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Last Time: Learning in UGMs
We discussed log-linear parameterization of UGMs,

φj(s) = exp(wj,s), φjk(s, s
′) = exp(wj,k,s,s′), φjkl(s, s

′, s′′) = exp(wj,k,l,s,s′,s′′).

the likelihood of an example x given parameter w is given by

p(x | w) =
exp

(
wTF (x)

)
Z

,

and the feature functions F (x) count the number of times we use each wj .

Gradient of the NLL with respect to a particular wj has the form

∇w10,3f(w) = −
1

n

[
n∑

i=1

I[xi10 = 3]

]
︸ ︷︷ ︸

frequency in data

+ p(x10 = 3 | w)︸ ︷︷ ︸
model “frequency”

.

There are different ways to address the annoying term:
For example, run Gibbs sampling to approximate it with Monte Carlo.
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Last Time: Latent DAG Model

Last time we discussed the following model:

With k hidden binary nodes, a mixture model with 2k clusters.
You can think of each zc as a “part” that can be included or not (“binary PCA”).

Usually assume p(xj | z1, z2, z3, z4) is a linear model (Gaussian, logistic, etc.).
With d visible xj and k hidden zj , we only have dk parameters.

Unfortunately, somewhat hard to use:
Combinatorial “explaining away” between zc value when conditioning on x.
Restricted Boltzmann Machines (RBMs) are a similar undirected model...
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Boltzmann Machines

Boltzmann machines are UGMs with binary latent variables:

https://en.wikipedia.org/wiki/Boltzmann_machine

Yet another latent-variable model for density estimation.

Hidden variables again give a combinatorial latent representation.

Hard to do anything in this model, even if you know all the z (or x).

https://en.wikipedia.org/wiki/Boltzmann_machine 
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Restricted Boltzmann Machine

By restricting graph structure, some things get easier:

Restricted Boltzmann machines (RBMs): edges only between the xj and zc.

Bipartite structure allows block Gibbs sampling given one type of variable:

Conditional UGM is disconnected.

Given visible x, we can sample each zc independently.

Given hidden z, we can sample each xj independently.
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Restricted Boltzmann Machines
The RBM graph structure leads to a joint distribution of the form

p(x, z) =
1

Z

 d∏
j=1

φj(xj)

( k∏
c=1

φc(zc)

) d∏
j=1

k∏
c=1

φjc(xj , zc)

 .

RBMs usually use a log-linear parameterization like

p(x, z) ∝ exp

 d∑
j=1

xjwj +

k∑
c=1

zcvc +

d∑
j=1

k∑
c=1

xjwjczc

 ,

for parameters wj , vc, and wjc (first term would be different for continuous xj).
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Generating Digits with RBMs

http://deeplearning.net/tutorial/rbm.html

http://deeplearning.net/tutorial/rbm.html
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Generating Digits with RBMs
Visualizing each zc’s interaction parameters (wjc for all j) as images:

http://deeplearning.net/tutorial/rbm.html

http://deeplearning.net/tutorial/rbm.html
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Learning UGMs with Hidden Variables
For RBMs we have hidden variables:

With hidden (“nuissance”) variables z the observed likelihood has the form

p(x) =
∑
z

p(x, z) =
∑
z

p̃(x, z)

Z

=
1

Z

∑
z

p̃(x, z)︸ ︷︷ ︸
Z(x)

=
Z(x)

Z
,

where Z(x) is the partition function of the conditional UGM given x.
Z(x) is cheap in RBMs because the z are independent given x.
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Learning UGMs with Hidden Variables

This gives an observed NLL of the form

− log p(x) = − log(Z(x)) + logZ,

where Z(x) sums over hidden z values, and Z sums over z and x.

The second term is convex but the first term is non-convex.
This is expected when we have hidden variables.

With a log-linear parameterization, the gradient has the form

−∇ log p(x) = −Ez | x[F (X,Z)] + Ez,x[F (X,Z)].

