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Exact Inference in UGMs Iterated Conditional Mode

Last Lectures: Directed and Undirected Graphical Models
We’ve discussed the most common classes of graphical models:

DAG models represent probability as ordered product of conditionals,

p(x) =

d∏
j=1

p(xj | xpa(j)),

and are also known as “Bayesian networks” and “belief networks”.

UGMs represent probability as product of non-negative potentials φc,

p(x) =
1

Z

∏
c∈C

φc(xc), with Z =
∑
x

∏
c∈C

φc(xc),

and are also known as “Markov random fields” and ”Markov networks”.
“Partition function” Z makes all inference tasks hard in non-forest UGMs.

Same exact/approximate inference methods work for both cases.
Can convert from DAG to UGM via moralization.
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Easy Cases: Chains, Trees and Forests
The forward-backward algorithm still works for chain-structured UGMs:

We compute the forward messages M and the backwards messages V .
With both M and V we can [conditionally] decode/marginalize/sample.

Belief propagation generalizes this to trees (undirected graphs with no cycles):
Pick an arbitrary node as the “root”, and order the nodes going away from the root.

Pass messages starting from the “leaves” going towards the root.
“Root” is like the last node in a Markov chain.

Backtrack from root to leaves to do decoding/sampling.
Send messages from the root going to the leaves to compute all marginals.

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
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Easy Cases: Chains, Trees and Forests
Recall the CK equations in Markov chains:

Mc(xc) =
∑
xp

p(xc | xp)Mp(xp).

For chain-structure UGMs we would have:

Mc(xc) ∝
∑
xp

φ(xp)φ(xp, xc)Mp(xp).

In tree-structured UGMs, parent p in the ordering may have multiple parents.
Message coming from “neighbour” i that itself has neighbours j and k would be

Mic(xc) ∝
∑
xi

φi(xi)φic(xi, xc)Mji(xi)Mki(xi),

Univariate marginals are proportional to φi(xi) times all “incoming” messages.
The“forward” and “backward” Markov chain messages are a special case.
Replace

∑
xi

with maxxi
for decoding.

“Sum-product” and “max-product” algorithms.
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Exact Inference in UGMs
For general graphs, the cost of message passing depends on

1 Graph structure.
2 Variable order.

To see the effect of the order, consider Markov chain inference with bad ordering:

p(x5) =
∑
x5

∑
x4

∑
x3

∑
x2

∑
x1

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)

=
∑
x5

∑
x1

∑
x4

∑
x3

∑
x2

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)

=
∑
x5

∑
x1

p(x1)
∑
x3

∑
x4

p(x4 | x3)p(x5 | x4)
∑
x2

p(x2 | x1)p(x3 | x2)︸ ︷︷ ︸
M13(x1,x3)

So even though we have a chain, we have an M with k2 values instead of k.
Increases cost to O(dk3) instead of O(dk2).
Inference can be exponentially more expensive with the wrong ordering.
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Exact Inference in UGMs
For general graphs, the cost of message passing depends on

1 Graph structure.
2 Variable order.

As a non-tree example, consider computing Z in a simple 4-node cycle:

Z =
∑
x4

∑
x3

∑
x2

∑
x1

φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ14(x1, x4)

=
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)
∑
x1

φ12(x1, x2)φ14(x1, x4)

=
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)M24(x2, x4)

=
∑
x4

∑
x3

φ34(x3, x4)M34(x3, x4) =
∑
x4

M4(x4).

We again have an M with k2 values instead of k.
We can do inference tasks with this graph, but it costs O(dk3) instead of O(dk2).
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Variable Order and Treewidth

Cost of message passing in general graphs is given by O(dkω+1).

Here, ω is the number of dimensions of the largest message.
For trees, ω = 1 so we get our usual cost of O(dk2).

The minimum value of ω across orderings for a given graph is called treewidth.
In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.

Also called “graph dimension” or “ω-tree”.

Intuitively, you can think of low treewidth as being “close to a tree”.

Trees have a treewidth of 1, and a single loop has a treewidth of 2.
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Treewidth Examples

Examples of k-trees:

2-tree and 3-tree are trees if you use dotted circles to group nodes.
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Treewidth Examples

Trees have ω = 1, so with the right order inference costs O(dk2).

A big loop has ω = 2, so cost with the right ordering is O(dk3).

The below grid-like structure has ω = 3, so cost is O(dk4).
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Variable Order and Treewidth

Junction trees generalize belief propagation to general graphs (requires ordering).
This is the algorithm that achieves the O(dkω+1) runtime.

Computing ω and the optimal ordering is NP-hard.
But various heuristic ordering methods exist.

An m1 by m2 lattice has ω = min{m1,m2}.
So you can do exact inference on “wide chains” with Junction tree.
But for 28 by 28 MNIST digits it would cost O(784 · 229).

Some links if you want to read about treewidth:
https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf

https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf

For some graphs ω = (d− 1) so there is no gain over brute-force enumeration.
Many graphs have high treewidth so we need approximate inference.

https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf
https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf
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2 Iterated Conditional Mode



Exact Inference in UGMs Iterated Conditional Mode

Iterated Conditional Mode (ICM)

The iterated conditional mode (ICM) algorithm for approximate decoding:

On each iteration k, choose a variable jt.
Maximie the joint probability in terms of xjt (with other variables fixed),

xt+1
j ∈ argmax

c
p(xt1, . . . , x

t
j−1, xj = c, xtj+1, . . . , x

t
d).

