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Last Time: Learning in UGMs
@ We discussed log-linear parameterization of UGMs,
¢j(s) = exp(wjs), @jk(s,8) = exp(Wjkss),  Djui(s,s,5") = exp(wj s .57)-
the likelihood of an example = given parameter w is given by
exp (W' F(x))
7 ;
and the feature functions F'(x) count the number of times we use each w;.

p(x | w) =

@ Gradient of the NLL with respect to a particular w; has the form

1|&
vwlo,sf(w) == n [Z I[zyy = 3]
=1

+p(r10 =3 | w).
——_———

~  model “frequency”

frequency in data

@ There are different ways to address the annoying term:
o For example, run Gibbs sampling to approximate it with Monte Carlo.



Last Time: Latent DAG Model

@ Last time we discussed the following model:

@ With k hidden binary nodes, a mixture model with 2k clusters.
e You can think of each z. as a “part” that can be included or not (“binary PCA").

@ Usually assume p(x; | 21, 22,23, 24) is a linear model (Gaussian, logistic, etc.).
o With d visible x; and k hidden z;, we only have dk parameters.
@ Unfortunately, somewhat hard to use:

e Combinatorial “explaining away" between z. value when conditioning on z.
o Restricted Boltzmann Machines (RBMs) are a similar undirected model...
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Boltzmann Machines

@ Boltzmann machines are UGMs with binary latent variables:

https://en.wikipedia.org/wiki/Boltzmann_machine
@ Yet another latent-variable model for density estimation.
e Hidden variables again give a combinatorial latent representation.

@ Hard to do anything in this model, even if you know all the z (or z).


https://en.wikipedia.org/wiki/Boltzmann_machine 

Restrictred Boltzmann Machines

Restricted Boltzmann Machine

By restricting graph structure, some things get easier:
o Restricted Boltzmann machines (RBMs): edges only between the z; and z..

Bipartite structure allows block Gibbs sampling given one type of variable:
e Conditional UGM is disconnected.

Given visible x, we can sample each z. independently.

Given hidden z, we can sample each x; independently.
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Restricted Boltzmann Machines
@ The RBM graph structure leads to a joint distribution of the form

@ RBMs usually use a log-linear parameterization like

d k d k
p(z, z) x exp E Tjw; + E ZeUe + Z Z Tjwjcze |
j=1 c=1

j=1c=1

for parameters w;, v., and w,. (first term would be different for continuous ;).



Restrictred Boltzmann Machines

Generating Digits with RBMs

Here are the samples generated by the RBM after training. Each row
represents a mini-batch of negative particles (samples from inde-
pendent Gibbs chains). 1000 steps of Gibbs sampling were taken
between each of those rows.
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http://deeplearning.net/tutorial/rbm.htm



http://deeplearning.net/tutorial/rbm.html
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Generating Digits with RBMs

Visualizing each z.'s interaction parameters (wj. for all j) as images:

http://deeplearning.net/tutorial/rbm.html


http://deeplearning.net/tutorial/rbm.html
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Learning UGMs with Hidden Variables

@ For RBMs we have hidden variables:

e With hidden (“nuissance”) variables z the observed likelihood has the form

pa) = ple,2) = 3 2L

Z
1 . _ Z(x)
———
Z(x)

where Z(z) is the partition function of the conditional UGM given z.
e Z(z) is cheap in RBMs because the z are independent given x.
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Learning UGMs with Hidden Variables

@ This gives an observed NLL of the form
—logp(z) = —log(Z(x)) +log Z,

where Z(z) sums over hidden z values, and Z sums over z and z.

@ The second term is convex but the first term is non-convex.
e This is expected when we have hidden variables.

With a log-linear parameterization, the gradient has the form

~Vlogp(x) = ~E. | [F(X, 2)] + Bl F(X, 2)]

For RBMs, first term is cheap due to independence of z given .
We can approximate second term using block Gibbs sampling.
e For other problems, you would also need to approximate first term.
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Deep Belief Networks and Deep Boltzmann Machines

@ Around 15 years ago, a hot topic was “stacking” latent DAGs and/or RBMs:

e Part of the motivation for peope to re-consider “deep” models.
e These architectures were popular because they were deep but nice for sampling.
@ And it was common to use “train on RBM" as an ingredient for learning.

