
Parameter Learning in UGMs Multi-Cluster Mixture Models

CPSC 440: Advanced Machine Learning
Log-Linear Models

Mark Schmidt

University of British Columbia

Winter 2021



Parameter Learning in UGMs Multi-Cluster Mixture Models

Last Time: Approximate Inference
We’ve been discussing graphical models for density estimation,

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | xpa(j)), p(x1, x2, . . . , xd) ∝
∏
c∈C

φc(xc),

where are natural and widely-used models for many phenomena.
These will also be among ingredients of more advanced models we’ll see later.

For high-treewidth graphs, we considered approximate inference methods:
1 Iterated conditional mode (ICM) applies coordinate-wise optimization.
2 Gibbs sampling applies coorrdinate-wise sampling.

A special case of Markov chain Monte Carlo (MCMC).
ICM and Gibbs work better if you update blocks with low treewidth.

For binary pairwise UGMs with “attractive” potentials,

log φij(1, 1) + log φij(2, 2) ≥ log φij(1, 2) + log φij(2, 1),

we can do exact decoding efficiently for any treewidth via “graph cuts”.
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

If we have more than 2 states, we can’t use graph cuts.

Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log φij(α, α) + log φij(β, β) ≥ log φij(α, β) + log φij(β, α).

Each step choose an α and β, optimally “swaps” labels among these nodes.

Alpha-expansions are another variation based on a slightly stronger assumption,

log φij(α, α) + log φij(β1, β2) ≥ log φij(α, β1) + log φij(β2, α).

Steps choose label α, and consider replacing the label of any node not labeled α.
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

These don’t find global optima in general, but make huge moves:

A somewhat-related MCMC method is the Swendson-Wang algorithm.
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Example: Photomontage

Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

Here, xi corresponds to identity of original image at position i.

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf


Parameter Learning in UGMs Multi-Cluster Mixture Models

Example: Photomontage
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Structured Prediction with Undirected Graphical Models

Consider a pairwise UGM,

p(x) =
1

Z

 d∏
j=1

φj(xj)

 ∏
(j,k)∈E

φjk(xj , xk)

 .

We’ve been focusing on the case where the potentials φ are known.

We’ve discussed exact inference, and approximate decoding and sampling.
We’ve discussed [block-]coordinate approximate inference.

We’re now going to discuss learning the potentials φ from data.

Unfortunately, Z makes this complicated compared to DAGs.

You can’t fit each potential independently.
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Naive Parameterization of UGMs

We’ll want to make the φ depend on a set of parameters w.

As before, with n IID training xi we can do MAP estimation,

w = argmin
w
−

n∑
i=1

log p(xi | w) + λ

2
‖w‖2,

where I’ve assumed an independent Gaussian prior on w.

A naive parameterization is to just directly treat potentials as parameters:

φj(s) = wj,s, φjk(s, s
′) = wj,k,s,s′ ,

so wj,s is “potential of node j being in state s”.
And optimize subject to all parameters being non-negative.
This unfortunately leads to a non-convex optimizaiton.
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Log-Linear Parameterization of UGMs

Instead of using non-negative w, we can instead exponentiate w,

φj(s) = exp(wj,s), φjk(s, s
′) = exp(wj,k,s,s′).

This gives a log-linear model,

p(x | w) ∝

 d∏
j=1

φj(xj)

 ∏
(j,k)∈E

φjk(xj , xk)


= exp

 d∑
j=1

wj,xj +
∑

(j,k)∈E

wj,k,xj ,xk

 ,

and leads to a convex NLL.

Normally, exponentiating to get non-negativity introduces local minima.
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Parameter Tieing in UGMs

So our log-linear parameterization has the form

log φj(s) = wj,s, log φjk(s, s
′) = wj,k,s,s′ ,

which can represent any positive pairwise potentials.

There exist many common variations on parameter tieing:
We might want wj,xj to be the same for all j (all nodes use same potentials).

