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Last Time: Approximate Inference

@ We've been discussing graphical models for density estimation,

d
p(x17x27 L 7xd) = Hp(‘r] | xpa(j))7 p(ml,J;Q, ... 7xd) X H¢C(m0)7
j=1 ceC

where are natural and widely-used models for many phenomena.
o These will also be among ingredients of more advanced models we'll see later.
@ For high-treewidth graphs, we considered approximate inference methods:
@ lterated conditional mode (ICM) applies coordinate-wise optimization.
@ Gibbs sampling applies coorrdinate-wise sampling.
o A special case of Markov chain Monte Carlo (MCMC).
o ICM and Gibbs work better if you update blocks with low treewidth.

@ For binary pairwise UGMs with “attractive” potentials,

log ¢4j(1,1) + log ¢4;(2,2) > log ¢4;(1,2) + log ¢4;(2,1),

we can do exact decoding efficiently for any treewidth via “graph cuts”.



Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

@ If we have more than 2 states, we can’t use graph cuts.

@ Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log ¢y (a, ) +1og ¢i5(B, B) > log ¢y (v, B) + log ¢i; (5, cv).

e Each step choose an « and 3, optimally “swaps” labels among these nodes.

@ Alpha-expansions are another variation based on a slightly stronger assumption,

log ¢sj(cr, ) + log ¢4 (61, B2) > log ¢ij(ax, B1) + log ¢4 ( B2, cv).

e Steps choose label «, and consider replacing the label of any node not labeled a.
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

@ These don't find global optima in general, but make huge moves:

Figure 1: From left to right: Initial labeling, labeling after eS-swap, labeling after a-expansion, labeling after
a-expansion G-shrink. The optimal labeling of the « pixels is outlined by a white triangle, and is achieved from

the initial labeling by one queskpasiop-G-TiThmagye. @r“g’(vaﬂ Prlol@
@ A somewhat-related MCMC method is the Swendson-Wang algorithm.
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Example: Photomontage

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

@ Here, z; corresponds to identity of original image at position 1.


http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Example: Photomontage

@ Photomontage: combining different photos into one photo:

http://vision.middleburyv.edu/MRF/pdf/MRF-PAMI.pdf


http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Outline

@ Parameter Learning in UGMs
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Structured Prediction with Undirected Graphical Models

@ Consider a pairwise UGM,

d
vy =5 ([Testen | | TT ot o)
j=1

(U k)eE

@ We've been focusing on the case where the potentials ¢ are known.

o We've discussed exact inference, and approximate decoding and sampling.
o We've discussed [block-]coordinate approximate inference.

@ We're now going to discuss learning the potentials ¢ from data.

@ Unfortunately, Z makes this complicated compared to DAGs.
e You can't fit each potential independently.



Parameter Learning in UGMs Multi-Cluster Mixture Models

Naive Parameterization of UGMs

e We'll want to make the ¢ depend on a set of parameters w.

@ As before, with n IID training x' we can do MAP estimation,
- A

= in— E 1 i 2wl

w argur}mn 2 ogp(x' | w) + 2HwH ,

where |'ve assumed an independent Gaussian prior on w.

@ A naive parameterization is to just directly treat potentials as parameters:

Gi(s) = wjss  Dji(s,8) = Wjkss

so wj s is “potential of node j being in state s".
e And optimize subject to all parameters being non-negative.
e This unfortunately leads to a non-convex optimizaiton.
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Log-Linear Parameterization of UGMs
@ Instead of using non-negative w, we can instead exponentiate w,
¢;(s) = exp(wjs),  jx(s,s') = exp(wjp,s,s)-
@ This gives a log-linear model,

pla | w) o qu]xj I o) zn)

(4.k)EE
= €Xp ijx3+ Z Wikajay | >
(j,k)eE

and leads to a convex NLL.
o Normally, exponentiating to get non-negativity introduces local minima.
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Parameter Tieing in UGMs
@ So our log-linear parameterization has the form
log ¢j(s) = wjs, log@ju(s,s’) = wjkss,

which can represent any positive pairwise potentials.

@ There exist many common variations on parameter tieing:
o We might want w; ., to be the same for all j (all nodes use same potentials).

