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Last Time: ICM for Approximate Decoding

We discussed iterate conditional mode (ICM) for decoding.

Start with a guess for x, and at iteration ¢:
o Optimize the variable x; for some variable j, with others held fixed.

Fast but not guaranteed to find local optimum (“approximate” decoding).
Works with “unnormalized” probability p(z).
Can be implemented efficiently: update only depends on Markov blanket.

e Markov blanket is the nodes that make you conditionally independent of all others.

(Show video)
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Coordinate Sampling

@ What about approximate sampling?

@ In DAGs, ancestral sampling conditions on sampled values of parents,
zj ~ p(z; | xpa(j))-
@ In ICM, we approximately decode a UGM by iteratively maximizing an x;,,
Tj Hiz}xp(:vj | 2_5).
@ We can approximately sample from a UGM by iteratively sampling an z;,,
zj ~ plx; | 2—;5),

and this coordinate-wise sampling algorithm is called Gibbs sampling.
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Gibbs Sampling

@ Gibbs sampling starts with some x and then repeats:

@ Choose a variable j uniformly at random.
@ Update x; by sampling it from its conditional,

zj ~ plag [ 2).
@ Analogy: sampling version of ICM:

e Transforms d-dimensional sampling into 1-dimensional sampling.

@ Gibbs sampling is probably the most common multi-dimensional sampler.
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Gibbs Sampling in Action

Start with some initial value: 2 =[2 2 3 1].
Select random j like j = 3.

Sample variable j: ' =[2 2 1 1].
@ Select random j like j = 1.

o Sample variable j: 2% = [3 2 1 1].
@ Select random j like j = 2.

o Sample variable j: 2% = [3 2 1 1].
° ...

@ Use the samples to form a Monte Carlo estimator.



Gibbs Sampling

@ For discrete z; the conditionals needed for Gibbs sampling have a simple form,

plrj=cay) _ plaj=cay)  plrj=cay)
p(z—j) Ya—ePEj=czy) Y, bz =c )

plzj=clo_y) =

where we use unnormalized p since Z is the same in numerator/denominator.
o Note that this expression is easy to evaluate: just summing over values of x;.

@ And in UGMs it further simplifies to only depend on the Markov blanket,

p(zj | o—j) = p(x; | TmB(H)),

since the other terms cancel in the numerator/denominator.
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Gibbs Sampling in Action: UGMs

@ Each ICM update would:
@ Set M;(x; = s) to product of terms in p(x) involving z;, with x; set to s.
@ Sample x; proportional to M;(z;).

(show videos)



Gibbs Sampling

Gibbs samples after every 100d iterations:

Gibbs Sampling in Action: UGMs

Samples from Gibbs sampler
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Gibbs Sampling in Action: UGMs

Estimates of marginals and decoding based on Gibbs sampling:

Gibbs Estimates of Marginals of Noisy X

Gibbs Decoding of Noisy X
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Gibbs Sampling in Action: Multivariate Gaussian

@ Gibbs sampling works for general distributions.
e E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.
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https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

e Video: https://www.youtube.com/watch?v=AEwY6QXWoUg


https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
https://www.youtube.com/watch?v=AEwY6QXWoUg
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Gibbs Sampling as a Markov Chain
o Why would Gibbs sampling work?

o Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.

@ The "Gibbs sampling Markov chain” for sampling from a 4-variable binary UGM:
o The states are the possible configurations of the four variables:
e s=1[0000],s=[0001],5s=[0010], etc.
e The initial probability ¢ is set to 1 for the initial state, and 0 for the others:
o Ifyoustart at s =[1101], then g2’ =[1101]) =1 and g(z' =[0000]) =0.
e The transition probabilities ¢ are based on variable we choose and UGM:
o If we are at s = [1 1 0 1] and choose coordinate randomly we have:

gz =[0011]|2"=[1101]) =0 (Gibbs only updates on variable)

plr2=0]z1=1,23=0,24 =1).

g™ =[1001] 2" =[1101])) = é
~ from UGM

e Not homogeneous if cycling, but homogeneous if add “last variable” to state.
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Gibbs Sampling as a Markov Chain

@ Why would Gibbs sampling work?
o Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.

@ Previously we discussed stationary distribution of Markov chain:

n(s) =) a(z' =s| o' = &) (s),

SI

with transition probabilities ¢ (of the Gibbs sampling Markov chain).

@ A sufficient condition for Gibbs Markov chain to have unique stationary:

p(z; | z—;) >0 forall j.
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Markov Chain Monte Carlo (MCMC)
@ Stationary distribution 7 of Gibbs sampling is the target distribution:
m(x) = p(x),
so for large k a sample 2" will be distributed according to p(x).
@ Allows Gibbs sampling to be used in Markov Chain Monte Carlo (MCMC):

o Design a Markov chain that has 7(z) = p(z).
o Use these samples within a Monte Carlo estimator,

I~
Elg(a)] » ~ > g(a").
t=1
@ Law of large numbers can be generalized to show this converges as n — o0.

e “Ergodic theroem".
e But convergence is slower since we're generating dependent samples.
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Markov Chain Monte Carlo
MCMC sampling from a Gaussian:
From top left to bottom right: histograms of 1000 independent

Markov chains with a normal distribution as target distribution.
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http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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MCMC Implementation Issues

@ In practice, we often don't take all samples in our Monte Carlo estimate:
e Burn in: throw away the initial samples when we haven't converged to stationary.
e Thinning: only keep every k samples, since they will be highly correlated.