You can similarly tie the edge parameters across all edges.
This is similar to homogenous Markov chains.

In the Ising model we tied across states: wj,k,1,1 = wj,k,2,2 and wj,k,1,2 = wj,k,2,1.

We could also have special potentials for the boundaries.

Many language models are homogeneous, except for start/end of sentences.
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Energy Function and Feature Vector Representation

Recall that we use p̃(x) for the unnormalized probability,

p(x) =
p̃(x)

Z
.

In physics, the value E(x) = − log p̃(x) is called the energy function.

With the log-linear parameterization, the energy function is linear,

−E(X) =
∑
j

wj,xj +
∑

(j,k)∈E

wj,k,xj ,xk
.

To account for parameter tieing, we often write

−E(x) = wTF (x), or equivalently p(x) ∝ exp(wTF (x)),

where feature function F counts number of times we use each parameter.
Includes usual softmax as a special case.
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Example of Feature Function

Consider the 2-node 1-edge UGM (1)–(2), where each state has 2 values.

So we have potentials φ1(x1), φ2(x2), and φ12(x1, x2) and want to have

wTF (x) = w1,x1
+ w2,x2

+ w1,2,x1,x2
.

With no parameter tieing and x =
[
2 1

]
, our parameter vector and features are

w =



w1,1

w1,2

w2,1

w2,2

w1,2,1,1

w1,2,1,2

w1,2,2,1

w1,2,2,2


, F (x) =



0
1
1
0
0
0
1
0


,
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Example of Feature Function

If we instead had Ising potentials (just measuring whether x1 = x2) we would have

wTF (x) = w1,x1 + w2,x2 + w1,2,same,

where w1,2,same is the parameter specifying how much we want x1 = x2.

With no parameter tieing and x =
[
2 1

]
, our parameter vector and features are

w =


w1,1

w1,2

w2,1

w2,2

w1,2.same

 , F (x) =


0
1
1
0
0

 ,
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Log-Linear UGM NLL and Gradient
With log-linear parameterization of UGMs,

φj(s) = exp(wj,s), φjk(s, s
′) = exp(wj,k,s,s′), φjkl(s, s

′, s′′) = exp(wj,k,l,s,s′,s′′).

the likelihood of an example x given parameter w is given by

p(x | w) =
exp

(
wTF (x)

)
Z

,

and the feature functions F (x) count the number of times we use each wj .

This leads to a convex NLL (first term is linear, second is a big log-sum-exp),

− log p(x | w) = −wTF (x) + log(Z),

The gradient has a simple form (derivation in bonus)

∇w − log p(x | w) = −F (x) + E[F (x)],

where expectation is over x values (inference problem with current w).
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Computing Log-Linear Gradient as Inference

For 1 example, gradient in log-linear UGM with respect to parameter wj is

∇wjf(w) = −Fj(x) + E[Fj(x)].

Example of φ10(3) = exp(w10,3) (potential that feature 10 is in state 3).

Averaging over n examples, the gradient with no parameter tieing is given by

∇w10,3f(w) = −
1

n

[
n∑

i=1

I[xi10 = 3]

]
︸ ︷︷ ︸

frequency in data

+ p(x10 = 3 | w)︸ ︷︷ ︸
model “frequency”

.

So if ∇w10,3
f(w) = 0, probabilities match frequencies in training data.

At MLE, you match the frequencies of all the potentials in the training data.
Typical training method: deterministic gradient descent methods (if have Z).

But computing gradient requires inference (computing marginals like p(x10 = 3)).
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Approximate Learning: Pseudo-Likelihood

Methods for approximate learning (when can’t compute marginals efficiently):
Change the objective to an approximation that does not require marginals.

A popular approach is pseudo-likelihood (fast, convex, and crude):

p(x1, x2, . . . , xd) ≈
d∏

j=1

p(xj | x−j) =

d∏
j=1

p(xj | xnei(j)),

which turns learning into d single-variable problems (similar to DAGs).
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Approximate Learning: Marginal Approximations

Methods for approximate learning (when can’t compute marginals efficiently):
Approximate the marginals and use these within the gradient formula.

