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Last Time: ICM for Approximate Decoding

We discussed iterate conditional mode (ICM) for decoding.

Start with a guess for x, and at iteration t:

Optimize the variable xj for some variable j, with others held fixed.

Fast but not guaranteed to find local optimum (“approximate” decoding).

Works with “unnormalized” probability p̃(x).

Can be implemented efficiently: update only depends on Markov blanket.

Markov blanket is the nodes that make you conditionally independent of all others.

(Show video)
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Coordinate Sampling

What about approximate sampling?

In DAGs, ancestral sampling conditions on sampled values of parents,

xj ∼ p(xj | xpa(j)).

In ICM, we approximately decode a UGM by iteratively maximizing an xjt ,

xj ← max
xj

p(xj | x−j).

We can approximately sample from a UGM by iteratively sampling an xjt ,

xj ∼ p(xj | x−j),

and this coordinate-wise sampling algorithm is called Gibbs sampling.
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Gibbs Sampling

Gibbs sampling starts with some x and then repeats:
1 Choose a variable j uniformly at random.
2 Update xj by sampling it from its conditional,

xj ∼ p(xj | x−j).

Analogy: sampling version of ICM:

Transforms d-dimensional sampling into 1-dimensional sampling.

Gibbs sampling is probably the most common multi-dimensional sampler.
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Gibbs Sampling in Action

Start with some initial value: x0 =
[
2 2 3 1

]
.

Select random j like j = 3.

Sample variable j: x1 =
[
2 2 1 1

]
.

Select random j like j = 1.

Sample variable j: x2 =
[
3 2 1 1

]
.

Select random j like j = 2.

Sample variable j: x3 =
[
3 2 1 1

]
.

. . .

Use the samples to form a Monte Carlo estimator.
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Gibbs Sampling

For discrete xj the conditionals needed for Gibbs sampling have a simple form,

p(xj = c | x−j) =
p(xj = c, x−j)

p(x−j)
=

p(xj = c, x−j)∑
xj=c′ p(xj = c′, x−j)

=
p̃(xj = c, x−j)∑

xj=c′ p̃(xj = c′, x−j)
,

where we use unnormalized p̃ since Z is the same in numerator/denominator.

Note that this expression is easy to evaluate: just summing over values of xj .

And in UGMs it further simplifies to only depend on the Markov blanket,

p(xj | x−j) = p(xj | xMB(j)),

since the other terms cancel in the numerator/denominator.
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Gibbs Sampling in Action: UGMs

Each ICM update would:
1 Set Mj(xj = s) to product of terms in p̃(x) involving xj , with xj set to s.
2 Sample xj proportional to Mj(xj).

(show videos)
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Gibbs Sampling in Action: UGMs
Gibbs samples after every 100d iterations:
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Gibbs Sampling in Action: UGMs

Estimates of marginals and decoding based on Gibbs sampling:
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Gibbs Sampling in Action: Multivariate Gaussian
Gibbs sampling works for general distributions.

E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

Video: https://www.youtube.com/watch?v=AEwY6QXWoUg

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
https://www.youtube.com/watch?v=AEwY6QXWoUg
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Gibbs Sampling as a Markov Chain

Why would Gibbs sampling work?
Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.

The “Gibbs sampling Markov chain” for sampling from a 4-variable binary UGM:
The states are the possible configurations of the four variables:

s = [0 0 0 0], s = [0 0 0 1], s = [0 0 1 0], etc.

The initial probability q is set to 1 for the initial state, and 0 for the others:
If you start at s = [1 1 0 1], then q(x1 = [1 1 0 1]) = 1 and q(x1 = [0 0 0 0]) = 0.

The transition probabilities q are based on variable we choose and UGM:
If we are at s = [1 1 0 1] and choose coordinate randomly we have:

q(xt+1 = [0 0 1 1] | xt = [1 1 0 1]) = 0 (Gibbs only updates on variable)

q(xt+1 = [1 0 0 1] | xt = [1 1 0 1]) =
1

d︸︷︷︸
uniform

p(x2 = 0 | x1 = 1, x3 = 0, x4 = 1)︸ ︷︷ ︸
from UGM

.

Not homogeneous if cycling, but homogeneous if add “last variable” to state.
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Gibbs Sampling as a Markov Chain

Why would Gibbs sampling work?

Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.

Previously we discussed stationary distribution of Markov chain:

π(s) =
∑
s′

q(xt = s | xt−1 = s′)π(s′),

with transition probabilities q (of the Gibbs sampling Markov chain).

