CPSC 440: Advanced Machine Learning Approximate Inference

Mark Schmidt

University of British Columbia

Winter 2021

Last Lectures: Directed and Undirected Graphical Models

• We've discussed the most common classes of graphical models:

• DAG models represent probability as ordered product of conditionals,

$$p(x) = \prod_{j=1}^d p(x_j \mid x_{\mathsf{pa}(j)}),$$

and are also known as "Bayesian networks" and "belief networks".

• UGMs represent probability as product of non-negative potentials ϕ_c ,

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c), \quad \text{with} \quad Z = \sum_x \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

and are also known as "Markov random fields" and "Markov networks".

- "Partition function" Z makes all inference tasks hard in non-forest UGMs.
- Same exact/approximate inference methods work for both cases.
 Can convert from DAG to UGM via moralization.

Easy Cases: Chains, Trees and Forests

- The forward-backward algorithm still works for chain-structured UGMs:
 - ${\ensuremath{\, \bullet }}$ We compute the forward messages M and the backwards messages V.
 - With both M and V we can [conditionally] decode/marginalize/sample.
- Belief propagation generalizes this to trees (undirected graphs with no cycles):
 - Pick an arbitrary node as the "root", and order the nodes going away from the root.
 - Pass messages starting from the "leaves" going towards the root.
 - "Root" is like the last node in a Markov chain.
 - Backtrack from root to leaves to do decoding/sampling.
 - Send messages from the root going to the leaves to compute all marginals.

https://www.quora.com/

Easy Cases: Chains, Trees and Forests

• Recall the CK equations in Markov chains:

$$M_c(x_c) = \sum_{x_p} p(x_c \mid x_p) M_p(x_p).$$

• For chain-structure UGMs we would have:

$$M_c(x_c) \propto \sum_{x_p} \phi(x_p) \phi(x_p, x_c) M_p(x_p).$$

- In tree-structured UGMs, parent p in the ordering may have multiple parents.
- \bullet Message coming from "neighbour" i that itself has neighbours j and k would be

$$M_{ic}(x_c) \propto \sum_{x_i} \phi_i(x_i) \phi_{ic}(x_i, x_c) M_{ji}(x_i) M_{ki}(x_i),$$

- Univariate marginals are proportional to $\phi_i(x_i)$ times all "incoming" messages.
 - The "forward" and "backward" Markov chain messages are a special case.
 - Replace \sum_{x_i} with \max_{x_i} for decoding.
 - "Sum-product" and "max-product" algorithms.

Exact Inference in UGMs

- For general graphs, the cost of message passing depends on
 - Graph structure.
 - ② Variable order.

• To see the effect of the order, consider Markov chain inference with bad ordering:

$$p(x_5) = \sum_{x_5} \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3) p(x_5 \mid x_4)$$

$$= \sum_{x_5} \sum_{x_1} \sum_{x_4} \sum_{x_3} \sum_{x_2} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3) p(x_5 \mid x_4)$$

$$= \sum_{x_5} \sum_{x_1} p(x_1) \sum_{x_3} \sum_{x_4} p(x_4 \mid x_3) p(x_5 \mid x_4) \underbrace{\sum_{x_2} p(x_2 \mid x_1) p(x_3 \mid x_2)}_{M_{13}(x_1, x_3)}$$

• So even though we have a chain, we have an M with k^2 values instead of k.

- Increases cost to $O(dk^3)$ instead of $O(dk^2)$.
- Inference can be exponentially more expensive with the wrong ordering.

Exact Inference in UGMs

- For general graphs, the cost of message passing depends on
 - Graph structure.
 - ② Variable order.

• As a non-tree example, consider computing Z in a simple 4-node cycle:

$$Z = \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{23}(x_2, x_3) \phi_{34}(x_3, x_4) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) M_{24}(x_2, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) M_{34}(x_3, x_4) = \sum_{x_4} M_4(x_4).$$

• We again have an M with k^2 values instead of k.

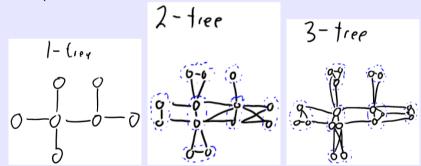
• We can do inference tasks with this graph, but it costs $O(dk^3)$ instead of $O(dk^2)$.

Variable Order and Treewidth

- Cost of message passing in general graphs is given by $O(dk^{\omega+1})$.
 - Here, ω is the number of dimensions of the largest message.
 - For trees, $\omega = 1$ so we get our usual cost of $O(dk^2)$.
- The minimum value of ω across orderings for a given graph is called treewidth.
 - In terms of graph: "minimum size of largest clique, minus 1, over all triangulations".
 - Also called "graph dimension" or " ω -tree".
 - Intuitively, you can think of low treewidth as being "close to a tree".
 - Trees have a treewidth of 1, and a single loop has a treewidth of 2.