1 Deterministic variational approximations of E[F (x)] (we will cover these later).

2 Monte Carlo approximation of E[Fj(x)] given current parameters w:

∇f(w) = −F (x) + E[F (x)]

≈ −F (x) +
1

t

t∑
i=1

F (xi)︸ ︷︷ ︸
Monte Carlo approx

,

based on samples from p(x | w).
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Younes Algorithm (“Persistent Contrastive Divergence”)

Unfortunately, we typically cannot efficiently generate IID samples.

In cases where computing marginals is not efficient.

Standard approach to use Monte Carlo approximation of gradient:
1 Run Gibbs sampling for a long time to with current wk.

To hopefully generate an IID sample xk from p(x | wk).

2 SGD Update based on this sample: wk+1 = wk + αk(F (x) + F (xk)).

Younes algorithm (also known as “persistent contrastive divergence”):
1 Run Gibbs sampling for a short time starting from xk−1 with current wk.

Usually, you do 1 pass through the variables to generate new xk.

2 SGD Update based on this sample: wk+1 = wk + αk(F (x) + F (xk)).

Younes algorithm works, even though gradient approximations are biased.

With much faster iterations than Monte Carlo with Gibbs sampling.
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Pairwise UGM on MNIST Digits
Samples from a lattice-structured pairwise UGM:

Training: 100k stochastic gradient w/ Gibbs sampling steps with αt = 0.01.
Samples are iteration 100k of Gibbs sampling with fixed w.

Bonus slides: structure learning in log-linear UGMs with L1-regularization.
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http:

//engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar

http://engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar
http://engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar
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Deep Density Estimation

In 340 we discussed deep learning methods for supervised learning.

Does it make sense to talk about deep unsupervised learning?

Standard argument:

Human learning seems to be mostly unsupervised.
Supervision gives limited feedback: bits in a class label vs. an image.
Could we learn unsupervised models with much less data?

Deep belief networks started modern deep learning movement (2006).
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Cool Pictures Motivation for Deep Learning
First layer of zi trained on 10 by 10 image patches:

Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Many classes use these particular images to motivate deep neural networks.
But they’re not from a neural network: they’re from a DAG model.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Mixture of Independent Models

Recall the mixture of independent models:

p(x) =

k∑
c=1

p(z = c)

d∏
j=1

p(xj | z = c).

Given z, each variable xj comes from some “nice” distribution.

This is enough to model any distribution.

Just need to know cluster of example x and distribution of xj given z.
But not an efficient representation: number of cluster might need to be huge.

Need to learn each cluster independently (no “shared” information across clusters).
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Latent DAG Model

Consider the following model with binary z1 and z2:

Have we gained anything?

We have 4 clusters based on two hidden variables.
Each cluster shares a parent/part with 2 of the other clusters.

Hope is to achieve some degree of composition

Don’t need to re-learn basic things about the xj in each cluster.
Maybe one hidden zc models clusters, and another models correlations.
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Latent DAG Model

Consider the following model:

Now we have 16 clusters, in general we’ll have 2k with k hidden binary nodes.
This discrete latent-factors give combinatorial number of mixtures.

You can think of each zc as a “part” that can be included or not (“binary PCA”).

Usually assume p(xj | z1, z2, z3, z4) is a linear model (Gaussian, logistic, etc.).
Distributed representation where x is made of parts z.
With d visible xj and k hidden zj , we only have dk parameters.

Unfortunately, somewhat hard to use:
Combinatorial “explaining away” between zc value when conditioning on x.
Restricted Boltzmann Machines (RBMs) are a similar undirected model...
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Summary
Alpha-beta swaps and alpha exapnsions.

Powerful approximate decoding methods in “attractive” models.

