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Exact Inference in UGMs Iterated Conditional Mode

Last Lectures: Directed and Undirected Graphical Models

@ We've discussed the most common classes of graphical models:
o DAG models represent probability as ordered product of conditionals,

d
p(x) =[] p(x; | 2pai),
j=1
and are also known as “Bayesian networks" and “belief networks".

o UGMs represent probability as product of non-negative potentials ¢,

p(x) = %H ¢c(xe), with Z = Z H ¢e(ze),

ceC z ceC

and are also known as “Markov random fields" and " Markov networks" .
o “Partition function” Z makes all inference tasks hard in non-forest UGMs.

@ Same exact/approximate inference methods work for both cases.
e Can convert from DAG to UGM via moralization.
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Easy Cases: Chains, Trees and Forests

@ The forward-backward algorithm still works for chain-structured UGMs:
o We compute the forward messages M and the backwards messages V.
o With both M and V' we can [conditionally] decode/marginalize/sample.

@ Belief propagation generalizes this to trees (undirected graphs with no cycles):
e Pick an arbitrary node as the “root”, and order the nodes going away from the root.
@ Pass messages starting from the “leaves” going towards the root.
e “Root” is like the last node in a Markov chain.
@ Backtrack from root to leaves to do decoding/sampling.
@ Send messages from the root going to the leaves to compute all marginals.
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Exact Inference in UGMs

Easy Cases: Chains, Trees and Forests

Recall the CK equations in Markov chains:

M(z.) = Zp(xc | xp)Mp(xp)'

For chain-structure UGMs we would have:

Mc(xc) X Z ¢(xp)¢(xp7 xC)Mp(xp)'

In tree-structured UGMs, parent p in the ordering may have multiple parents.
Message coming from “neighbour” i that itself has neighbours j and k& would be

Mic(z.) Z Gi(x5 ) Dic(s, Te) M (5) My (),

T

@ Univariate marginals are proportional to ¢;(x;) times all “incoming” messages.
e The"forward” and “backward” Markov chain messages are a special case.
o Replace > = with max,, for decoding.
@ “Sum-product” and “max-product” algorithms.
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Exact Inference in UGMs

@ For general graphs, the cost of message passing depends on
© Graph structure.
@ Variable order.
@ To see the effect of the order, consider Markov chain inference with bad ordering:

=3 3NN pan)p(@n | 21)p(zs | wa)p(wa | w3)p(ws | 24)
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Ts r1 T4 @3 T

_ZZPﬂﬁl ZZP$4|I3 175|174 ZP$2|$1 $3|$2)

T5 T1 T3 T4

Mz (z1,73)

@ So even though we have a chain, we have an M with k? values instead of k.
o Increases cost to O(dk?) instead of O(dk?).
o Inference can be exponentially more expensive with the wrong ordering.
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Exact Inference in UGMs

@ For general graphs, the cost of message passing depends on
© Graph structure.
@ Variable order.

@ As a non-tree example, consider computing Z in a simple 4-node cycle:

Z = ZZZZ¢12($1,$2)¢23($2,I3)¢34(933,$4)¢14($1,CL“4)
= ZZ¢34 (x3,24) Z¢23 (22,23 2012 x1,22)p14(x1, T4)

T4 X3
= § E ¢34(3, 24) g ¢23(x2, x3) Moy (2, x4)
T4 x3
= E E ¢34(23, T4 M34 x3,x4) E My(z4).
T4 T3

e We again have an M with &? values instead of k.
o We can do inference tasks with this graph, but it costs O(dk?) instead of O(dk?).
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Variable Order and Treewidth

e Cost of message passing in general graphs is given by O(dk“*1).
o Here, w is the number of dimensions of the largest message.
o For trees, w = 1 so we get our usual cost of O(dk?).