For RBMs, first term is cheap due to independence of z given x.
We can approximate second term using block Gibbs sampling.

For other problems, you would also need to approximate first term.
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Deep Belief Networks and Deep Boltzmann Machines

Around 15 years ago, a hot topic was “stacking” latent DAGs and/or RBMs:

Part of the motivation for peope to re-consider “deep” models.
These architectures were popular because they were deep but nice for sampling.

And it was common to use “train on RBM” as an ingredient for learning.

Deep belief net: Deep Boltzmann:

Post-lecture bonus slides go through some of the details if you are interested.

https://www.youtube.com/watch?v=KuPai0ogiHk

https://www.youtube.com/watch?v=KuPai0ogiHk
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Outline

1 Restrictred Boltzmann Machines

2 Conditional Random Fields
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3 Classes of Structured Prediction Methods

3 main approaches to structured prediction (predicting object y given features x):
1 Generative models use p(y | x) ∝ p(y, x) as in naive Bayes.

Turns structured prediction into density estimation.

But remember how hard it was just to model images of digits?
We have to model features and solve supervised learning problem.

2 Discriminative models directly fit p(y | x) as in logistic regression (next topic).
View structured prediction as conditional density estimation.

Just focuses on modeling y given x, not trying to model features x.
Lets you use complicated features x that make the task easier.

3 Discriminant functions just try to map from x to y as in SVMs.

Now you don’t even need to worry about calibrated probabilities.
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Motivation: Automatic Brain Tumor Segmentation

Task: identification of tumours in multi-modal MRI.

Applications:

Radiation therapy target planning, quantifying treatment response.
Mining growth patterns, image-guided surgery.

Challenges:

Variety of tumor appearances, similarity to normal tissue.
“You are never going to solve this problem”.
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Brain Tumour Segmentation with Label Dependencies

After a lot pre-processing and feature engineering (convolutions, priors, etc.),
final system used logistic regression to label each pixel as “tumour” or not.

p(yc | xc) =
1

1 + exp(−2ycwTxc)
=

exp(ycw
Txc)

exp(wTxc) + exp(−wTxc)

Gives a high “pixel-level” accuracy, but sometimes gives silly results:

Classifying each pixel independently misses dependence in labels yi:

We prefer neighbouring voxels to have the same value.
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Brain Tumour Segmentation with Label Dependencies

With independent logistic, conditional distribution over all labels in one image is

p(y1, y2, . . . , yk | x1, x2, . . . , xk) =
k∏

c=1

exp(ycw
Txc)

exp(wTxc) + exp(−wTxc)

∝ exp

(
d∑

c=1

ycw
Txc

)
,

where here xc is the feature vector for position c in the image.

We can view this as a log-linear UGM with no edges,

φc(yc) = exp(ycw
Txc),

so given the xc there is no dependence between the yc.
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Brain Tumour Segmentation with Label Dependencies

Adding an Ising-like term to model dependencies between yi gives

p(y1, y2, . . . , yk | x1, x2, . . . , xk) ∝ exp

 k∑
c=1

ycw
Txc +

∑
(c,c′)∈E

ycyc′v

 ,

Now we have the same “good” logistic regression model,
but v controls how strongly we want neighbours to be the same.

Note that we’re going to jointly learn w and v.
We’ll find the optimal joint logistic regression and Ising model.

When we model conditional of y given x as a UGM,
we call it a conditional random field (CRF).

Key advantadge of this (discriminative) approach:
Don’t need to model features x as in “generative” models.
We saw with MNIST digits that modeling images is hard.
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Conditional Random Fields for Segmentation

Recall the performance with the independent classifier:

The pairwise CRF better modelled the “guilt by association”:
Trained with pseudo-likelihood. Added constraint v ≥ 0 to use graph cut decoding.