0

- S22

(N

=

Y
|
[
,‘

)

Q3
.
[
'®
¥

s ISR
e [ =

el T ST T LI ST T o>
SIS LTS

| X=X .)44~:«6=\&‘

8
@)
&
@

LI Seasme
S o s 4 ,s\-a~*:o<'4
’/%’0‘*7»*%%\\ SEEARSA

Deep Boltzmann:

@ Post-lecture bonus slides go through some of the details if you are interested.
e https://www.youtube.com/watch?v=KuPaiOogiHk

Deep belief net:


https://www.youtube.com/watch?v=KuPai0ogiHk

Outline

@ Restrictred Boltzmann Machines

© Conditional Random Fields
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3 Classes of Structured Prediction Methods

3 main approaches to structured prediction (predicting object y given features z):
@ Generative models use p(y | ) o< p(y,x) as in naive Bayes.
e Turns structured prediction into density estimation.

o But remember how hard it was just to model images of digits?
@ We have to model features and solve supervised learning problem.

@ Discriminative models directly fit p(y | ) as in logistic regression (next topic).
e View structured prediction as conditional density estimation.

o Just focuses on modeling y given x, not trying to model features x.
o Lets you use complicated features x that make the task easier.

© Discriminant functions just try to map from z to y as in SVMs.
e Now you don't even need to worry about calibrated probabilities.



Conditional Random Fields
Motivation: Automatic Brain Tumor Segmentation

@ Task: identification of tumours in multi-modal MRI.

@ Applications:
e Radiation therapy target planning, quantifying treatment response.
e Mining growth patterns, image-guided surgery.

o Challenges:

e Variety of tumor appearances, similarity to normal tissue.
e “You are never going to solve this problem™.



Conditional Random Fields

Brain Tumour Segmentation with Label Dependencies

o After a lot pre-processing and feature engineering (convolutions, priors, etc.),
final system used logistic regression to label each pixel as “tumour” or not.

1 exp(yew” zc)
p(Ye | ze) = — T = T — T
1+ exp(—2y.wlz.)  exp(wlz.)+ exp(—wlz,)

@ Gives a high “pixel-level” accuracy, but sometimes gives silly results:

e Classifying each pixel independently misses dependence in labels y':
o We prefer neighbouring voxels to have the same value.
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Brain Tumour Segmentation with Label Dependencies
e With independent logistic, conditional distribution over all labels in one image is

k
p(y17y27"'7yk | $1,$2,...,$k) = Hexp

c=1

d
X exp (Z ychxc> )

c=1

exp(ychxc)
(wac) + exp(_wac)

where here x. is the feature vector for position ¢ in the image.

@ We can view this as a log-linear UGM with no edges,

Pe(Ye) = exp(ych:L‘c),

so given the x. there is no dependence between the ..
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Brain Tumour Segmentation with Label Dependencies

@ Adding an Ising-like term to model dependencies between y; gives

PW1, Y2, Yk | 21,22, .., @) X exp Zycw Tt Y Yo |
(e,')EE

@ Now we have the same “good” logistic regression model,
but v controls how strongly we want neighbours to be the same.

o Note that we're going to jointly learn w and v.
o We'll find the optimal joint logistic regression and Ising model.

@ When we model conditional of y given x as a UGM,
we call it a conditional random field (CRF).
o Key advantadge of this (discriminative) approach:
e Don't need to model features x as in “generative” models.
o We saw with MNIST digits that modeling images is hard.
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Conditional Random Fields for Segmentation

@ Recall the performance with the independent classifier:

@ The pairwise CRF better modelled the “guilt by association”:
e Trained with pseudo-likelihood. Added constraint v > 0 to use graph cut decoding.

(We were using edge features . too, see bonus (and different A on edges).)
o CRFs are like logistic regression (no modeling ) vs naive Bayes (modeling x).
o p(y | ) (discriminative) vs. p(y,x) (generative).
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Conditional Random Fields

@ The brain CRF can be written as a conditional log-linear models,

exp(w’ F(z,y)),

| 7.0) = 5o

for some parameters w and features F'(z,y).

@ The NLL is convex and has the form
—logp(y | #,w) = —w" F(x,y) + log Z (),
and the gradient can be written as
—Vlogp(y | z,w) = —F(z,y) + Ey | ,[F(z,y)].