@ The minimum value of w across orderings for a given graph is called treewidth.
e In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.

o Also called “graph dimension” or “w-tree”.

o Intuitively, you can think of low treewidth as being ‘“close to a tree”.
o Trees have a treewidth of 1, and a single loop has a treewidth of 2.
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Treewidth Examples

@ Examples of k-trees:

2~ qree

5= tree

[= Crey
o o
, I :"0 -—-- %‘
O—Q—0—0 o ~—0

!
')
R

@ 2-tree and 3-tree are trees if you use dotted circles to group nodes.



Exact Inference in UGMs

Treewidth Examples

@ Trees have w = 1, so with the right order inference costs O(dk?).
%

@ A big loop has w = 2, so cost with the right ordering is O(dk?).
{j \o?j
o0

@ The below grid-like structure has w = 3, so cost is O(dk*).

e
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Variable Order and Treewidth

@ Junction trees generalize belief propagation to general graphs (requires ordering).
o This is the algorithm that achieves the O(dk“*1) runtime.

Computing w and the optimal ordering is NP-hard.
e But various heuristic ordering methods exist.

An my by mq lattice has w = min{my, ma}.
e So you can do exact inference on “wide chains" with Junction tree.
o But for 28 by 28 MNIST digits it would cost O(784 - 229).

@ Some links if you want to read about treewidth:

@ https://www.win.tue.nl/~nikhil/courses/2015/2W008/treewidth-erickson.pdf
@ https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf

For some graphs w = (d — 1) so there is no gain over brute-force enumeration.
e Many graphs have high treewidth so we need approximate inference.


https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf
https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf
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Iterated Conditional Mode (ICM)

@ The iterated conditional mode (ICM) algorithm for approximate decoding:

e On each iteration k, choose a variable j;.
o Maximie the joint probability in terms of z;, (with other variables fixed),

t+1 t t t t
a:j+ € argmaxp(Ty, ..., Tj_1,Tj = C,Ti 41, -+, Tq)-
(&
e Equivalently, iterations correspond to finding mode of conditional p(z; | ast_j),
t+1 _ t
z; € argznaxp(ﬂcJ =clz’;),

where x_; means “z; for all © except ;"1 x1,%2,...,2j-1,%j4+1,...,T4.



Iterated Conditional Mode

[CM in Action

@ Start with some initial value: 20 = [2 2 3 1].
@ Select random j like j = 3.

e Set j to maximize p(z3 | 2%5): ' =[2 2 1 1J.
@ Select random j like j = 1.

e Set j to maximize p(z1 |21 ): 2?2 =[3 2 1 1J.
@ Select random j like j = 2.

e Set j to maximize p(zo | z2,): z®=[3 2 1 1].
° ...

@ Repeat until you can no longer improve by single-variable changes.

e Intead of random, could cycle through the variables in order.
e Or you could greedily choose the variable that increases the probability the most.
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Optimality and Globalization of ICM

@ Does ICM find the global optimum?

@ Decoding is usually non-convex, so doesn't find global optimum.
e ICM is an approximate decoding method.

@ There exist many globalization methods that can improve its performance:

e Restarting with random initializations.
o Global optimization methods:

e Simulated annealing, genetic algorithms, ant colony optimization, GRASP, etc.
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Using the Unnormalized Objective

How can you maximize p(x) in terms of z; if evaluating it is NP-hard?

Let's define the unnormalized probability p as

pla) = [] telao):

ceC
@ So the normalized probability is given by

p(x) = pla)

Z
@ In UGMs evaluating Z is hard but evaluating p(x) is easy.

@ And for decoding we only need unnormalized probabilities,
p(x)

argmaxp(x) = argmax ——= = argmax p(z),
x x Z x

so we can decode based on p without knowing Z.
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ICM lteration Cost

How much does ICM cost?

Consider a pairwise UGM,

d
plx) = | T] i) IT i)
Jj=1 (i,5)€E
Each ICM update would:

@ Set M;(x; = s) to product of terms in j(x) involving x;, with x; set to s.
@ Set z; to the largest value of M;(x;).