@ Two common ways that MCMC is applied:
@ Sample from a huge number of Markov chains for a long time, use final states.
o Great for parallelization.
@ No need for thinning, if chains are independently initialized.
@ Need to worry about burn in.

@ Sample from one Markov chain for a really long time, use states across time.

@ Less worry about burn in.
@ Need to worry about thinning.

@ It can very hard to diagnose if we have reached stationary distribution.
o Recent work showed that this is P-space hard (not polynomial-time even if P=NP).
e Various heuristics exist.
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Outline

© Block Approximate Inference
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Block-Structured Approximate Inference

@ Basic approximate inference methods like ICM and Gibb sampling:

o Update one z; at a time.
o Efficient because conditional UGM is 1 node.

@ Better approximate inference methods use block updates:

o Update a block of x; values at once.
o Efficient if conditional UGM allows exact inference.

@ If we choose the blocks cleverly, this works substantially better.
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Block-Structured Approximate Inference

o Consider a lattice-structure and the following two blocks ( “red-black ordering”):

@ Given black nodes, conditional UGM on red nodes is a disconnected graph.
o "l can optimally update the red nodes given the black nodes” (and vice versa).
@ You update d/2 nodes at once for cost of this is O(dk), and easy to parallelize.

@ Minimum number of blocks to disconnect the graph is graph colouring.
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Block-Structured Approximate Inference

@ We could also consider general forest-structured blocks:
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@ We can still optimally update the black nodes given the gray nodes in O(dk?).
e This works much better than “one at a time".



Block Gibbs Sampling in Action

@ Gibbs vs. tree-structured block-Gibbs samples:

Samples from Gibbs sampler
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Samples from Block Gibbs sampler
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@ With block sampling, the samples are far less correlated.

@ We can also do tree-structured block ICM.
e Harder to get stuck if you get to update entire trees.

Block Approximate Inference
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Block-Structured Approximate Inference

@ Or we could define a new tree-structured block on each iteration:
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@ The above block updates around two thirds of the nodes optimally.
(Here we're updating the black nodes.)
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Block ICM Based on Graph Cuts

Consider a binary pairwise UGMs with “attractive” potentials,

log ¢;(1,1) + log ¢45(2, 2) > log ¢45(1,2) + log ¢;5(2, 1).

In words: “neighbours prefer to have similar states”.

In this setting exact decoding can be formulated as a max-flow/min-cut problem.
e Can be solved in polynomial time.

This is widely-used computer vision:
o Want neighbouring pixels/super-pixels/regions to be more likely to get same label.
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Graph Cut Example: “GrabCut”

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

http://cvg.ethz.ch/teaching/cv1/2012/grabcut-siggraph04.pdf

© User draws a box around the object they want to segment.
@ Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
© Construct a pairwise UGM using:
o ¢;(z;) set to GMM probability of pixel 7 being in class z;.
o ¢;;(x;,x;) set to Ising potential times RBF based on spatial/colour distance.
@ Use w;; > 0 so the model is “attractive”.

@ Perform exact decoding in the binary attractive model using graph cuts.


http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
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Graph Cut Example: “GrabCut”

@ GrabCut with extra user interaction:
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http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

@ If we have more than 2 states, we can’t use graph cuts.

@ Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log ¢y (a, ) +1og ¢i5(B, B) > log ¢y (v, B) + log ¢i; (5, cv).

e Each step choose an « and 3, optimally “swaps” labels among these nodes.

@ Alpha-expansions are another variation based on a slightly stronger assumption,

log ¢sj(cr, ) + log ¢4 (61, B2) > log ¢ij(ax, B1) + log ¢4 ( B2, cv).

e Steps choose label «, and consider replacing the label of any node not labeled a.
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

@ These don't find global optima in general, but make huge moves:

Figure 1: From left to right: Initial labeling, labeling after eS-swap, labeling after a-expansion, labeling after
a-expansion G-shrink. The optimal labeling of the « pixels is outlined by a white triangle, and is achieved from
the initial labeling by one a-expansion g-shrink move.

@ A somewhat-related MCMC method is the Swendson-Wang algorithm.
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Example: Photomontage

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

@ Here, z; corresponds to identity of original image at position 1.


http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Example: Photomontage

@ Photomontage: combining different photos into one photo:

http://vision.middleburyv.edu/MRF/pdf/MRF-PAMI.pdf


http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Summary

@ Gibbs sampling is coordinate-wise sampling.
e Special case of Markov chain Monte Carlo (MCMC) method.

@ Block approximate inference works better than single-variable methods.
e Blocks could be defined by trees or to implement graph cuts.

@ Next time: learning in UGMs.
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