@ Unlike before, we now have a Z(x) and set of expectations for each z.
e Train using gradient methods like quasi-Newton or stochastic gradient.
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Rain Data without Month Information

@ Consider an Ising UGM model for the rain data with tied parameters,

k k
P(y1: Y2, -, Yk) o exp (Z Yyow + Y ycyc_1V> .

c=1 c=2

@ First term reflects that “not rain” is more likely.
@ Second term reflects that consecutive days are more likely to be the same.
e This model is equivalent to a Markov chain model.

@ We could condition on month to model “some months are less rainy”.
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Rain Data with Month Information using CRFs

@ Discriminative appraoch: fit a CRF model conditioned on month «z,

P(yl,y2,~-,yk:|93 X exp Zycw+zycyc 17/+Zzycxﬂ)j

c=1 j=1
@ The conditional UGM given = has a chain-structure
12
$i(yi) = exp | yiw+ Y _wyiwjv; |, i (Wi y;) = explyay;v),
j=1

so inference can be done using forward-backward.
e And it's log-linear so the NLL will be convex.



Conditional Random Fields

Rain Data with Month Information
e Samples from CRF conditioned on x being December (left) and July (right):

Samples from CRF model (for December) Samples from CRF model (for July)

e Conditional NLL is 16.21, compared to Markov chain which gets NLL 16.81.
o Better than mixture of 10 Markov chains (EM training), which gets 16.53.
@ Probably due to finding global minima when fitting CRF.
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Rain Data with Month Information using CRFs

@ A CRF model conditioned on month z,

exp ZycmrZycyc 1V+Zzyc$ﬂ’y

c=1 j=1

p(@/17y27---7yk ‘ x)

@ Comparing this to other approaches:

o Generative: model p(y1,¥y2,- .., Yk, T).
o Have to model distribution of z, and inference is more expensive (not a chain).
@ Also uses known clusters.
o Learning is still convex.

o Mixture/Boltzmann: add latent variables z that might learn month information.
e Have to model distribution of z, inference is more expensive (not a chain).
@ Doesn’t use known clusters so needs more data.
e But might learn a better clustering if months aren't great clusters.
@ Learning is non-convex due to sum over z values.



Conditional Random Fields
Summary

Boltzmann machines are UGMs with binary hidden variables.
o Restricted Boltzmann machines only allow connections between hidden/visible.

3 types of structured prediction:
o Generative models, discriminative models, discriminant functions.

Conditional random fields generalize logistic regression:

e Discriminative model allowing dependencies between labels.
e Log-linear parameterization again leads to convexity.
e But requires inference in graphical model.

Next time: why we are doing everything wrong to make decisions.
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Deep Belief Networks

@ Deep belief networks are latent DAGs with more binary hidden layers:

Data is at the bottom.
First hidden layer could be “basic ingredients”.

Second hidden layer could be general “parts”.

e 6 o6 o

Third hidden layer could be “abstract concept”.
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Deep Belief Networks

o If we were conditioning on top layer:
e Sampling would be easy.
e But we're conditioning on the bottom layer:
e Everything is hard.
o There is combinatorial “explaining away" .
e Common training method:
o Greedy “layerwise” training as a restricted Boltzmann machine.



Conditional Random Fields

Greedy Layerwise Training of Stacked RBMs
@ Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)




Conditional Random Fields

Greedy Layerwise Training of Stacked RBMs

@ Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
@ Step 2:

e Fix first hidden layer values.
e Train an RBM.




Conditional Random Fields

Greedy Layerwise Training of Stacked RBMs

@ Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
@ Step 2:

o Fix first hidden layer values.

e Train an RBM.
@ Step 3:

o Fix second hidden layer values.

e Train an RBM.
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Deep Belief Networks

o Keep top as an RBM.
o For the other layers, use DAG parameters that implement block sampling.
o Can sample by running block Gibbs on top layer for a while, then ancestral sampling.
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Convolutional:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf


http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf 

Conditional Random Fields

Deep Belief Networks

@ Can add a class label to last layer.

