines cause autism” or “climate change denial” models get equal weight?

@ In these cases, naive averaging may do worse.
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Bayesian Model Averaging

@ Suppose we have a set of m probabilistic classifiers w;
e Previously our ensemble method gave all models equal weights,

1 1 1

p(G12) = —p(F| T, wi) + —p(G | Z,wz) + -+ —p(G | T, wm).
@ Bayesian model averaging (following rules of probability) weights by posterior,

p(G | 2) =plw | X,y)p(G | &, w1) + p(ws | X,y)(7 | Z,w)+
e +p(wm ’ X,y)p(z] ’ iywm)'

@ So we should weight by probability that w; is the correct model.
o Equal weights assume all models are equally probable and fit data equally well.
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Bayesian Model Averaging

@ Weights are posterior, so proportional to likelihood times prior:

p(w; | X,y) < p(y | X, w;) p(w;) .
————

likelihood prior

@ Likelihood gives more weight to models that predict y well.

@ Prior should gives less weight to models that are likely to overfit.

@ This is how rules of probability say we should weight models.
e It's annoying that it requires a “prior” belief over models.
e You also need to know the normalizing constant for most interesting cases.
o But as n — oo, all weight goes to “correct” model[s] w* as long as p(w*) > 0.



Bayesian Statistics Bayesian Model Averaging

Digression: Bayes for Density Estimation and Generative/Discriminative

@ We can use Bayesian approach for density estimation:
e With data D and parameters 6 we have:
@ Likelihood p(D | 9).

@ Prior p(6).
@ Posterior p(6 | D).

@ We can also use Bayesian approach for supervised learning:
o Generative approach (naive Bayes, GDA) are density estimation on X and y:
@ Likelihood p(y, X | w).
@ Prior p(w).
© Posterior p(w | X, y).

e Discriminative approach (logistic regression, neural nets) just conditions on X:
@ Likelihood p(y | X, w).
@ Prior p(w).
© Posterior p(w | X, y).
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Summary

Bayesian statistics:

e Optimal way to make predictions, given likelihood and prior.
o Conditions on the data, integrates (rather than maximize) over posterior.
o “All parameters are nuissance parameters” .

Posterior predictive distribution:
o Probability of new data, given old data (integrating over parameters).

Bayesian model averaging:
e Model averaging based on rules of probability, rather than uniform weight.

Next time: learning the prior?
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