@ You can similarly tie the edge parameters across all edges.
e This is similar to homogenous Markov chains.

o In the Ising model we tied across states: w; k1,1 = Wj k2,2 and Wj k1,2 = Wj k2,1

e We could also have special potentials for the boundaries.

e Many language models are homogeneous, except for start/end of sentences.
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Energy Function and Feature Vector Representation

@ Recall that we use p(z) for the unnormalized probability,

_ plx)
@ In physics, the value E(z) = —log p(x) is called the energy function.

o With the log-linear parameterization, the energy function is linear,
Z w] Zj + Z w]7k Tj, T *
(4,k)eE
@ To account for parameter tieing, we often write
—E(z) = wl'F(z), orequivalently p(z) o exp(w! F(z)),

where feature function F' counts number of times we use each parameter.
o Includes usual softmax as a special case.
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Example of Feature Function

o Consider the 2-node 1-edge UGM (1)—(2), where each state has 2 values.
e So we have potentials ¢1 (1), ¢2(x2), and ¢12(x1, z2) and want to have

T
w F(x) = Wiz, T W2z + W12,2,,2,0-

o With no parameter tieing and = = [2 1], our parameter vector and features are

w1,1
w1,2
w21
w=| 2 , F(z)=
wW1,2,1,1
w1,2,1,2
wW1,2,2,1
[ W1,2,2,2 ] L

(=2 e leNoel e
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Example of Feature Function

e If we instead had Ising potentials (just measuring whether x1 = x3) we would have
’LUTF(J‘) = W1,z + W2y + W12 sames

where w1 2 same is the parameter specifying how much we want z; = .

e With no parameter tieing and = [2 1], our parameter vector and features are

wi,1 0
w1,2 1
w = w271 s F(m) = |1 s
w2,2 0
0

W1,2.same
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Log-Linear UGM NLL and Gradient

@ With log-linear parameterization of UGMs,
¢i(s) = exp(wjs),  Gin(s,s) = exp(Wjnss),  bjuils,s',5") = exp(Wjks,s,s)-
the likelihood of an example = given parameter w is given by
exp (W' F(z))
7 ;
and the feature functions F'(x) count the number of times we use each w;.

p(z|w) =

@ This leads to a convex NLL (first term is linear, second is a big log-sum-exp),
—logp(z | w) = —w' F(z) +log(Z),
@ The gradient has a simple form (derivation in bonus)
Vi —logp(z | w) = —F(z) + E[F(z)],

where expectation is over z values (inference problem with current w).
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Computing Log-Linear Gradient as Inference
@ For 1 example, gradient in log-linear UGM with respect to parameter w; is
Vo, [(w) = —Fj(z) + E[Fj(x)].

e Example of ¢10(3) = exp(wi0,3) (potential that feature 10 is in state 3).
o Averaging over n examples, the gradient with no parameter tieing is given by

_ 2 =3 .
- +p(z10 | w)

v11110,3f(w) = ! [Zl[xio = 3]

i—1
! model “frequency”

frequency in data

o So if Vi, ,f(w) = 0, probabilities match frequencies in training data.
e At MLE, you match the frequencies of all the potentials in the training data.
o Typical training method: deterministic gradient descent methods (if have 7).

e But computing gradient requires inference (computing marginals like p(x19 = 3)).
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Approximate Learning: Pseudo-Likelihood

@ Methods for approximate learning (when can’'t compute marginals efficiently):
e Change the objective to an approximation that does not require marginals.
@ A popular approach is pseudo-likelihood (fast, convex, and crude):

d

p(:c17x27...7md)%H p(z; | z—; Hp (x5 | Zneis)),

j=1

which turns learning into d single-variable problems (similar to DAGs).
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Approximate Learning: Marginal Approximations

@ Methods for approximate learning (when can’'t compute marginals efficiently):
e Approximate the marginals and use these within the gradient formula.
@ Deterministic variational approximations of E[F'(x)] (we will cover these later).