Treewidth Examples

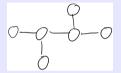
• Examples of k-trees:



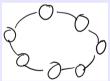
• 2-tree and 3-tree are trees if you use dotted circles to group nodes.

Treewidth Examples

• Trees have $\omega = 1$, so with the right order inference costs $O(dk^2)$.



• A big loop has $\omega = 2$, so cost with the right ordering is $O(dk^3)$.



• The below grid-like structure has $\omega = 3$, so cost is $O(dk^4)$.

Variable Order and Treewidth

- Junction trees generalize belief propagation to general graphs (requires ordering).
 - $\bullet\,$ This is the algorithm that achieves the $O(dk^{\omega+1})$ runtime.
- Computing ω and the optimal ordering is NP-hard.
 - But various heuristic ordering methods exist.
- An m_1 by m_2 lattice has $\omega = \min\{m_1, m_2\}$.
 - So you can do exact inference on "wide chains" with Junction tree.
 - But for 28 by 28 MNIST digits it would cost $O(784 \cdot 2^{29})$.
- Some links if you want to read about treewidth:
 - https://www.win.tue.nl/~nikhil/courses/2015/2W008/treewidth-erickson.pdf
 - https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf
- For some graphs $\omega = (d-1)$ so there is no gain over brute-force enumeration.
 - Many graphs have high treewidth so we need approximate inference.

Outline

(2) Iterated Conditional Mode

Iterated Conditional Mode (ICM)

- The iterated conditional mode (ICM) algorithm for approximate decoding:
 - On each iteration k, choose a variable j_t .
 - Maximie the joint probability in terms of x_{j_t} (with other variables fixed),

$$x_j^{t+1} \in \underset{c}{\operatorname{argmax}} p(x_1^t, \dots, x_{j-1}^t, x_j = c, x_{j+1}^t, \dots, x_d^t).$$

• Equivalently, iterations correspond to finding mode of conditional $p(x_j \mid x_{-j}^t)$,

$$x_j^{t+1} \in \operatorname*{argmax}_c p(x_j = c \mid x_{-j}^t),$$

where x_{-j} means " x_i for all i except x_j ": $x_1, x_2, \ldots, x_{j-1}, x_{j+1}, \ldots, x_d$.

ICM in Action

- Start with some initial value: $x^0 = \begin{bmatrix} 2 & 2 & 3 & 1 \end{bmatrix}$.
- Select random j like j = 3.
- Set j to maximize $p(x_3 \mid x_{-3}^0)$: $x^1 = \begin{bmatrix} 2 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 1.
- Set j to maximize $p(x_1 \mid x_{-1}^1)$: $x^2 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 2.
- Set j to maximize $p(x_2 | x_{-2}^2)$: $x^3 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.
- . . .
- Repeat until you can no longer improve by single-variable changes.
 - Intead of random, could cycle through the variables in order.
 - Or you could greedily choose the variable that increases the probability the most.

Optimality and Globalization of ICM

- Does ICM find the global optimum?
- Decoding is usually non-convex, so doesn't find global optimum.
 - ICM is an approximate decoding method.
- There exist many globalization methods that can improve its performance:
 - Restarting with random initializations.
 - Global optimization methods:
 - Simulated annealing, genetic algorithms, ant colony optimization, GRASP, etc.

Using the Unnormalized Objective

- How can you maximize p(x) in terms of x_j if evaluating it is NP-hard?
- $\bullet\,$ Let's define the unnormalized probability \tilde{p} as

$$\tilde{p}(x) = \prod_{c \in \mathcal{C}} \phi_c(x_c).$$

• So the normalized probability is given by

$$p(x) = rac{ ilde{p}(x)}{Z}.$$

- In UGMs evaluating Z is hard but evaluating $\tilde{p}(x)$ is easy.
- And for decoding we only need unnormalized probabilities,

$$\mathop{\mathrm{argmax}}_{x} p(x) \equiv \mathop{\mathrm{argmax}}_{x} \frac{\tilde{p}(x)}{Z} \equiv \mathop{\mathrm{argmax}}_{x} \tilde{p}(x),$$

so we can decode based on \tilde{p} without knowing Z.

Exact Inference in UGMs

ICM Iteration Cost

- How much does ICM cost?
- Consider a pairwise UGM,

$$\tilde{p}(x) = \left(\prod_{j=1}^{d} \phi_j(x_j)\right) \left(\prod_{(i,j)\in E} \phi_{ij}(x_i, x_j)\right).$$

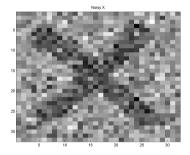
• Each ICM update would:

Set M_j(x_j = s) to product of terms in p̃(x) involving x_j, with x_j set to s.
Set x_j to the largest value of M_j(x_j).