The variable z; has k£ values and appears in at most d factors here.

e You can compute the k values of these d factors in O(dk) to find the largest.
o If you only have m nodes in “Markov blanket”, this reduces to O(mk).
o We will define “Markov blanket” in a couple slides.
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[CM in Action

Consider using a UGM for binary image denoising;:

We have
@ Unary potentials ¢; for each position.
o Pairwise potentials ¢;; for neighbours on grid.
o Parameters are trained as CRF (later).
Goal is to produce a noise-free binary image (show video).
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Digression: Closure of UGMs under Conditioning

@ UGMs are closed under conditioning:
o If p(z) is a UGM, then p(z 4 | ) can be written as a UGM (for partition A and B).

e Conditioning on x5 and x3 in a chain,

O @ @ ©

gives a UGM defined on x1 and x4 that is disconnected:

O

@ Graphically, we “erase the black nodes and their edges”.

o Notice that inference in the conditional UGM may be mucher easier.
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Digression: Closure of UGMs under Conditioning

@ Mathematically, a 4-node pairwise UGM with a chain structure assumes
p(w1, 22, 73, 24) < O1(21)P2(22)P3(23)Pa(w4)P12(71, 2)P23(w2, 23)P34(T3, 74).
e Conditioning on z2 and z3 gives UGM over ;1 and x4 (tedious: bonus slide)
pler, i | 2,75) = 04216 (),
where new potentials “absorb” the shared potentials with observed nodes:

P (1) = d1(x1)dra(w1, 22),  Py(wa) = Pa(wa)P34(w3, 24).
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Simpler Inference in Conditional UGMs

@ Consider the following graph which could describe bus stops:

e If we condition on the “hubs”, the graph forms a forest (and inference is easy).
e Simpler inference after conditioning is used by many approximate inference methods.
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Digression: Local Markov Property and Markov Blanket

e Approximate inference methods often use conditional p(z; | z_;),

k k kn. ok ok
(2

w k : k k k
o where z¥ ; means “x} for all v except z": a7, x5, ..., T 1, %7, .., Ty

@ In UGMs, the conditional simplifies due to conditional independence,

p(CUj | x—j) = p(xj | xnei(j))7

this local Markov property means conditional only depends on neighbours.
@ We say that the neighbours of x; are its “Markov blanket”.

@ Markov blanket is the set nodes that make you independent of all other nodes.
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Digression: Local Markov Property and Markov Blanket

o In UGMs the Markov blanket is the neighbours

O\

e Markov blanket in DAGs: parents, children, co-parents (parents of same children):

@""O

fm




Summary

Message passing can be used for inference in UGMs.

o Belief propagation for trees.
o Cost might be exponential for unfavourable graphs/ordering.

o Exponential in “treewidth” of graph.

Conditioning in UGMs leads to a smaller/simpler UGM.

Iterated conditional mode is coordinate descent for decoding UGMs.
e Fast but doesn't obtain global optimum in general.

Next time: our first MCMC method.

Iterated Conditional Mode
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Conditioning in UGMs

e Conditioning on x5 and x3 in 4-node chain-UGM gives
p(zy, xo, T3, 14)
p(z2, T3)
 phi(@) da(z2) da(x3) dulza) i (w1, 32) 2 (72, 73) h3 (T3, 74)
B Yo 2, 701 (@) b2 (x2) b3 (w3) du () b1 (2, 22) B2 (2, 23) B3 (3, 7))
_ ghu@) da(a2) ¢a(x3) du(wa) i (21, w2) o(w2, w3) 3 (23, 4)
B }z¢2(ﬂ/‘2)¢3(ﬂr‘3)¢2(332~$3)mel,mg D1 (z)) pu (o)) by (2, z2) da (3, 2)
$1(z1) pa(wa) pr(w1, 2) da (23, 4)
20, D1(2)) Pa (@) r (o, 22) da (3, 2))
) ()
a EJJIJQ ACATACA

plz1, za|T2, T3) =
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