@ Monte Carlo approximation of E[F}(x)] given current parameters w:
Vf(w) = —F(z) + E[F(z)]

t
1 i
~ @)+ Y FE),
————

Monte Carlo approx

based on samples from p(z | w).
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Younes Algorithm (“Persistent Contrastive Divergence”)

o Unfortunately, we typically cannot efficiently generate IID samples.
o In cases where computing marginals is not efficient.

@ Standard approach to use Monte Carlo approximation of gradient:
@ Run Gibbs sampling for a long time to with current w*.
o To hopefully generate an IID sample z* from p(z | w*).
@ SGD Update based on this sample: w**! = w* + ay(F(z) + F(2%)).

@ Younes algorithm (also known as “persistent contrastive divergence”):
k=1 with current w".

o Usually, you do 1 pass through the variables to generate new z*.

@ SGD Update based on this sample: w**1 = w* + i (F(x) + F(2*)).

© Run Gibbs sampling for a short time starting from z

@ Younes algorithm works, even though gradient approximations are biased.
e With much faster iterations than Monte Carlo with Gibbs sampling.
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Pairwise UGM on MNIST Digits

@ Samples from a lattice-structured pairwise UGM:

@ Training: 100k stochastic gradient w/ Gibbs sampling steps with o = 0.01.
@ Samples are iteration 100k of Gibbs sampling with fixed w.
e Bonus slides: structure learning in log-linear UGMs with L1-regularization.
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Outline

© Multi-Cluster Mixture Models



Multi-Cluster Mixture Models

“THE REVOLUTION WILL NOT BE
SUPERVISED” PROMISES
FACEBOOK’S YANN LECUN IN
KICKOFF Al SEMINAR

MARCH ETH, 2018

press RooM M Facebook Twitter & Print

http:

//engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar


http://engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar
http://engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar
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Deep Density Estimation

In 340 we discussed deep learning methods for supervised learning.

Does it make sense to talk about deep unsupervised learning?

Standard argument:

e Human learning seems to be mostly unsupervised.
e Supervision gives limited feedback: bits in a class label vs. an image.
e Could we learn unsupervised models with much less data?

Deep belief networks started modern deep learning movement (2006).
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Cool Pictures Motivation for Deep Learning

@ First layer of z; trained on 10 by 10 image patches:

Ll BN ANV

@ Visualization of second and third layers trained on specific objectS'

elephants. chairs faces, cars, a\rp\a nes, motorbikes

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
@ Many classes use these particular images to motivate deep neural networks.
e But they're not from a neural network: they're from a DAG model.


http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Mixture of Independent Models

@ Recall the mixture of independent models:

k d
ple) = > p(z =) [[ pla; | = = ).

c=1 7j=1

@ Given z, each variable z; comes from some “nice” distribution.

@ This is enough to model any distribution.

o Just need to know cluster of example = and distribution of z; given z.
e But not an efficient representation: number of cluster might need to be huge.

o Need to learn each cluster independently (no “shared” information across clusters).
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Latent DAG Model

@ Consider the following model with binary z; and zs:

@ Have we gained anything?

o We have 4 clusters based on two hidden variables.
e Each cluster shares a parent/part with 2 of the other clusters.

@ Hope is to achieve some degree of composition

e Don't need to re-learn basic things about the x; in each cluster.
e Maybe one hidden z. models clusters, and another models correlations.
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Latent DAG Model

@ Consider the following model:

@ Now we have 16 clusters, in general we'll have 2F with % hidden binary nodes.
e This discrete latent-factors give combinatorial number of mixtures.
@ You can think of each z. as a “part” that can be included or not (“binary PCA").

o Usually assume p(z; | 21, 22, 23, 24) is a linear model (Gaussian, logistic, etc.).
o Distributed representation where z is made of parts z.
e With d visible ; and k hidden z;, we only have dk parameters.
o Unfortunately, somewhat hard to use:
@ Combinatorial “explaining away” between z. value when conditioning on x.
o Restricted Boltzmann Machines (RBMs) are a similar undirected model...



(]

Multi-Cluster Mixture Models

Summary

Alpha-beta swaps and alpha exapnsions.
o Powerful approximate decoding methods in “attractive” models.

Log-linear parameterization can be used to learn UGMs:
e Maximum likelihood is convex, but requires normalizing constant Z and inference.