- The variable x_j has k values and appears in at most d factors here.
 - You can compute the k values of these d factors in O(dk) to find the largest.
 - If you only have m nodes in "Markov blanket", this reduces to ${\cal O}(mk).$
 - We will define "Markov blanket" in a couple slides.

ICM in Action

Consider using a UGM for binary image denoising:



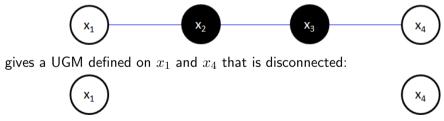
We have

- Unary potentials ϕ_j for each position.
- Pairwise potentials ϕ_{ij} for neighbours on grid.
- Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).

Digression: Closure of UGMs under Conditioning

- UGMs are closed under conditioning:
 - If p(x) is a UGM, then $p(x_A \mid x_B)$ can be written as a UGM (for partition A and B).
- Conditioning on x_2 and x_3 in a chain,



- Graphically, we "erase the black nodes and their edges".
- Notice that inference in the conditional UGM may be mucher easier.

Digression: Closure of UGMs under Conditioning

• Mathematically, a 4-node pairwise UGM with a chain structure assumes

 $p(x_1, x_2, x_3, x_4) \propto \phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_{12}(x_1, x_2)\phi_{23}(x_2, x_3)\phi_{34}(x_3, x_4).$

• Conditioning on x_2 and x_3 gives UGM over x_1 and x_4 (tedious: bonus slide)

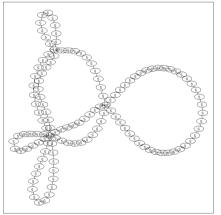
$$p(x_1, x_4 \mid x_2, x_3) = \frac{1}{Z'} \phi'_1(x_1) \phi'_4(x_4),$$

where new potentials "absorb" the shared potentials with observed nodes:

$$\phi_1'(x_1) = \phi_1(x_1)\phi_{12}(x_1, x_2), \quad \phi_4'(x_4) = \phi_4(x_4)\phi_{34}(x_3, x_4).$$

Simpler Inference in Conditional UGMs

• Consider the following graph which could describe bus stops:



If we condition on the "hubs", the graph forms a forest (and inference is easy).
Simpler inference after conditioning is used by many approximate inference methods.

Digression: Local Markov Property and Markov Blanket

- Approximate inference methods often use conditional p(x_j | x_{-j}),
 where x^k_{-j} means "x^k_i for all i except x^k_j": x^k₁, x^k₂, ..., x^k_{j-1}, x^k_{j+1}, ..., x^k_d.
- In UGMs, the conditional simplifies due to conditional independence,

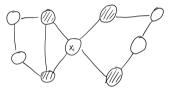
$$p(x_j \mid x_{-j}) = p(x_j \mid x_{\mathsf{nei}(j)}),$$

this local Markov property means conditional only depends on neighbours.

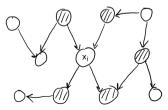
- We say that the neighbours of x_j are its "Markov blanket".
- Markov blanket is the set nodes that make you independent of all other nodes.

Digression: Local Markov Property and Markov Blanket

• In UGMs the Markov blanket is the neighbours.



• Markov blanket in DAGs: parents, children, co-parents (parents of same children):



Summary

- Message passing can be used for inference in UGMs.
 - Belief propagation for trees.
 - Cost might be exponential for unfavourable graphs/ordering.
 - Exponential in "treewidth" of graph.
- Conditioning in UGMs leads to a smaller/simpler UGM.
- Iterated conditional mode is coordinate descent for decoding UGMs.
 - Fast but doesn't obtain global optimum in general.
- Next time: our first MCMC method.

Conditioning in UGMs

• Conditioning on x_2 and x_3 in 4-node chain-UGM gives

$$p(x_1, x_4 | x_2, x_3) = \frac{p(x_1, x_2, x_3, x_4)}{p(x_2, x_3)}$$

$$= \frac{\frac{1}{Z}\phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_4)}{\sum_{x_1', x_4'} \frac{1}{Z}\phi_1(x_1')\phi_2(x_2)\phi_3(x_3)\phi_4(x_4')\phi_1(x_1', x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_4')}$$

$$= \frac{\frac{1}{Z}\phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_4)}{\frac{1}{Z}\phi_2(x_2)\phi_3(x_3)\phi_2(x_2, x_3)\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')\phi_1(x_1', x_2)\phi_3(x_3, x_4')}$$

$$= \frac{\phi_1(x_1)\phi_4(x_4)\phi_1(x_1, x_2)\phi_3(x_3, x_4)}{\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')\phi_1(x_1', x_2)\phi_3(x_3, x_4')}$$

$$= \frac{\phi_1(x_1)\phi_4(x_4)}{\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')}$$