Log-linear parameterization can be used to learn UGMs:
Maximum likelihood is convex, but requires normalizing constant Z and inference.

Approximate UGM learning:
1 Change objective function: pseudolikelihood.
2 Approximate marginals: Monte Carlo or variational methods.

Multi-Cluster Mixture Model
Cluster is defined by values of a set of k binary variables.
Exponential number of clusters, but explaining away makes inference hard.

Next time: the work that started the the modern deep learning movement.
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Example: Ising Model of Rain Data

E.g., for the rain data we could parameterize our node potentials using

log(φi(xi)) =

{
w1 no rain

0 rain
.

Why do we only need 1 parameter?

Scaling φi(1) and φ(2) by constant doesn’t change distribution.

In general, we only need (k − 1) parameters for a k-state variable.

But if we’re using regularization we may want to use k anyways (symmetry).
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Example: Ising Model of Rain Data

The Ising parameterization of edge potentials,

log(φij(xi, xj)) =

{
w2 xi = xj

0 xi 6= xj
.

Applying gradient descent gives MLE of

w =

[
0.16
0.85

]
, φi =

[
exp(w1)
exp(0)

]
=

[
1.17
1

]
, φij =

[
exp(w2) exp(0)
exp(0) exp(w2)

]
=

[
2.34 1
1 2.34

]
,

preference towards no rain, and adjacent days being the same.

Average NLL of 16.8 vs. 19.0 for independent model.
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Full Model of Rain Data

We could alternately use fully expressive edge potentials

log(φij(xi, xj)) =

[
w2 w3

w4 w5

]
,

but these don’t improve the likelihood much.

We could fix one of these at 0 due to the normalization.

But we often don’t do this when using regularization.

We could also have special potentials for the boundaries.

Many language models are homogeneous, except for start/end of sentences.
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Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

For this dataset, using untied or general edges doesn’t change likelihood much.
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Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:
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UGM Training Objective Function

With log-linear parameterization, NLL for IID training examples is

f(w) = −
n∑

i=1

log p(xi | w) = −
n∑

i=1

log

(
exp(wTF (xi))

Z(w)

)

= −
n∑

i=1

wTF (xi) +

n∑
i=1

logZ(w)

= −wTF (X) + n logZ(w).

where the F (X) =
∑

i F (x
i) are called the sufficient statistics of the dataset.

Given sufficient statistics F (X), we can throw out the examples xi.
(only go through data once)

Function f(w) is convex (it’s linear plus a big log-sum-exp function).
But notice that Z depends on w

.
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Log-Linear UGM Gradient

For 1 example x, we showed that NLL with log-linear parameterization is

f(w) = −wTF (x) + logZ(w).

The partial derivative with respect to parameter wj has a simple form

∇wjf(w) = −Fj(x) +
∑
x

exp(wTF (x))

Z(w)
Fj(x)

= −Fj(x) +
∑
x

p(x | w)Fj(x)

= −Fj(x) + E[Fj(x)].

Observe that derivative of log(Z) is expected value of feature.
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Structure Learning in UGMs

Recall that in Ising UGMs, our edge potentials have the form

φij(xi, xj) = exp(wijxixj).

If we set wij = 0, it sets φij(xi, xj) = 1 for all xi and xj .

Potential just “multiplies by 1”, which is equivalent to removing the edge.

L1-regularization of wij values performs structure learning in UGM.

For general log-linear, each edge has multiple parameters wi,j,s,s′ .
In this case we can use “group L1-regularization” for structure learning.

Each group will be all parameters wi,j,·,· associated with an edge (i, j).
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Structure Learning on Rain Data

Large λ (and optimal tree):
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Structure Learning on USPS Digits
Structure learning of pairwise UGM with group-L1 on USPS digits:
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Structure Learning on News Words
Group-L1 on newsgroups data:
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Structure Learning on News Words
Group-L1 on newsgroups data:
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