Approximate UGM learning:
@ Change objective function: pseudolikelihood.
@ Approximate marginals: Monte Carlo or variational methods.

Multi-Cluster Mixture Model
o Cluster is defined by values of a set of k binary variables.
e Exponential number of clusters, but explaining away makes inference hard.

Next time: the work that started the the modern deep learning movement.
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Example: Ising Model of Rain Data

o E.g., for the rain data we could parameterize our node potentials using

log(¢:(z:)) = {w1 no rain '

0 rain

@ Why do we only need 1 parameter?
o Scaling ¢;(1) and ¢(2) by constant doesn't change distribution.

@ In general, we only need (k — 1) parameters for a k-state variable.
o But if we're using regularization we may want to use k anyways (symmetry).
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Example: Ising Model of Rain Data

@ The Ising parameterization of edge potentials,

wy Ty :."L‘j

log(¢ij(xi, x;)) = {0 oL
7 J

@ Applying gradient descent gives MLE of

w 0.16 b = exp(wy)|  [1.17 i = exp(wz) exp(0) | (234 1
10857 " lexp(0) | | 1|7 Y |exp(0) exp(wa)| | 1 2.34]’
preference towards no rain, and adjacent days being the same.

o Average NLL of 16.8 vs. 19.0 for independent model.
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Full Model of Rain Data

@ We could alternately use fully expressive edge potentials

log (s (i, ;) = [w2 wB] 7

w4 Ws

but these don't improve the likelihood much.

@ We could fix one of these at 0 due to the normalization.
o But we often don't do this when using regularization.

@ We could also have special potentials for the boundaries.
e Many language models are homogeneous, except for start/end of sentences.
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Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

@ For this dataset, using untied or general edges doesn’t change likelihood much.

Samples from MAF model

‘Samples based on independent model
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Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:

Conditional samples from MRF model
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UGM Training Objective Function

@ With log-linear parameterization, NLL for IID training examples is

exp(w?
) = —Zlogp ) Zl (2t L)
= —ZwTF(xi) + ZlogZ(w
i=1 i=1

= _w}F(X) + nlog Z(w).

where the F(X) = 3. F(z") are called the sufficient statistics of the dataset.

o Given sufficient statistics F'(X), we can throw out the examples z°.
(only go through data once)

@ Function f(w) is convex (it's linear plus a big log-sum-exp function).
e But notice that Z depends on w
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Log-Linear UGM Gradient

@ For 1 example z, we showed that NLL with log-linear parameterization is
f(w) = —w? F(x) + log Z(w).
@ The partial derivative with respect to parameter w; has a simple form

ex 'lUT X
Vs f(0) = ~Fy(@) + 3 22 S

= —Fj(z)+ Y _pla | w)F;(z)
= —Fj(z) + E[F;(x)].

@ Observe that derivative of log(Z) is expected value of feature.
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Structure Learning in UGMs

Recall that in Ising UGMs, our edge potentials have the form

Gij(xi, ) = exp(wi;z;x;).
If we set w;; = 0, it sets ¢;;(x;, z;) =1 for all z; and z;.

o Potential just “multiplies by 1", which is equivalent to removing the edge.

L1-regularization of w;; values performs structure learning in UGM.

For general log-linear, each edge has multiple parameters wj ; s .
o In this case we can use “group L1-regularization” for structure learning.
e Each group will be all parameters w; ;... associated with an edge (3, j).
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Structure Learning on Rain Data
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Parameter Learning in UGMs

Structure Learning on USPS Digits

Structure learning of pairwise UGM with group-L1 on USPS digits:

6]

)

. 90000
000 0 0 @ X

WEPEGGTRTATE Sl s s v B
RN G R A
T e e
S dd 6 a6 b o0

Q
@
@

@,

o O & B O U )
E QRO ddeeo600

0O O 9 O g 5O 0 06
@aaoe@@@@wox?@@@é

[e3 @LI: 09
©0-000 906006




Parameter Learning in UGMs Multi-Cluster Mixture Models

Structure Learning on News Words
Group-L1 on newsgroups data:
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Structure Learning on News Words
Group-L1 on newsgroups data:
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