@ Can use “fine-tuning” as a feedforward neural network to refine weights.
e https://www.youtube.com/watch?v=KuPaiOogiHk


https://www.youtube.com/watch?v=KuPai0ogiHk

Conditional Random Fields

Deep Boltzmann Machines

@ Deep Boltzmann machines just keep as an undirected model.

e Sampling is nicer: no explaning away within layers.
e Variables in layer are independent given variables in layer above and below.
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Conditional Random Fields

Deep Boltzmann Machines

@ Performance of deep Boltzmann machine on NORB data:

Deep Boltzmann Machine
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Figure 5: Left: The architecture of deep Boltzmann machine used for NORB. Right: Random samples from the training set, and
samples generated from the deep Boltzmann machines by running the Gibbs sampler for 10,000 steps.

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf


http://www.cs.toronto.edu/~fritz/absps/dbm.pdf

e ©

Conditional Random Fields

CRF “Product of Marginals” Objective

In CRFs we typically optimize the likelihood, p(y | z, w).
e This focuses on getting the joint likelihood of the sequence y right.

What if we are interested in getting the “parts” v, right?
e In sequence labeling, your error is “number of positions you got wrong" in sequence.
e As opposed to “did you get the whole sequence right?”

In this setting, it could make more sense to optimize the product of marginals:

k

k
[[relew) =] 3 »0/|w).

c=1 c=1{y" | yt=yc}

Non-convex, but probably a better objective.

If you know how to do inference, this paper shows how to get gradients:
@ https://people.cs.umass.edu/~domke/papers/2010nips.pdf


https://people.cs.umass.edu/~domke/papers/2010nips.pdf

Conditional Random Fields

Brain Tumour Segmentation with Label Dependencies

@ We got a bit more fancy and used edge features z%/,

py' Pyt 2l a? *exp Zwax“r > yiyv o
(i,5)€E

o For example, we could use 2/ = 1/(1 4 |2* — 27]).
o Encourages y; and y; to be more similar if z* and 27 are more similar.

@ This is a pairwise UGM with

$i(y)) = exp(y'wlz?), ¢y, y') = exp(yiyvT ),

so it didn't make inference any more complicated.
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Motivation: Gesture Recognition

@ Want to recognize gestures from video:

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf
@ A gesture is composed of a sequence of parts:
e And some parts appear in different gestures.


http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf
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Motivation: Gesture Recognition
@ We may not know the set of “parts” that make up gestures.

ev _‘\)\Q\_\-A\:-' DB

Hidden
States

Hidden
States

sV EH
pivinl Hidden
States States

FB PB
Hidden Hidden
Slates States

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf

@ We can consider learn the “parts’ and their latent dynamics (transitions).


http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf
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Motivation: Gesture Recognition

@ We're given a labeled video sequence, but don't observe “parts”:

x B3l - - -
U

EB2f 1
St e e e e 4
e G3| | - i
]

© G2 i b 9
+ Gll | = :| Gesture label s .

] Background label

0 10 20 30 40 50
Frame index

http://www.lsi.upc.edu/~aquattoni/Al1MyPapers/cvpr_07_L.pdf

@ Our videos are labeled with “gesture” and “background” frames,
o But we don't know the parts (G1, G2, G3, B1, B2, B3) that define the labels.


http://www.lsi.upc.edu/~aquattoni/AllMyPapers/cvpr_07_L.pdf

Conditional Random Fields

Latent-Dynamic Conditional Random Field

@ Here we could use a latent-dynamic conditional random field

@ Observed variable z; is the image at time j (in this case z; is a video frame).
@ The gesture y is defined by sequence of parts z;.

o We're learning what the parts should be.

o We're learning “latent dynamics”: how the hidden parts change over time.

@ Notice in the above case that the conditional UGM is a tree.
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Posterior Regularization

@ In some cases it might make sense to use posterior regularization:
o Regularize the probabilities in the resulting model.

@ Consider an NLP labeling task where
e You have a small amount of labeled sentences.
e You have a huge amount of unlabeled sentences.

@ Maximize labeled likelihood, plus total-variation penalty on p(y. | x,w) values.
o Give high regularization weights to words appearing in same trigrams:

they run over

blood run cold a run for
0.9

05

. 08

u—-_~_~. 0.4

we run out

a run along
luck run out ninth run for

http://jgillenw.com/conl112013-talk.pdf

@ Useful for “out of vocabulary” words (words that don't appear in labeled data).


http://jgillenw.com/conll2013-talk.pdf
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