Equivalently, iterations correspond to finding mode of conditional p(xj | xt−j),

xt+1
j ∈ argmax

c
p(xj = c | xt−j),

where x−j means “xi for all i except xj”: x1, x2, . . . , xj−1, xj+1, . . . , xd.
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ICM in Action

Start with some initial value: x0 =
[
2 2 3 1

]
.

Select random j like j = 3.

Set j to maximize p(x3 | x0−3): x1 =
[
2 2 1 1

]
.

Select random j like j = 1.

Set j to maximize p(x1 | x1−1): x2 =
[
3 2 1 1

]
.

Select random j like j = 2.

Set j to maximize p(x2 | x2−2): x3 =
[
3 2 1 1

]
.

. . .

Repeat until you can no longer improve by single-variable changes.

Intead of random, could cycle through the variables in order.
Or you could greedily choose the variable that increases the probability the most.
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Optimality and Globalization of ICM

Does ICM find the global optimum?

Decoding is usually non-convex, so doesn’t find global optimum.

ICM is an approximate decoding method.

There exist many globalization methods that can improve its performance:

Restarting with random initializations.
Global optimization methods:

Simulated annealing, genetic algorithms, ant colony optimization, GRASP, etc.
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Using the Unnormalized Objective
How can you maximize p(x) in terms of xj if evaluating it is NP-hard?

Let’s define the unnormalized probability p̃ as

p̃(x) =
∏
c∈C

φc(xc).

So the normalized probability is given by

p(x) =
p̃(x)

Z
.

In UGMs evaluating Z is hard but evaluating p̃(x) is easy.

And for decoding we only need unnormalized probabilities,

argmax
x

p(x) ≡ argmax
x

p̃(x)

Z
≡ argmax

x
p̃(x),

so we can decode based on p̃ without knowing Z.
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ICM Iteration Cost

How much does ICM cost?

Consider a pairwise UGM,

p̃(x) =

 d∏
j=1

φj(xj)

 ∏
(i,j)∈E

φij(xi, xj)

 .

Each ICM update would:
1 Set Mj(xj = s) to product of terms in p̃(x) involving xj , with xj set to s.
2 Set xj to the largest value of Mj(xj).

The variable xj has k values and appears in at most d factors here.
You can compute the k values of these d factors in O(dk) to find the largest.
If you only have m nodes in “Markov blanket”, this reduces to O(mk).

We will define “Markov blanket” in a couple slides.



Exact Inference in UGMs Iterated Conditional Mode

ICM in Action
Consider using a UGM for binary image denoising:

We have

Unary potentials φj for each position.
Pairwise potentials φij for neighbours on grid.
Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).



Exact Inference in UGMs Iterated Conditional Mode

Digression: Closure of UGMs under Conditioning

UGMs are closed under conditioning:

If p(x) is a UGM, then p(xA | xB) can be written as a UGM (for partition A and B).

Conditioning on x2 and x3 in a chain,

gives a UGM defined on x1 and x4 that is disconnected:

Graphically, we “erase the black nodes and their edges”.

Notice that inference in the conditional UGM may be mucher easier.
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Digression: Closure of UGMs under Conditioning

Mathematically, a 4-node pairwise UGM with a chain structure assumes

p(x1, x2, x3, x4) ∝ φ1(x1)φ2(x2)φ3(x3)φ4(x4)φ12(x1, x2)φ23(x2, x3)φ34(x3, x4).

Conditioning on x2 and x3 gives UGM over x1 and x4 (tedious: bonus slide)

p(x1, x4 | x2, x3) =
1

Z ′
φ′1(x1)φ

′
4(x4),

where new potentials “absorb” the shared potentials with observed nodes:

φ′1(x1) = φ1(x1)φ12(x1, x2), φ′4(x4) = φ4(x4)φ34(x3, x4).
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Simpler Inference in Conditional UGMs

Consider the following graph which could describe bus stops:

If we condition on the “hubs”, the graph forms a forest (and inference is easy).
Simpler inference after conditioning is used by many approximate inference methods.
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Digression: Local Markov Property and Markov Blanket

Approximate inference methods often use conditional p(xj | x−j),

where xk−j means “xki for all i except xkj ”: xk1 , x
k
2 , . . . , x

k
j−1, x

k
j+1, . . . , x

k
d.

In UGMs, the conditional simplifies due to conditional independence,

p(xj | x−j) = p(xj | xnei(j)),

this local Markov property means conditional only depends on neighbours.

We say that the neighbours of xj are its “Markov blanket”.

Markov blanket is the set nodes that make you independent of all other nodes.
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Digression: Local Markov Property and Markov Blanket

In UGMs the Markov blanket is the neighbours.

Markov blanket in DAGs: parents, children, co-parents (parents of same children):
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Summary

Message passing can be used for inference in UGMs.

Belief propagation for trees.
Cost might be exponential for unfavourable graphs/ordering.

Exponential in “treewidth” of graph.

Conditioning in UGMs leads to a smaller/simpler UGM.

Iterated conditional mode is coordinate descent for decoding UGMs.

Fast but doesn’t obtain global optimum in general.

Next time: our first MCMC method.
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Conditioning in UGMs

Conditioning on x2 and x3 in 4-node chain-UGM gives
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