A sufficient condition for Gibbs Markov chain to have unique stationary:

p(xj | x−j) > 0 for all j.
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Markov Chain Monte Carlo (MCMC)

Stationary distribution π of Gibbs sampling is the target distribution:

π(x) = p(x),

so for large k a sample xk will be distributed according to p(x).

Allows Gibbs sampling to be used in Markov Chain Monte Carlo (MCMC):
Design a Markov chain that has π(x) = p(x).
Use these samples within a Monte Carlo estimator,

E[g(x)] ≈ 1

n

n∑
t=1

g(xi).

Law of large numbers can be generalized to show this converges as n→∞.
“Ergodic theroem”.
But convergence is slower since we’re generating dependent samples.
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Markov Chain Monte Carlo
MCMC sampling from a Gaussian:

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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MCMC Implementation Issues

In practice, we often don’t take all samples in our Monte Carlo estimate:
Burn in: throw away the initial samples when we haven’t converged to stationary.
Thinning: only keep every k samples, since they will be highly correlated.

Two common ways that MCMC is applied:
1 Sample from a huge number of Markov chains for a long time, use final states.

Great for parallelization.
No need for thinning, if chains are independently initialized.
Need to worry about burn in.

2 Sample from one Markov chain for a really long time, use states across time.
Less worry about burn in.
Need to worry about thinning.

It can very hard to diagnose if we have reached stationary distribution.
Recent work showed that this is P-space hard (not polynomial-time even if P=NP).
Various heuristics exist.
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Outline

1 Gibbs Sampling

2 Block Approximate Inference
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Block-Structured Approximate Inference

Basic approximate inference methods like ICM and Gibb sampling:

Update one xj at a time.
Efficient because conditional UGM is 1 node.

Better approximate inference methods use block updates:

Update a block of xj values at once.
Efficient if conditional UGM allows exact inference.

If we choose the blocks cleverly, this works substantially better.
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Block-Structured Approximate Inference

Consider a lattice-structure and the following two blocks (“red-black ordering”):

Given black nodes, conditional UGM on red nodes is a disconnected graph.
“I can optimally update the red nodes given the black nodes” (and vice versa).

You update d/2 nodes at once for cost of this is O(dk), and easy to parallelize.

Minimum number of blocks to disconnect the graph is graph colouring.
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Block-Structured Approximate Inference

We could also consider general forest-structured blocks:

We can still optimally update the black nodes given the gray nodes in O(dk2).

This works much better than “one at a time”.
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Block Gibbs Sampling in Action

Gibbs vs. tree-structured block-Gibbs samples:

With block sampling, the samples are far less correlated.

We can also do tree-structured block ICM.

Harder to get stuck if you get to update entire trees.
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Block-Structured Approximate Inference

Or we could define a new tree-structured block on each iteration:

The above block updates around two thirds of the nodes optimally.
(Here we’re updating the black nodes.)
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Block ICM Based on Graph Cuts

Consider a binary pairwise UGMs with “attractive” potentials,

log φij(1, 1) + log φij(2, 2) ≥ log φij(1, 2) + log φij(2, 1).

In words: “neighbours prefer to have similar states”.

In this setting exact decoding can be formulated as a max-flow/min-cut problem.

Can be solved in polynomial time.

This is widely-used computer vision:

Want neighbouring pixels/super-pixels/regions to be more likely to get same label.
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Graph Cut Example: “GrabCut”

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

1 User draws a box around the object they want to segment.
2 Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
3 Construct a pairwise UGM using:

φi(xi) set to GMM probability of pixel i being in class xi.
φij(xi, xj) set to Ising potential times RBF based on spatial/colour distance.

Use wij > 0 so the model is “attractive”.

4 Perform exact decoding in the binary attractive model using graph cuts.

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
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Graph Cut Example: “GrabCut”
GrabCut with extra user interaction:

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

If we have more than 2 states, we can’t use graph cuts.

Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log φij(α, α) + log φij(β, β) ≥ log φij(α, β) + log φij(β, α).

Each step choose an α and β, optimally “swaps” labels among these nodes.

Alpha-expansions are another variation based on a slightly stronger assumption,

log φij(α, α) + log φij(β1, β2) ≥ log φij(α, β1) + log φij(β2, α).

Steps choose label α, and consider replacing the label of any node not labeled α.
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

These don’t find global optima in general, but make huge moves:

A somewhat-related MCMC method is the Swendson-Wang algorithm.
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Example: Photomontage

Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

Here, xi corresponds to identity of original image at position i.

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Example: Photomontage
Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Summary

Gibbs sampling is coordinate-wise sampling.

Special case of Markov chain Monte Carlo (MCMC) method.

Block approximate inference works better than single-variable methods.

Blocks could be defined by trees or to implement graph cuts.

Next time: learning in UGMs.
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