(We were using edge features xcc′ too, see bonus (and different λ on edges).)
CRFs are like logistic regression (no modeling x) vs naive Bayes (modeling x).

p(y | x) (discriminative) vs. p(y, x) (generative).
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Conditional Random Fields

The brain CRF can be written as a conditional log-linear models,

p(y | x,w) = 1

Z(x)
exp(wTF (x, y)),

for some parameters w and features F (x, y).

The NLL is convex and has the form

− log p(y | x,w) = −wTF (x, y) + logZ(x),

and the gradient can be written as

−∇ log p(y | x,w) = −F (x, y) + Ey | x[F (x, y)].

Unlike before, we now have a Z(x) and set of expectations for each x.
Train using gradient methods like quasi-Newton or stochastic gradient.
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Rain Data without Month Information

Consider an Ising UGM model for the rain data with tied parameters,

p(y1, y2, . . . , yk) ∝ exp

(
k∑

c=1

ycω +

k∑
c=2

ycyc−1ν

)
.

First term reflects that “not rain” is more likely.

Second term reflects that consecutive days are more likely to be the same.

This model is equivalent to a Markov chain model.

We could condition on month to model “some months are less rainy”.



Restrictred Boltzmann Machines Conditional Random Fields

Rain Data with Month Information using CRFs

Discriminative appraoch: fit a CRF model conditioned on month x,

p(y1, y2, . . . , yk | x) ∝ exp

 k∑
c=1

ycω +

d∑
c=2

ycyc−1ν +

k∑
c=1

12∑
j=1

ycxjvj

 .

The conditional UGM given x has a chain-structure

φi(yi) = exp

yiω +

12∑
j=1

yixjvj

 , φij(yi, yj) = exp(yiyjν),

so inference can be done using forward-backward.

And it’s log-linear so the NLL will be convex.
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Rain Data with Month Information

Samples from CRF conditioned on x being December (left) and July (right):

Conditional NLL is 16.21, compared to Markov chain which gets NLL 16.81.
Better than mixture of 10 Markov chains (EM training), which gets 16.53.

Probably due to finding global minima when fitting CRF.
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Rain Data with Month Information using CRFs

A CRF model conditioned on month x,

p(y1, y2, . . . , yk | x) =
1

Z(x)
exp

 k∑
c=1

ycω +

d∑
c=2

ycyc−1ν +

k∑
c=1

12∑
j=1

ycxjvj

 .

Comparing this to other approaches:
Generative: model p(y1, y2, . . . , yk, x).

Have to model distribution of x, and inference is more expensive (not a chain).
Also uses known clusters.
Learning is still convex.

Mixture/Boltzmann: add latent variables z that might learn month information.

Have to model distribution of z, inference is more expensive (not a chain).
Doesn’t use known clusters so needs more data.
But might learn a better clustering if months aren’t great clusters.
Learning is non-convex due to sum over z values.
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Summary

Boltzmann machines are UGMs with binary hidden variables.

Restricted Boltzmann machines only allow connections between hidden/visible.

3 types of structured prediction:

Generative models, discriminative models, discriminant functions.

Conditional random fields generalize logistic regression:

Discriminative model allowing dependencies between labels.
Log-linear parameterization again leads to convexity.
But requires inference in graphical model.

Next time: why we are doing everything wrong to make decisions.
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Deep Belief Networks

Deep belief networks are latent DAGs with more binary hidden layers:

Data is at the bottom.

First hidden layer could be “basic ingredients”.

Second hidden layer could be general “parts”.

Third hidden layer could be “abstract concept”.
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Deep Belief Networks

If we were conditioning on top layer:
Sampling would be easy.

But we’re conditioning on the bottom layer:
Everything is hard.
There is combinatorial “explaining away”.

Common training method:
Greedy “layerwise” training as a restricted Boltzmann machine.
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Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
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Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)

Step 2:
Fix first hidden layer values.
Train an RBM.
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Greedy Layerwise Training of Stacked RBMs
Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
Step 2:

Fix first hidden layer values.
Train an RBM.

Step 3:
Fix second hidden layer values.
Train an RBM.
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Deep Belief Networks

Keep top as an RBM.

For the other layers, use DAG parameters that implement block sampling.

Can sample by running block Gibbs on top layer for a while, then ancestral sampling.

Convolutional:
http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf 
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Deep Belief Networks

Can add a class label to last layer.

Can use “fine-tuning” as a feedforward neural network to refine weights.

https://www.youtube.com/watch?v=KuPai0ogiHk

https://www.youtube.com/watch?v=KuPai0ogiHk
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Deep Boltzmann Machines

Deep Boltzmann machines just keep as an undirected model.

Sampling is nicer: no explaning away within layers.
Variables in layer are independent given variables in layer above and below.
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Deep Boltzmann Machines

Performance of deep Boltzmann machine on NORB data:

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf
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CRF “Product of Marginals” Objective

In CRFs we typically optimize the likelihood, p(y | x,w).
This focuses on getting the joint likelihood of the sequence y right.

What if we are interested in getting the “parts” yc right?
In sequence labeling, your error is “number of positions you got wrong” in sequence.
As opposed to “did you get the whole sequence right?”

In this setting, it could make more sense to optimize the product of marginals:

k∏
c=1

p(yc | x,w) =
k∏

c=1

∑
{y′ | y′c=yc}

p(y′ | x,w).

Non-convex, but probably a better objective.

If you know how to do inference, this paper shows how to get gradients:
https://people.cs.umass.edu/~domke/papers/2010nips.pdf

https://people.cs.umass.edu/~domke/papers/2010nips.pdf
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Brain Tumour Segmentation with Label Dependencies
We got a bit more fancy and used edge features xij ,

p(y1, y2, . . . , yd | x1, x2, . . . , xd) = 1

Z
exp

 d∑
i=1

yiwTxi +
∑

(i,j)∈E

yiyjvTxij

 .

For example, we could use xij = 1/(1 + |xi − xj |).
Encourages yi and yj to be more similar if xi and xj are more similar.

This is a pairwise UGM with

φi(y
i) = exp(yiwTxi), φij(y

i, yj) = exp(yiyjvTxij),

so it didn’t make inference any more complicated.



Restrictred Boltzmann Machines Conditional Random Fields

Motivation: Gesture Recognition

Want to recognize gestures from video:

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf

A gesture is composed of a sequence of parts:

And some parts appear in different gestures.

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf
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Motivation: Gesture Recognition

We may not know the set of “parts” that make up gestures.

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf

We can consider learn the “parts” and their latent dynamics (transitions).

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf
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Motivation: Gesture Recognition

We’re given a labeled video sequence, but don’t observe “parts”:

http://www.lsi.upc.edu/~aquattoni/AllMyPapers/cvpr_07_L.pdf

Our videos are labeled with “gesture” and “background” frames,

But we don’t know the parts (G1, G2, G3, B1, B2, B3) that define the labels.

http://www.lsi.upc.edu/~aquattoni/AllMyPapers/cvpr_07_L.pdf
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Latent-Dynamic Conditional Random Field

Here we could use a latent-dynamic conditional random field

Observed variable xj is the image at time j (in this case xj is a video frame).
The gesture y is defined by sequence of parts zj .

We’re learning what the parts should be.
We’re learning “latent dynamics”: how the hidden parts change over time.

Notice in the above case that the conditional UGM is a tree.
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Posterior Regularization
In some cases it might make sense to use posterior regularization:

Regularize the probabilities in the resulting model.

Consider an NLP labeling task where
You have a small amount of labeled sentences.
You have a huge amount of unlabeled sentences.

Maximize labeled likelihood, plus total-variation penalty on p(yc | x,w) values.
Give high regularization weights to words appearing in same trigrams:

http://jgillenw.com/conll2013-talk.pdf

Useful for “out of vocabulary” words (words that don’t appear in labeled data).

http://jgillenw.com/conll2013-talk.pdf
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